1
|
Delivoria DC, Konia E, Matis I, Skretas G. Optimization of a High-Throughput Screen for Monitoring Disease-Associated Protein Misfolding and Aggregation in Bacteria. ACS Synth Biol 2025. [PMID: 40354780 DOI: 10.1021/acssynbio.5c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Protein misfolding and aggregation are central features of a wide range of diseases, including neurodegenerative disorders, systemic amyloidoses, and cancer. The identification of compounds that can modulate protein folding and aggregation is a key step toward developing effective therapies. High-throughput screening methods are essential for efficiently identifying such compounds. In this study, we optimized a previously developed high-throughput genetic screen for monitoring protein misfolding and aggregation in bacteria. This system is based on monitoring the fluorescence of Escherichia coli cells expressing fusions of human misfolding-prone and disease-related proteins (MisPs) with the green fluorescent protein. We systematically tested a variety of experimental conditions, such as overexpression conditions and MisP-GFP fusion formats, to identify key parameters that affect the sensitivity and dynamic range of the assay. Using misfolding-prone, cancer-associated variants of human p53 as a model system, we found that strong overexpression conditions, such as high copy number vectors, strong promoters, high inducer concentrations, and high overexpression temperatures, can yield optimal assay performance. These optimized assay conditions were also validated with additional MisPs, such as the Alzheimer's disease-associated amyloid-β peptide and variants of superoxide dismutase 1 associated with amyotrophic lateral sclerosis. At the same time, we observed that certain conditions, such as inducer concentrations and overexpression temperature, may need to be precisely fine-tuned for each new MisP target to yield optimal assay performance. Our findings provide a framework for standardizing MisP-GFP screening assays, facilitating their broad application in the discovery of therapeutic agents targeting protein misfolding and aggregation.
Collapse
Affiliation(s)
- Dafni C Delivoria
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece
| | - Eleni Konia
- Institute for Bio-innovation, Biomedical Sciences Research Center "Alexander Fleming", Vari 16672, Greece
- Department of Chemistry, University of Crete, Iraklio, Crete 70013, Greece
| | - Ilias Matis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Center "Alexander Fleming", Vari 16672, Greece
| |
Collapse
|
2
|
Uversky VN. How to drug a cloud? Targeting intrinsically disordered proteins. Pharmacol Rev 2024; 77:PHARMREV-AR-2023-001113. [PMID: 39433443 DOI: 10.1124/pharmrev.124.001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
Biologically active proteins/regions without stable structure (i.e., intrinsically disordered proteins and regions (IDPs and IDRs)) are commonly found in all proteomes. They have a unique functional repertoire that complements the functionalities of ordered proteins and domains. IDPs/IDRs are multifunctional promiscuous binders capable of folding at interaction with specific binding partners on a template- or context-dependent manner, many of which undergo liquid-liquid phase separation, leading to the formation of membrane-less organelles and biomolecular condensates. Many of them are frequently related to the pathogenesis of various human diseases. All this defines IDPs/IDRs as attractive targets for the development of novel drugs. However, their lack of unique structures, multifunctionality, binding promiscuity, and involvement in unusual modes of action preclude direct use of traditional structure-based drug design approaches for targeting IDPs/IDRs, and make disorder-based drug discovery for these "protein clouds" challenging. Despite all these complexities there is continuing progress in the design of small molecules affecting IDPs/IDRs. This article describes the major structural features of IDPs/IDRs and the peculiarities of the disorder-based functionality. It also discusses the roles of IDPs/IDRs in various pathologies, and shows why the approaches elaborated for finding drugs targeting ordered proteins cannot be directly used for the intrinsic disorder-based drug design, and introduces some novel methodologies suitable for these purposes. Finally, it emphasizes that regardless of their multifunctionality, binding promiscuity, lack of unique structures, and highly dynamic nature, "protein clouds" are principally druggable. Significance Statement Intrinsically disordered proteins and regions are highly abundant in nature, have multiple important biological functions, are commonly involved in the pathogenesis of a multitude of human diseases, and are therefore considered as very attractive drug targets. Although dealing with these unstructured multifunctional protein/regions is a challenging task, multiple innovative approaches have been designed to target them by small molecules.
Collapse
|
3
|
Alaziqi B, Beckitt L, Townsend DJ, Morgan J, Price R, Maerivoet A, Madine J, Rochester D, Akien G, Middleton DA. Characterization of Olive Oil Phenolic Extracts and Their Effects on the Aggregation of the Alzheimer's Amyloid-β Peptide and Tau. ACS OMEGA 2024; 9:32557-32578. [PMID: 39100310 PMCID: PMC11292642 DOI: 10.1021/acsomega.4c01281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024]
Abstract
The dietary consumption of extra virgin olive oil (EVOO) is believed to slow the progression of Alzheimer's disease (AD) symptoms. Its protective mechanisms are unclear, but specific EVOO phenolic compounds can individually impede the aggregation of amyloid-β (Aβ) peptides and the microtubule-associated protein tau, two important pathological manifestations of AD. It is unknown, however, whether the numerous and variable phenolic compounds that are consumed in dietary EVOO can collectively alter tau and Aβ aggregation as effectively as the individual compounds. The activity of these complex mixtures against Aβ and tau may be moderated by competition between active and nonactive phenolic components and by extensive derivatizations and isomerization. Here, phenolic mixtures extracted from two different EVOO sources are characterized and tested for how they modulate the aggregation of Aβ40 peptide and tau peptides in vitro. The chromatographic and NMR analysis of Greek and Saudi Arabian EVOO phenolic extracts reveals that they have different concentration profiles, and over 30 compounds are identified. Thioflavin T fluorescence and circular dichroism measurements show that relatively low concentrations (<20 μg/mL) of the Greek and Saudi extracts reduce the rate of Aβ40 aggregation and fibril mass, despite the extracts having different phenolic profiles. By contrast, the Greek extract reduces the rate of tau aggregation only at very high phenolic concentrations (>100 μg/mL). Most compounds in the extracts bind to preformed Aβ40 fibrils and release soluble Aβ oligomers that are mildly toxic to SH-SY5Y cells. Much higher (500 μg/mL) extract concentrations are required to remodel tau filaments into oligomers, and a minimal binding of phenolic compounds to the preformed filaments is observed. It is concluded that EVOO extracts having different phenol profiles are similarly capable of modulating Aβ40 aggregation and fibril morphology in vitro at relatively low concentrations but are less efficient at modulating tau aggregation. Over 2 M tonnes of EVOO are consumed globally each year as part of the Mediterranean diet, and the results here provide motivation for further clinical interrogation of the antiaggregation properties of EVOO as a potential protective mechanism against AD.
Collapse
Affiliation(s)
- Bakri Alaziqi
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
- Department
of Chemistry, University College in Al-Qunfudah,
Umm Al-Qura University, Makkah
Al-Mukarramah 1109, Saudi
Arabia
| | - Liam Beckitt
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - David J. Townsend
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Jasmine Morgan
- Department
of Biology, Edge Hill University, Ormskirk L39 4QP, United Kingdom
| | - Rebecca Price
- Department
of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular
and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Alana Maerivoet
- Department
of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular
and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Jillian Madine
- Department
of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular
and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - David Rochester
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Geoffrey Akien
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - David A. Middleton
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
4
|
Saurabh S, Nadendla K, Purohit SS, Sivakumar PM, Cetinel S. Fuzzy Drug Targets: Disordered Proteins in the Drug-Discovery Realm. ACS OMEGA 2023; 8:9729-9747. [PMID: 36969402 PMCID: PMC10034788 DOI: 10.1021/acsomega.2c07708] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Intrinsically disordered proteins (IDPs) and regions (IDRs) form a large part of the eukaryotic proteome. Contrary to the structure-function paradigm, the disordered proteins perform a myriad of functions in vivo. Consequently, they are involved in various disease pathways and are plausible drug targets. Unlike folded proteins, that have a defined structure and well carved out drug-binding pockets that can guide lead molecule selection, the disordered proteins require alternative drug-development methodologies that are based on an acceptable picture of their conformational ensemble. In this review, we discuss various experimental and computational techniques that contribute toward understanding IDP "structure" and describe representative pursuances toward IDP-targeting drug development. We also discuss ideas on developing rational drug design protocols targeting IDPs.
Collapse
Affiliation(s)
- Suman Saurabh
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Karthik Nadendla
- Center
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Lensfield
Road, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Shubh Sanket Purohit
- Department
of Clinical Haematology, Sahyadri Superspeciality
Hospital, Pune, Maharashtra 411038, India
| | - Ponnurengam Malliappan Sivakumar
- Institute
of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- School
of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Vietnam
- Nanotechnology
Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology
Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
- Faculty of
Engineering and Natural Sciences, Molecular Biology, Genetics and
Bioengineering Program, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
5
|
Xu Y, Maya-Martinez R, Radford SE. Controlling amyloid formation of intrinsically disordered proteins and peptides: slowing down or speeding up? Essays Biochem 2022; 66:959-975. [PMID: 35975807 PMCID: PMC7617668 DOI: 10.1042/ebc20220046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/30/2022]
Abstract
The pathological assembly of intrinsically disordered proteins/peptides (IDPs) into amyloid fibrils is associated with a range of human pathologies, including neurodegeneration, metabolic diseases and systemic amyloidosis. These debilitating disorders affect hundreds of millions of people worldwide, and the number of people affected is increasing sharply. However, the discovery of therapeutic agents has been immensely challenging largely because of (i) the diverse number of aggregation pathways and the multi-conformational and transient nature of the related proteins or peptides and (ii) the under-development of experimental pipelines for the identification of disease-modifying molecules and their mode-of-action. Here, we describe current approaches used in the search for small-molecule modulators able to control or arrest amyloid formation commencing from IDPs and review recently reported accelerators and inhibitors of amyloid formation for this class of proteins. We compare their targets, mode-of-action and effects on amyloid-associated cytotoxicity. Recent successes in the control of IDP-associated amyloid formation using small molecules highlight exciting possibilities for future intervention in protein-misfolding diseases, despite the challenges of targeting these highly dynamic precursors of amyloid assembly.
Collapse
Affiliation(s)
- Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom
| | - Roberto Maya-Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
6
|
Velander P, Wu L, Hildreth SB, Vogelaar NJ, Mukhopadhyay B, Helm RF, Zhang S, Xu B. Catechol-containing compounds are a broad class of protein aggregation inhibitors: Redox state is a key determinant of the inhibitory activities. Pharmacol Res 2022; 184:106409. [PMID: 35995346 PMCID: PMC10074477 DOI: 10.1016/j.phrs.2022.106409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/20/2022] [Accepted: 08/17/2022] [Indexed: 12/30/2022]
Abstract
A range of neurodegenerative and related aging diseases, such as Alzheimer's disease and type 2 diabetes, are linked to toxic protein aggregation. Yet the mechanisms of protein aggregation inhibition by small molecule inhibitors remain poorly understood, in part because most protein targets of aggregation assembly are partially unfolded or intrinsically disordered, which hinders detailed structural characterization of protein-inhibitor complexes and structural-based inhibitor design. Herein we employed a parallel small molecule library-screening approach to identify inhibitors against three prototype amyloidogenic proteins in neurodegeneration and related proteinopathies: amylin, Aβ and tau. One remarkable class of inhibitors identified from these screens against different amyloidogenic proteins was catechol-containing compounds and redox-related quinones/anthraquinones. Secondary assays validated most of the identified inhibitors. In vivo efficacy evaluation of a selected catechol-containing compound, rosmarinic acid, demonstrated its strong mitigating effects of amylin amyloid deposition and related diabetic pathology in transgenic HIP rats. Further systematic investigation of selected class of inhibitors under aerobic and anaerobic conditions revealed that the redox state of the broad class of catechol-containing compounds is a key determinant of the amyloid inhibitor activities. The molecular insights we gained not only explain why a large number of catechol-containing polyphenolic natural compounds, often enriched in healthy diet, have anti-neurodegeneration and anti-aging activities, but also could guide the rational design of therapeutic or nutraceutical strategies to target a broad range of neurodegenerative and related aging diseases.
Collapse
Affiliation(s)
- Paul Velander
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Ling Wu
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; BRITE Research Institute and Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA; Affiliated Faculty, Duke/UNC Alzheimer's Disease Research Center, Durham, NC 27710, USA
| | - Sherry B Hildreth
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Nancy J Vogelaar
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; Center for Drug Discovery, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Biswarup Mukhopadhyay
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Richard F Helm
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Bin Xu
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; Center for Drug Discovery, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; School of Neuroscience, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; BRITE Research Institute and Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA; Affiliated Faculty, Duke/UNC Alzheimer's Disease Research Center, Durham, NC 27710, USA.
| |
Collapse
|
7
|
Kulkarni P, Leite VBP, Roy S, Bhattacharyya S, Mohanty A, Achuthan S, Singh D, Appadurai R, Rangarajan G, Weninger K, Orban J, Srivastava A, Jolly MK, Onuchic JN, Uversky VN, Salgia R. Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma. BIOPHYSICS REVIEWS 2022; 3:011306. [PMID: 38505224 PMCID: PMC10903413 DOI: 10.1063/5.0080512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 03/21/2024]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that lack rigid 3D structure. Hence, they are often misconceived to present a challenge to Anfinsen's dogma. However, IDPs exist as ensembles that sample a quasi-continuum of rapidly interconverting conformations and, as such, may represent proteins at the extreme limit of the Anfinsen postulate. IDPs play important biological roles and are key components of the cellular protein interaction network (PIN). Many IDPs can interconvert between disordered and ordered states as they bind to appropriate partners. Conformational dynamics of IDPs contribute to conformational noise in the cell. Thus, the dysregulation of IDPs contributes to increased noise and "promiscuous" interactions. This leads to PIN rewiring to output an appropriate response underscoring the critical role of IDPs in cellular decision making. Nonetheless, IDPs are not easily tractable experimentally. Furthermore, in the absence of a reference conformation, discerning the energy landscape representation of the weakly funneled IDPs in terms of reaction coordinates is challenging. To understand conformational dynamics in real time and decipher how IDPs recognize multiple binding partners with high specificity, several sophisticated knowledge-based and physics-based in silico sampling techniques have been developed. Here, using specific examples, we highlight recent advances in energy landscape visualization and molecular dynamics simulations to discern conformational dynamics and discuss how the conformational preferences of IDPs modulate their function, especially in phenotypic switching. Finally, we discuss recent progress in identifying small molecules targeting IDPs underscoring the potential therapeutic value of IDPs. Understanding structure and function of IDPs can not only provide new insight on cellular decision making but may also help to refine and extend Anfinsen's structure/function paradigm.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Vitor B. P. Leite
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Supriyo Bhattacharyya
- Translational Bioinformatics, Center for Informatics, Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Srisairam Achuthan
- Center for Informatics, Division of Research Informatics, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Divyoj Singh
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Rajeswari Appadurai
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jose N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, USA
| | | | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| |
Collapse
|
8
|
Hu X, Zhang J, Zhang Y, Jiao F, Wang J, Chen H, Ouyang L, Wang Y. Dual-target inhibitors of poly (ADP-ribose) polymerase-1 for cancer therapy: Advances, challenges, and opportunities. Eur J Med Chem 2022; 230:114094. [PMID: 34998039 DOI: 10.1016/j.ejmech.2021.114094] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023]
Abstract
PARP1 plays a crucial role in DNA damage repair, making it an essential target for cancer therapy. PARP1 inhibitors are widely used to treat BRCA-deficient malignancies, and six PARP inhibitors have been approved for clinical use. However, excluding the great clinical success of PARP inhibitors, the concomitant toxicity, drug resistance, and limited scope of application restrict their clinical efficacy. To find solutions to these problems, dual-target inhibitors have shown great potential. In recent years, several studies have linked PAPR1 to other primary cancer targets. Many dual-target inhibitors have been developed using structural fusion, linkage, or library construction methods, overcoming the defects of many single-target inhibitors of PARP1 and achieving great success in clinical cancer therapy. This review summarizes the advance of dual-target PARP1 inhibitors in recent years, focusing on their structural optimization process, structure-activity relationships (SARs), and in vitro or in vivo analysis results.
Collapse
Affiliation(s)
- Xinyue Hu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Fulun Jiao
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Liang Ouyang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Paul A, Segal D, Zacco E. Glycans to improve efficacy and solubility of protein aggregation inhibitors. Neural Regen Res 2021; 16:2215-2216. [PMID: 33818499 PMCID: PMC8354138 DOI: 10.4103/1673-5374.310688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/28/2020] [Accepted: 01/30/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ashim Paul
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Elsa Zacco
- RNA Central Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, 16152 Genova, Italy
| |
Collapse
|
10
|
Joshi P, Perni M, Limbocker R, Mannini B, Casford S, Chia S, Habchi J, Labbadia J, Dobson CM, Vendruscolo M. Two human metabolites rescue a C. elegans model of Alzheimer's disease via a cytosolic unfolded protein response. Commun Biol 2021; 4:843. [PMID: 34234268 PMCID: PMC8263720 DOI: 10.1038/s42003-021-02218-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Age-related changes in cellular metabolism can affect brain homeostasis, creating conditions that are permissive to the onset and progression of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Although the roles of metabolites have been extensively studied with regard to cellular signaling pathways, their effects on protein aggregation remain relatively unexplored. By computationally analysing the Human Metabolome Database, we identified two endogenous metabolites, carnosine and kynurenic acid, that inhibit the aggregation of the amyloid beta peptide (Aβ) and rescue a C. elegans model of Alzheimer's disease. We found that these metabolites act by triggering a cytosolic unfolded protein response through the transcription factor HSF-1 and downstream chaperones HSP40/J-proteins DNJ-12 and DNJ-19. These results help rationalise previous observations regarding the possible anti-ageing benefits of these metabolites by providing a mechanism for their action. Taken together, our findings provide a link between metabolite homeostasis and protein homeostasis, which could inspire preventative interventions against neurodegenerative disorders.
Collapse
Affiliation(s)
- Priyanka Joshi
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK ,grid.47840.3f0000 0001 2181 7878Present Address: The California Institute for Quantitative Biosciences (QB3-Berkeley), University of California, Berkeley, CA USA
| | - Michele Perni
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Ryan Limbocker
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK ,grid.419884.80000 0001 2287 2270Present Address: Department of Chemistry and Life Science, United States Military Academy, West Point, NY USA
| | - Benedetta Mannini
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Sam Casford
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Sean Chia
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Johnny Habchi
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Johnathan Labbadia
- grid.83440.3b0000000121901201Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
| | - Christopher M. Dobson
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Michele Vendruscolo
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Chakraborty R, Dey S, Sil P, Paul SS, Bhattacharyya D, Bhunia A, Sengupta J, Chattopadhyay K. Conformational distortion in a fibril-forming oligomer arrests alpha-Synuclein fibrillation and minimizes its toxic effects. Commun Biol 2021; 4:518. [PMID: 33941845 PMCID: PMC8093279 DOI: 10.1038/s42003-021-02026-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
The fibrillation pathway of alpha-Synuclein, the causative protein of Parkinson's disease, encompasses transient, heterogeneous oligomeric forms whose structural understanding and link to toxicity are not yet understood. We report that the addition of the physiologically-available small molecule heme at a sub-stoichiometric ratio to either monomeric or aggregated α-Syn, targets a His50 residue critical for fibril-formation and stabilizes the structurally-heterogeneous populations of aggregates into a minimally-toxic oligomeric state. Cryo-EM 3D reconstruction revealed a 'mace'-shaped structure of this monodisperse population of oligomers, which is comparable to a solid-state NMR Greek key-like motif (where the core residues are arranged in parallel in-register sheets with a Greek key topology at the C terminus) that forms the fundamental unit/kernel of protofilaments. Further structural analyses suggest that heme binding induces a distortion in the Greek key-like architecture of the mace oligomers, which impairs their further appending into protofilaments and fibrils. Additionally, our study reports a novel mechanism of prevention as well as reclamation of amyloid fibril formation by blocking an inter-protofilament His50 residue using a small molecule.
Collapse
Affiliation(s)
- Ritobrita Chakraborty
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sandip Dey
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pallabi Sil
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | - Simanta Sarani Paul
- Department of Medicine, Centre for Prion and Protein folding disease, University of Alberta, Edmonton, AB, Canada
| | - Dipita Bhattacharyya
- Department of Biophysics, Bose Institute- Centenary Campus, P-1/12C.I.T. Scheme VII-M, Kolkata, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute- Centenary Campus, P-1/12C.I.T. Scheme VII-M, Kolkata, India
| | - Jayati Sengupta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
| | - Krishnananda Chattopadhyay
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
| |
Collapse
|
12
|
Grayson JD, Baumgartner MP, Santos Souza CD, Dawes SJ, El Idrissi IG, Louth JC, Stimpson S, Mead E, Dunbar C, Wolak J, Sharman G, Evans D, Zhuravleva A, Roldan MS, Colabufo NA, Ning K, Garwood C, Thomas JA, Partridge BM, de la Vega de Leon A, Gillet VJ, Rauter AP, Chen B. Amyloid binding and beyond: a new approach for Alzheimer's disease drug discovery targeting Aβo-PrP C binding and downstream pathways. Chem Sci 2021; 12:3768-3785. [PMID: 34163650 PMCID: PMC8179515 DOI: 10.1039/d0sc04769d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/08/2021] [Indexed: 01/18/2023] Open
Abstract
Amyloid β oligomers (Aβo) are the main toxic species in Alzheimer's disease, which have been targeted for single drug treatment with very little success. In this work we report a new approach for identifying functional Aβo binding compounds. A tailored library of 971 fluorine containing compounds was selected by a computational method, developed to generate molecular diversity. These compounds were screened for Aβo binding by a combined 19F and STD NMR technique. Six hits were evaluated in three parallel biochemical and functional assays. Two compounds disrupted Aβo binding to its receptor PrPC in HEK293 cells. They reduced the pFyn levels triggered by Aβo treatment in neuroprogenitor cells derived from human induced pluripotent stem cells (hiPSC). Inhibitory effects on pTau production in cortical neurons derived from hiPSC were also observed. These drug-like compounds connect three of the pillars in Alzheimer's disease pathology, i.e. prion, Aβ and Tau, affecting three different pathways through specific binding to Aβo and are, indeed, promising candidates for further development.
Collapse
Affiliation(s)
- James D Grayson
- Department of Chemistry, University of Sheffield Brookhill Sheffield S3 7HF UK
| | - Matthew P Baumgartner
- Computational Chemistry and Cheminformatics, Eli Lilly and Company, Lilly Biotechnology Center San Diego CA 92121 USA
| | | | - Samuel J Dawes
- Department of Chemistry, University of Sheffield Brookhill Sheffield S3 7HF UK
- Faculty of Biological Sciences, University of Leeds Leeds LS2 9JT UK
| | | | - Jennifer C Louth
- Department of Chemistry, University of Sheffield Brookhill Sheffield S3 7HF UK
| | - Sasha Stimpson
- Department of Chemistry, University of Sheffield Brookhill Sheffield S3 7HF UK
| | - Emma Mead
- Computational Chemistry and Chemoinformatics, Eli Lilly and Company Erl Wood Windlesham GU20 6PH UK
| | - Charlotte Dunbar
- Computational Chemistry and Chemoinformatics, Eli Lilly and Company Erl Wood Windlesham GU20 6PH UK
| | - Joanna Wolak
- Computational Chemistry and Chemoinformatics, Eli Lilly and Company Erl Wood Windlesham GU20 6PH UK
| | - Gary Sharman
- Computational Chemistry and Chemoinformatics, Eli Lilly and Company Erl Wood Windlesham GU20 6PH UK
| | - David Evans
- Computational Chemistry and Chemoinformatics, Eli Lilly and Company Erl Wood Windlesham GU20 6PH UK
| | | | | | - Nicola Antonio Colabufo
- Univ Bari, Biofordrug Via Edoardo Orabona 4 I-70125 Bari Italy
- Univ Bari, Dipartimento Farm Sci Farmaco Via Edoardo Orabona 4 I-70125 Bari Italy
| | - Ke Ning
- Sheffield Institute of Translational Neuroscience, University of Sheffield Sheffield S10 2HQ UK
| | - Claire Garwood
- Sheffield Institute of Translational Neuroscience, University of Sheffield Sheffield S10 2HQ UK
| | - James A Thomas
- Department of Chemistry, University of Sheffield Brookhill Sheffield S3 7HF UK
| | | | | | | | - Amélia P Rauter
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa ED C8, 5 piso 1749-016 Lisboa Portugal
| | - Beining Chen
- Department of Chemistry, University of Sheffield Brookhill Sheffield S3 7HF UK
| |
Collapse
|
13
|
Chang X, Sun D, Shi D, Wang G, Chen Y, Zhang K, Tan H, Liu J, Liu B, Ouyang L. Design, synthesis, and biological evaluation of quinazolin-4(3 H)-one derivatives co-targeting poly(ADP-ribose) polymerase-1 and bromodomain containing protein 4 for breast cancer therapy. Acta Pharm Sin B 2021; 11:156-180. [PMID: 33532187 PMCID: PMC7838034 DOI: 10.1016/j.apsb.2020.06.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
This study was aimed to design the first dual-target small-molecule inhibitor co-targeting poly (ADP-ribose) polymerase-1 (PARP1) and bromodomain containing protein 4 (BRD4), which had important cross relation in the global network of breast cancer, reflecting the synthetic lethal effect. A series of new BRD4 and PARP1 dual-target inhibitors were discovered and synthesized by fragment-based combinatorial screening and activity assays that together led to the chemical optimization. Among these compounds, 19d was selected and exhibited micromole enzymatic potencies against BRD4 and PARP1, respectively. Compound 19d was further shown to efficiently modulate the expression of BRD4 and PARP1. Subsequently, compound 19d was found to induce breast cancer cell apoptosis and stimulate cell cycle arrest at G1 phase. Following pharmacokinetic studies, compound 19d showed its antitumor activity in breast cancer susceptibility gene 1/2 (BRCA1/2) wild-type MDA-MB-468 and MCF-7 xenograft models without apparent toxicity and loss of body weight. These results together demonstrated that a highly potent dual-targeted inhibitor was successfully synthesized and indicated that co-targeting of BRD4 and PARP1 based on the concept of synthetic lethality would be a promising therapeutic strategy for breast cancer.
Collapse
Key Words
- BC, breast cancer
- BET, bromodomain and extra-terminal domain
- BRCA1/2, breast cancer susceptibility gene 1/2
- BRD4
- BRD4, bromodomain 4
- CDK4/6, cyclin-dependent kinase 4/6
- DSB, DNA double-strand break
- Dual-target inhibitor
- EGFR, epidermal growth factor receptor
- ELISA, enzyme linked immunosorbent assay
- ER, estrogen receptor
- ESI-HR-MS, high-resolution mass spectra
- FDA, U.S. Food and Drug Administration
- FITC, fluorescein isothiocyanate isomer I
- HE, hematoxylin-eosin
- HPLC, high-performance liquid chromatography
- HR, homologous recombination
- HRD, homologous recombination deficiency
- IHC, immunohistochemistry
- NHEJ, nonhomologous end-joining
- PARP1
- PARP1, poly(ADP-ribose) polymerase-1
- PI, propidium iodide
- PK, pharmacokinetics
- PPI, protein−protein interaction
- Quinazolin-4(3H)-one derivatives
- SAR, structure–activity relationship
- SOP, standard operation process
- Synthetic lethality
- TCGA, the cancer genome atlas
- TGI, tumor growth inhibition
- TLC, thin-layer chromatography
- TNBC, triple-negative breast cancer
- TR-FRET, time-resolved fluorescence resonance energy transfer.
- shRNA, short hairpin RNA
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jie Liu
- Corresponding authors. Tel./fax: +86 28 85503817 (Jie Liu), +86 28 85164063 (Bo Liu), +86 28 85503817 (Liang Ouyang).
| | - Bo Liu
- Corresponding authors. Tel./fax: +86 28 85503817 (Jie Liu), +86 28 85164063 (Bo Liu), +86 28 85503817 (Liang Ouyang).
| | - Liang Ouyang
- Corresponding authors. Tel./fax: +86 28 85503817 (Jie Liu), +86 28 85164063 (Bo Liu), +86 28 85503817 (Liang Ouyang).
| |
Collapse
|
14
|
Townsend DJ, Mala B, Hughes E, Hussain R, Siligardi G, Fullwood NJ, Middleton DA. Circular Dichroism Spectroscopy Identifies the β-Adrenoceptor Agonist Salbutamol As a Direct Inhibitor of Tau Filament Formation in Vitro. ACS Chem Neurosci 2020; 11:2104-2116. [PMID: 32520518 DOI: 10.1021/acschemneuro.0c00154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Potential drug treatments for Alzheimer's disease (AD) may be found by identifying compounds that block the assembly of the microtubule-associated protein tau into neurofibrillar tangles associated with neuron destabilization and cell death. Here, a small library of structurally diverse compounds was screened in vitro for the ability to inhibit tau aggregation, using high-throughput synchrotron radiation circular dichroism as a novel tool to monitor the structural changes in the protein as it assembles into filaments. The catecholamine epinephrine was found to be the most effective tau aggregation inhibitor of all 88 screened compounds. Subsequently, we tested chemically similar phenolamine drugs from the β-adrenergic receptor agonist class, using conventional circular dichroism spectroscopy, thioflavin T fluorescence, and transmission electron microscopy. Two compounds, salbutamol and dobutamine, used widely in the treatment of respiratory and cardiovascular disease, impede the aggregation of tau in vitro. Dobutamine reduces both the rate and yield of tau filament formation over 24 h; however, it has little effect on the structural transition of tau into β-sheet structures over 24 h. Salbutamol also reduces the yield and rate of filament formation and additionally inhibits tau's structural change into β-sheet-rich aggregates. Salbutamol has a good safety profile and a half-life that facilitates permeation through the blood-brain barrier and could represent an expediated approach to developing AD therapeutics. These results provide the motivation for the in vivo evaluation of pre-existing β-adrenergic receptor agonists as a potential therapy for AD through the reduction of tau deposition.
Collapse
Affiliation(s)
- David J Townsend
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Barbora Mala
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Eleri Hughes
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Rohanah Hussain
- Diamond House, Harwell Science & Innovation Campus, Diamond Light Source Ltd., Didcot OX11 ODE, United Kingdom
| | - Giuliano Siligardi
- Diamond House, Harwell Science & Innovation Campus, Diamond Light Source Ltd., Didcot OX11 ODE, United Kingdom
| | - Nigel J. Fullwood
- Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, United Kingdom
| | - David A. Middleton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
15
|
Chen J, Liu X, Chen J. Targeting Intrinsically Disordered Proteins through Dynamic Interactions. Biomolecules 2020; 10:E743. [PMID: 32403216 PMCID: PMC7277182 DOI: 10.3390/biom10050743] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 12/18/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are over-represented in major disease pathways and have attracted significant interest in understanding if and how they may be targeted using small molecules for therapeutic purposes. While most existing studies have focused on extending the traditional structure-centric drug design strategies and emphasized exploring pre-existing structure features of IDPs for specific binding, several examples have also emerged to suggest that small molecules could achieve specificity in binding IDPs and affect their function through dynamic and transient interactions. These dynamic interactions can modulate the disordered conformational ensemble and often lead to modest compaction to shield functionally important interaction sites. Much work remains to be done on further elucidation of the molecular basis of the dynamic small molecule-IDP interaction and determining how it can be exploited for targeting IDPs in practice. These efforts will rely critically on an integrated experimental and computational framework for disordered protein ensemble characterization. In particular, exciting advances have been made in recent years in enhanced sampling techniques, Graphic Processing Unit (GPU)-computing, and protein force field optimization, which have now allowed rigorous physics-based atomistic simulations to generate reliable structure ensembles for nontrivial IDPs of modest sizes. Such de novo atomistic simulations will play crucial roles in exploring the exciting opportunity of targeting IDPs through dynamic interactions.
Collapse
Affiliation(s)
- Jianlin Chen
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang, China;
| | - Xiaorong Liu
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA;
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA;
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
16
|
Wille H, Dorosh L, Amidian S, Schmitt-Ulms G, Stepanova M. Combining molecular dynamics simulations and experimental analyses in protein misfolding. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 118:33-110. [PMID: 31928730 DOI: 10.1016/bs.apcsb.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fold of a protein determines its function and its misfolding can result in loss-of-function defects. In addition, for certain proteins their misfolding can lead to gain-of-function toxicities resulting in protein misfolding diseases such as Alzheimer's, Parkinson's, or the prion diseases. In all of these diseases one or more proteins misfold and aggregate into disease-specific assemblies, often in the form of fibrillar amyloid deposits. Most, if not all, protein misfolding diseases share a fundamental molecular mechanism that governs the misfolding and subsequent aggregation. A wide variety of experimental methods have contributed to our knowledge about misfolded protein aggregates, some of which are briefly described in this review. The misfolding mechanism itself is difficult to investigate, as the necessary timescale and resolution of the misfolding events often lie outside of the observable parameter space. Molecular dynamics simulations fill this gap by virtue of their intrinsic, molecular perspective and the step-by-step iterative process that forms the basis of the simulations. This review focuses on molecular dynamics simulations and how they combine with experimental analyses to provide detailed insights into protein misfolding and the ensuing diseases.
Collapse
Affiliation(s)
- Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Lyudmyla Dorosh
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Sara Amidian
- Department of Biochemistry, University of Alberta, Edmonton, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Gerold Schmitt-Ulms
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Maria Stepanova
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
17
|
Xing X, Liu C, Ali A, Kang B, Li P, Ai H. Novel Disassembly Mechanisms of Sigmoid Aβ 42 Protofibrils by Introduced Neutral and Charged Drug Molecules. ACS Chem Neurosci 2020; 11:45-56. [PMID: 31697060 DOI: 10.1021/acschemneuro.9b00550] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by fibrillar deposits of amyloid-β (Aβ) peptides and neurofibrillary tangles of Tau proteins. Aβ peptides are composed of 37-49 residues, among which the Aβ42 isoform is particularly toxic and aggregation-prone and is enriched in the plaques of AD brains and thus considered central to the development of AD. Therefore, disaggregation and disruption provide potential therapeutic approaches to reduce, inhibit, and even reverse Aβ aggregation. Here we capture the atomic-level details of the interactions between sigmoid Aβ42 fibril 2MXU or 5KK3 and either natural tanshinone compounds TS1 or TS0 or negatively charged ER, proposing two unprecedented disassembly mechanisms. Natural TS1 or TS0 prefers to insert into the cavity together with part at the surface of the 2MXU to open up the mouth and twist the conformation, destroying the ordered growth of subsequent monomers along the fibril axis. For the more compact two-fold 5KK3 , attachment of TS1 or TS0 at the surface including some inserted in cavity results in the separation of the two folds. In the two sigmoid fibril systems, it is no longer applicable for the routine criteria to assess Aβ42 fibril disassembly by introduction of these drugs, such as either reduced H-bond number, decreased β-sheet contents, or both. ER, like-charged to Aβ42 fibril, is especially exceptional, and departs utterly from the neutral ones to disassemble Aβ42 fibril. Besides the inapplicable routine criteria, positive binding energy between ER and Aβ42 fibril also deviates from the hypotheses of "ligands exhibiting greater affinity for the β-amyloid peptide are effective at altering its aggregation and inhibiting cell toxicity" ( Cairo et al. , Biochemistry 2002 , 41 , 8620 - 8629 ) but results in stronger disassembly effect on the two kinds of sigmoid Aβ42 fibrils than neutral TS0 or TS1. The disassembly power of charged ER molecules derives from its stronger deformation ability to the conformation of Aβ42 fibril than the neutral ones, twisting the one-fold 2MXU into tapered-shape and separating two-fold 5KK3 in two parts further, which is in great agreement with experimental observations ( Irwin et al. Biomacromolecules 2013 , 14 ( 1 ), 264 - 274 ). The unusual disassembly mechanisms fill the gaps and offer an alternative direction in engineering new inhibitors to treat AD.
Collapse
Affiliation(s)
- Xiaofeng Xing
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Chengqiang Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Aqsa Ali
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Baotao Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Ping Li
- Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
18
|
Computational studies of protein aggregation mediated by amyloid: Fibril elongation and secondary nucleation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:461-504. [DOI: 10.1016/bs.pmbts.2019.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Avram S, Mernea M, Limban C, Borcan F, Chifiriuc C. Potential Therapeutic Approaches to Alzheimer's Disease By Bioinformatics, Cheminformatics And Predicted Adme-Tox Tools. Curr Neuropharmacol 2020; 18:696-719. [PMID: 31885353 PMCID: PMC7536829 DOI: 10.2174/1570159x18666191230120053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/24/2019] [Accepted: 12/28/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is considered a severe, irreversible and progressive neurodegenerative disorder. Currently, the pharmacological management of AD is based on a few clinically approved acethylcholinesterase (AChE) and N-methyl-D-aspartate (NMDA) receptor ligands, with unclear molecular mechanisms and severe side effects. METHODS Here, we reviewed the most recent bioinformatics, cheminformatics (SAR, drug design, molecular docking, friendly databases, ADME-Tox) and experimental data on relevant structurebiological activity relationships and molecular mechanisms of some natural and synthetic compounds with possible anti-AD effects (inhibitors of AChE, NMDA receptors, beta-secretase, amyloid beta (Aβ), redox metals) or acting on multiple AD targets at once. We considered: (i) in silico supported by experimental studies regarding the pharmacological potential of natural compounds as resveratrol, natural alkaloids, flavonoids isolated from various plants and donepezil, galantamine, rivastagmine and memantine derivatives, (ii) the most important pharmacokinetic descriptors of natural compounds in comparison with donepezil, memantine and galantamine. RESULTS In silico and experimental methods applied to synthetic compounds led to the identification of new AChE inhibitors, NMDA antagonists, multipotent hybrids targeting different AD processes and metal-organic compounds acting as Aβ inhibitors. Natural compounds appear as multipotent agents, acting on several AD pathways: cholinesterases, NMDA receptors, secretases or Aβ, but their efficiency in vivo and their correct dosage should be determined. CONCLUSION Bioinformatics, cheminformatics and ADME-Tox methods can be very helpful in the quest for an effective anti-AD treatment, allowing the identification of novel drugs, enhancing the druggability of molecular targets and providing a deeper understanding of AD pathological mechanisms.
Collapse
Affiliation(s)
| | - Maria Mernea
- Address correspondence to this author at the Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95th Spl. Independentei, Bucharest, Romania; Tel/Fax: ++4-021-318-1573; E-mail:
| | | | | | | |
Collapse
|
20
|
The Environment Is a Key Factor in Determining the Anti-Amyloid Efficacy of EGCG. Biomolecules 2019; 9:biom9120855. [PMID: 31835741 PMCID: PMC6995563 DOI: 10.3390/biom9120855] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/06/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
Millions of people around the world suffer from amyloid-related disorders, including Alzheimer's and Parkinson's diseases. Despite significant and sustained efforts, there are still no disease-modifying drugs available for the majority of amyloid-related disorders, and the overall failure rate in clinical trials is very high, even for compounds that show promising anti-amyloid activity in vitro. In this study, we demonstrate that even small changes in the chemical environment can strongly modulate the inhibitory effects of anti-amyloid compounds. Using one of the best-established amyloid inhibitory compounds, epigallocatechin-3-gallate (EGCG), as an example, and two amyloid-forming proteins, insulin and Parkinson's disease-related α -synuclein, we shed light on the previously unexplored sensitivity to solution conditions of the action of this compound on amyloid fibril formation. In the case of insulin, we show that the classification of EGCG as an amyloid inhibitor depends on the experimental conditions select, on the method used for the evaluation of the efficacy, and on whether or not EGCG is allowed to oxidise before the experiment. For α -synuclein, we show that a small change in pH value, from 7 to 6, transforms EGCG from an efficient inhibitor to completely ineffective, and we were able to explain this behaviour by the increased stability of EGCG against oxidation at pH 6.
Collapse
|
21
|
Trumbore CN. Shear-Induced Amyloid Formation in the Brain: III. The Roles of Shear Energy and Seeding in a Proposed Shear Model. J Alzheimers Dis 2019; 65:47-70. [PMID: 30040710 PMCID: PMC6087447 DOI: 10.3233/jad-171003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
If cerebrospinal and interstitial fluids move through very narrow brain flow channels, these restrictive surroundings generate varying levels of fluid shear and different shear rates, and dissolved amyloid monomers absorb different shear energies. It is proposed that dissolved amyloid-β protein (Aβ) and other amyloid monomers undergo shear-induced conformational changes that ultimately lead to amyloid monomer aggregation even at very low brain flow and shear rates. Soluble Aβ oligomers taken from diseased brains initiate in vivo amyloid formation in non-diseased brains. The brain environment is apparently responsible for this result. A mechanism involving extensional shear is proposed for the formation of a seed Aβ monomer molecule that ultimately promotes templated conformational change of other Aβ molecules. Under non-quiescent, non-equilibrium conditions, gentle extensional shear within the brain parenchyma, and perhaps even during laboratory preparation of Aβ samples, may be sufficient to cause subtle conformational changes in these monomers. These result from brain processes that significantly lower the high activation energy predicted for the quiescent Aβ dimerization process. It is further suggested that changes in brain location and changes brought about by aging expose Aβ molecules to different shear rates, total shear, and types of shear, resulting in different conformational changes in these molecules. The consequences of such changes caused by variable shear energy are proposed to underlie formation of amyloid strains causing different amyloid diseases. Amyloid researchers are urged to undertake studies with amyloids, anti-amyloid drugs, and antibodies while all of these are under shear conditions similar to those in the brain.
Collapse
Affiliation(s)
- Conrad N Trumbore
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| |
Collapse
|
22
|
Schiavina M, Murrali MG, Pontoriero L, Sainati V, Kümmerle R, Bermel W, Pierattelli R, Felli IC. Taking Simultaneous Snapshots of Intrinsically Disordered Proteins in Action. Biophys J 2019; 117:46-55. [PMID: 31176511 PMCID: PMC6626832 DOI: 10.1016/j.bpj.2019.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/03/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) as well as intrinsically disordered regions (IDRs) of complex protein machineries have recently been recognized as key players in many cellular functions. NMR represents a unique tool to access atomic resolution structural and dynamic information on highly flexible IDPs/IDRs. Improvements in instrumental sensitivity made heteronuclear direct detection possible for biomolecular NMR applications. The CON experiment has become one of the most useful NMR experiments to get a snapshot of an IDP/IDR in conditions approaching physiological ones. The availability of NMR spectrometers equipped with multiple receivers now enables the acquisition of several experiments simultaneously instead of one after the other. Here, we propose several variants of the CON experiment in which, during the recovery delay, a second two-dimensional experiment is acquired, either based on 1H detection (CON//HN) or on 15N detection (CON//btNH, CON//(H)CAN). The possibility to collect simultaneous snapshots of an IDP/IDR through different two-dimensional spectra provides a novel tool to follow chemical reactions, such as the occurrence of posttranslational modifications, as well as to study samples of limited lifetime such as cell lysates or whole cells.
Collapse
Affiliation(s)
- Marco Schiavina
- Magnetic Resonance Center and Department of Chemistry "Ugo Schiff," University of Florence, Sesto Fiorentino, Florence, Italy
| | - Maria Grazia Murrali
- Magnetic Resonance Center and Department of Chemistry "Ugo Schiff," University of Florence, Sesto Fiorentino, Florence, Italy
| | - Letizia Pontoriero
- Magnetic Resonance Center and Department of Chemistry "Ugo Schiff," University of Florence, Sesto Fiorentino, Florence, Italy
| | - Valerio Sainati
- Magnetic Resonance Center and Department of Chemistry "Ugo Schiff," University of Florence, Sesto Fiorentino, Florence, Italy
| | | | | | - Roberta Pierattelli
- Magnetic Resonance Center and Department of Chemistry "Ugo Schiff," University of Florence, Sesto Fiorentino, Florence, Italy.
| | - Isabella C Felli
- Magnetic Resonance Center and Department of Chemistry "Ugo Schiff," University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
23
|
|
24
|
Murrali MG, Schiavina M, Sainati V, Bermel W, Pierattelli R, Felli IC. 13C APSY-NMR for sequential assignment of intrinsically disordered proteins. JOURNAL OF BIOMOLECULAR NMR 2018; 70:167-175. [PMID: 29492731 DOI: 10.1007/s10858-018-0167-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
The increasingly recognized biological relevance of intrinsically disordered proteins requires a continuous expansion of the tools for their characterization via NMR spectroscopy, the only technique so far able to provide atomic-resolution information on these highly mobile macromolecules. Here we present the implementation of projection spectroscopy in 13C-direct detected NMR experiments to achieve the sequence specific assignment of IDPs. The approach was used to obtain the complete backbone assignment at high temperature of α-synuclein, a paradigmatic intrinsically disordered protein.
Collapse
Affiliation(s)
- Maria Grazia Murrali
- CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Marco Schiavina
- CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Valerio Sainati
- CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Wolfgang Bermel
- Bruker BioSpin GmbH, Silberstreifen, 76287, Rheinstetten, Germany
| | - Roberta Pierattelli
- CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy.
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Florence, Italy.
| | - Isabella C Felli
- CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy.
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
25
|
Wójcik S, Birol M, Rhoades E, Miranker AD, Levine ZA. Targeting the Intrinsically Disordered Proteome Using Small-Molecule Ligands. Methods Enzymol 2018; 611:703-734. [DOI: 10.1016/bs.mie.2018.09.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Structural analysis of the complex between influenza B nucleoprotein and human importin-α. Sci Rep 2017; 7:17164. [PMID: 29215074 PMCID: PMC5719345 DOI: 10.1038/s41598-017-17458-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022] Open
Abstract
Influenza viruses are negative strand RNA viruses that replicate in the nucleus of the cell. The viral nucleoprotein (NP) is the major component of the viral ribonucleoprotein. In this paper we show that the NP of influenza B has a long N-terminal tail of 70 residues with intrinsic flexibility. This tail contains the Nuclear Location Signal (NLS). The nuclear trafficking of the viral components mobilizes cellular import factors at different stages, making these host-pathogen interactions promising targets for new therapeutics. NP is imported into the nucleus by the importin-α/β pathway, through a direct interaction with importin-α isoforms. Here we provide a combined nuclear magnetic resonance and small-angle X-ray scattering (NMR/SAXS) analysis to describe the dynamics of the interaction between influenza B NP and the human importin-α. The NP of influenza B does not have a single NLS nor a bipartite NLS but our results suggest that the tail harbors several adjacent NLS sequences, located between residues 30 and 71.
Collapse
|
27
|
|
28
|
α-Synuclein aggregation modulation: an emerging approach for the treatment of Parkinson's disease. Future Med Chem 2017. [PMID: 28632413 DOI: 10.4155/fmc-2017-0016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a multifactorial progressive neurological disorder. Pathological hallmarks of PD are characterized by the presence of α-synuclein (αSyn) aggregates known as Lewy bodies. αSyn aggregation is one of the leading causes for the neuronal dysfunction and death in PD. It is also associated with neurotransmitter and calcium release. Current therapies of PD are limited to only symptomatic relief without addressing the underlying pathogenic factors of the disease process such as aggregation of αSyn. Consequently, the progression of the disease continues with the current therapies. Therefore, the modulation of αSyn aggregation is an emerging approach as a novel therapeutic target to treat PD. There are two major aspects that might be targeted therapeutically: first, protein is prone to aggregation, therefore, anti-aggregative or compounds that can break the pre-existing aggregates should be helpful. Second, there are number of molecular events that may be targeted to combat the disease.
Collapse
|
29
|
Dobson CM. The Amyloid Phenomenon and Its Links with Human Disease. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a023648. [PMID: 28062560 DOI: 10.1101/cshperspect.a023648] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ability of normally soluble proteins to convert into amyloid fibrils is now recognized to be a generic phenomenon. The overall cross-β architecture of the core elements of such structures is closely similar for different amino acid sequences, as this architecture is dominated by interactions associated with the common polypeptide main chain. In contrast, the multiplicity of complex and intricate structures of the functional states of proteins is dictated by specific interactions involving the variable side chains, the sequence of which is unique to a given protein. Nevertheless, the side chains dictate important aspects of the amyloid structure, including the regions of the sequence that form the core elements of the fibrils and the kinetics and mechanism of the conversion process. The formation of the amyloid state of proteins is of particular importance in the context of a range of medical disorders that include Alzheimer's and Parkinson's diseases and type 2 diabetes. These disorders are becoming increasingly common in the modern world, primarily as a consequence of increasing life spans and changing lifestyles, and now affect some 500 million people worldwide. This review describes recent progress in our understanding of the molecular origins of these conditions and discusses emerging ideas for new and rational therapeutic strategies by which to combat their onset and progression.
Collapse
Affiliation(s)
- Christopher M Dobson
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
30
|
Finn MG. Technical Advances in Medicinal Chemistry. ACS COMBINATORIAL SCIENCE 2017; 19:277-278. [PMID: 28374995 DOI: 10.1021/acscombsci.7b00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Sahin C, Lorenzen N, Lemminger L, Christiansen G, Møller IM, Vesterager LB, Pedersen LØ, Fog K, Kallunki P, Otzen DE. Antibodies against the C-terminus of α-synuclein modulate its fibrillation. Biophys Chem 2017; 220:34-41. [DOI: 10.1016/j.bpc.2016.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 01/04/2023]
|