1
|
Horn M, Bieliková L, Vostoupalová A, Švéda J, Mareš M. An update on proteases and protease inhibitors from trematodes. ADVANCES IN PARASITOLOGY 2024; 126:97-176. [PMID: 39448195 DOI: 10.1016/bs.apar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Bieliková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Vostoupalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Švéda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Spiwoková P, Horn M, Fanfrlík J, Jílková A, Fajtová P, Leontovyč A, Houštecká R, Bieliková L, Brynda J, Chanová M, Mertlíková-Kaiserová H, Caro-Diaz EJE, Almaliti J, El-Sakkary N, Gerwick WH, Caffrey CR, Mareš M. Nature-Inspired Gallinamides Are Potent Antischistosomal Agents: Inhibition of the Cathepsin B1 Protease Target and Binding Mode Analysis. ACS Infect Dis 2024; 10:1935-1948. [PMID: 38757505 PMCID: PMC11184554 DOI: 10.1021/acsinfecdis.3c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Schistosomiasis, caused by a parasitic blood fluke of the genus Schistosoma, is a global health problem for which new chemotherapeutic options are needed. We explored the scaffold of gallinamide A, a natural peptidic metabolite of marine cyanobacteria that has previously been shown to inhibit cathepsin L-type proteases. We screened a library of 19 synthetic gallinamide A analogs and identified nanomolar inhibitors of the cathepsin B-type protease SmCB1, which is a drug target for the treatment of schistosomiasis mansoni. Against cultured S. mansoni schistosomula and adult worms, many of the gallinamides generated a range of deleterious phenotypic responses. Imaging with a fluorescent-activity-based probe derived from gallinamide A demonstrated that SmCB1 is the primary target for gallinamides in the parasite. Furthermore, we solved the high-resolution crystal structures of SmCB1 in complex with gallinamide A and its two analogs and describe the acrylamide covalent warhead and binding mode in the active site. Quantum chemical calculations evaluated the contribution of individual positions in the peptidomimetic scaffold to the inhibition of the target and demonstrated the importance of the P1' and P2 positions. Our study introduces gallinamides as a powerful chemotype that can be exploited for the development of novel antischistosomal chemotherapeutics.
Collapse
Affiliation(s)
- Petra Spiwoková
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology, Technická 5, Prague 6 16628, Czech Republic
| | - Martin Horn
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
| | - Jindřich Fanfrlík
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
| | - Adéla Jílková
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
| | - Pavla Fajtová
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - Adrian Leontovyč
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
| | - Radka Houštecká
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
- First
Faculty of Medicine, Charles University, Kateřinská 32, Praha 2 12108, Czech Republic
| | - Lucia Bieliková
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
- First
Faculty of Medicine, Charles University, Kateřinská 32, Praha 2 12108, Czech Republic
| | - Jiří Brynda
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
| | - Marta Chanová
- Institute
of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital
in Prague, Studničkova
2028/7, Prague 2 12800, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
| | - Eduardo J. E. Caro-Diaz
- Scripps Institution
of Oceanography, University of California, La Jolla, San Diego, California 92093, United States
| | - Jehad Almaliti
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
- Scripps Institution
of Oceanography, University of California, La Jolla, San Diego, California 92093, United States
| | - Nelly El-Sakkary
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - William H. Gerwick
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
- Scripps Institution
of Oceanography, University of California, La Jolla, San Diego, California 92093, United States
| | - Conor R. Caffrey
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - Michael Mareš
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
| |
Collapse
|
3
|
Breidenbach J, Voget R, Si Y, Hingst A, Claff T, Sylvester K, Wolf V, Krasniqi V, Useini A, Sträter N, Ogura Y, Kawaguchi A, Müller CE, Gütschow M. Macrocyclic Azapeptide Nitriles: Structure-Based Discovery of Potent SARS-CoV-2 Main Protease Inhibitors as Antiviral Drugs. J Med Chem 2024; 67:8757-8790. [PMID: 38753594 DOI: 10.1021/acs.jmedchem.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Given the crucial role of the main protease (Mpro) in the replication cycle of SARS-CoV-2, this viral cysteine protease constitutes a high-profile drug target. We investigated peptidomimetic azapeptide nitriles as auspicious, irreversibly acting inhibitors of Mpro. Our systematic approach combined an Mpro active-site scanning by combinatorially assembled azanitriles with structure-based design. Encouraged by the bioactive conformation of open-chain inhibitors, we conceptualized the novel chemotype of macrocyclic azanitriles whose binding mode was elucidated by cocrystallization. This strategy provided a favorable entropic contribution to target binding and resulted in the development of the extraordinarily potent Mpro inhibitor 84 with an IC50 value of 3.23 nM and a second-order rate constant of inactivation, kinac/Ki, of 448,000 M-1s-1. The open-chain Mpro inhibitor 58, along with the macrocyclic compounds 83 and 84, a broad-spectrum anticoronaviral agent, demonstrated the highest antiviral activity with EC50 values in the single-digit micromolar range. Our findings are expected to promote the future development of peptidomimetic Mpro inhibitors as anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Julian Breidenbach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Rabea Voget
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Yaoyao Si
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Alexandra Hingst
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Tobias Claff
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katharina Sylvester
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Valentina Wolf
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Vesa Krasniqi
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Abibe Useini
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Yukino Ogura
- Department of Infection Biology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, 305-8575 Tsukuba, Ibaraki, Japan
| | - Atsushi Kawaguchi
- Department of Infection Biology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, 305-8575 Tsukuba, Ibaraki, Japan
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
4
|
Cogo RM, Pavani TFA, Mengarda ACA, Cajas RA, Teixeira TR, Fukui-Silva L, Sun YU, Liu LJ, Amarasinghe DK, Yoon MC, Santos-Filho OA, de Moraes J, Caffrey CR, G G Rando D. Pharmacophore Virtual Screening Identifies Riboflavin as an Inhibitor of the Schistosome Cathepsin B1 Protease with Antiparasitic Activity. ACS OMEGA 2024; 9:25356-25369. [PMID: 38882094 PMCID: PMC11170711 DOI: 10.1021/acsomega.4c03376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Schistosomiasis is a neglected disease of poverty that affects over 200 million people worldwide and relies on a single drug for therapy. The cathepsin B1 cysteine protease (SmCB1) of Schistosoma mansoni has been investigated as a potential target. Here, a structure-based pharmacophore virtual screening (VS) approach was used on a data set of approved drugs to identify potential antischistosomal agents targeting SmCB1. Pharmacophore (PHP) models underwent validation through receiver operating characteristics curves achieving values >0.8. The data highlighted riboflavin (RBF) as a compound of particular interest. A 1 μs molecular dynamics simulation demonstrated that RBF altered the conformation of SmCB1, causing the protease's binding site to close around RBF while maintaining the protease's overall integrity. RBF inhibited the activity of SmCB1 at low micromolar values and killed the parasite in vitro. Finally, in a murine model of S. mansoni infection, oral administration of 100 mg/kg RBF for 7 days significantly decreased worm burdens by ∼20% and had a major impact on intestinal and fecal egg burdens, which were decreased by ∼80%.
Collapse
Affiliation(s)
- Ramon M Cogo
- Universidade Federal de São Paulo-Campus Diadema, Curso de Pós-Graduação em Biologia Química da Unifesp, Rua São Nicolau 210, 2o andar, Centro, Diadema, São Paulo 09972-270, Brazil
| | - Thaís F A Pavani
- Universidade Federal de São Paulo-Campus Diadema, Curso de Pós-Graduação em Biologia Química da Unifesp, Rua São Nicolau 210, 2o andar, Centro, Diadema, São Paulo 09972-270, Brazil
| | - Ana C A Mengarda
- Universidade Guarulhos, Núcleo de Pesquisa em Doenças Negligenciadas-NPDN, Praça Tereza Cristina 88, Guarulhos 09972-270, Brazil
| | - Rayssa A Cajas
- Universidade Guarulhos, Núcleo de Pesquisa em Doenças Negligenciadas-NPDN, Praça Tereza Cristina 88, Guarulhos 09972-270, Brazil
| | - Thainá R Teixeira
- Universidade Guarulhos, Núcleo de Pesquisa em Doenças Negligenciadas-NPDN, Praça Tereza Cristina 88, Guarulhos 09972-270, Brazil
| | - Lucas Fukui-Silva
- Universidade Guarulhos, Núcleo de Pesquisa em Doenças Negligenciadas-NPDN, Praça Tereza Cristina 88, Guarulhos 09972-270, Brazil
| | - Yujie Uli Sun
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0021, United States
| | - Lawrence J Liu
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0021, United States
| | - Dilini K Amarasinghe
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0021, United States
| | - Michael C Yoon
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0021, United States
| | - Osvaldo A Santos-Filho
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco H, Rio de Janeiro 21941-853, Brazil
| | - Josué de Moraes
- Universidade Guarulhos, Núcleo de Pesquisa em Doenças Negligenciadas-NPDN, Praça Tereza Cristina 88, Guarulhos 09972-270, Brazil
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0021, United States
| | - Daniela G G Rando
- Grupo de Pesquisas Químico-Farmacêuticas da Unifesp, Department of Pharmaceutical Sciences Rua São Nicolau, Universidade Federal de São Paulo-Campus Diadema, 210, 2o andar, Centro, Diadema, São Paulo 09972-270, Brazil
| |
Collapse
|
5
|
Fuchs N, Zimmermann RA, Schwickert M, Gunkel A, Zimmer C, Meta M, Schwickert K, Keiser J, Haeberli C, Kiefer W, Schirmeister T. Dual Strategy to Design New Agents Targeting Schistosoma mansoni: Advancing Phenotypic and SmCB1 Inhibitors for Improved Efficacy. ACS Infect Dis 2024; 10:1664-1678. [PMID: 38686397 DOI: 10.1021/acsinfecdis.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In this study, we have identified and optimized two lead structures from an in-house screening, with promising results against the parasitic flatworm Schistosoma mansoni and its target protease S. mansoni cathepsin B1 (SmCB1). Our correlation analysis highlighted the significance of physicochemical properties for the compounds' in vitro activities, resulting in a dual approach to optimize the lead structures, regarding both phenotypic effects in S. mansoni newly transformed schistosomula (NTS), adult worms, and SmCB1 inhibition. The optimized compounds from both approaches ("phenotypic" vs "SmCB1" approach) demonstrated improved efficacy against S. mansoni NTS and adult worms, with 2h from the "SmCB1" approach emerging as the most potent compound. 2h displayed nanomolar inhibition of SmCB1 (Ki = 0.050 μM) while maintaining selectivity toward human off-target cathepsins. Additionally, the greatly improved efficacy of compound 2h toward S. mansoni adults (86% dead worms at 10 μM, 68% at 1 μM, 35% at 0.1 μM) demonstrates its potential as a new therapeutic agent for schistosomiasis, underlined by its improved permeability.
Collapse
Affiliation(s)
- Natalie Fuchs
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Robert A Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Marvin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Annika Gunkel
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Collin Zimmer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Mergim Meta
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Kevin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Cécile Haeberli
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Werner Kiefer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| |
Collapse
|
6
|
Khatua K, Alugubelli YR, Yang KS, Vulupala VR, Blankenship LR, Coleman D, Atla S, Chaki SP, Geng ZZ, Ma XR, Xiao J, Chen PH, Cho CCD, Sharma S, Vatansever EC, Ma Y, Yu G, Neuman BW, Xu S, Liu WR. Azapeptides with unique covalent warheads as SARS-CoV-2 main protease inhibitors. Antiviral Res 2024; 225:105874. [PMID: 38555023 PMCID: PMC11070182 DOI: 10.1016/j.antiviral.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
The main protease (MPro) of SARS-CoV-2, the causative agent of COVID-19, is a pivotal nonstructural protein critical for viral replication and pathogenesis. Its protease function relies on three active site pockets for substrate recognition and a catalytic cysteine for enzymatic activity. To develop potential SARS-CoV-2 antivirals, we successfully synthesized a diverse range of azapeptide inhibitors with various covalent warheads to target MPro's catalytic cysteine. Our characterization identified potent MPro inhibitors, including MPI89 that features an aza-2,2-dichloroacetyl warhead with a remarkable EC50 value of 10 nM against SARS-CoV-2 infection in ACE2+ A549 cells and a selective index of 875. MPI89 is also remarkably selective and shows no potency against SARS-CoV-2 papain-like protease and several human proteases. Crystallography analyses demonstrated that these inhibitors covalently engaged the catalytic cysteine and used the aza-amide carbonyl oxygen to bind to the oxyanion hole. MPI89 stands as one of the most potent MPro inhibitors, suggesting the potential for further exploration of azapeptides and the aza-2,2-dichloroacetyl warhead for developing effective therapeutics against COVID-19.
Collapse
Affiliation(s)
- Kaustav Khatua
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Yugendar R Alugubelli
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Kai S Yang
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Veerabhadra R Vulupala
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Lauren R Blankenship
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Demonta Coleman
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Sandeep Atla
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Sankar P Chaki
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Zhi Zachary Geng
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Xinyu R Ma
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Jing Xiao
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Peng-Hsun Chen
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Chia-Chuan D Cho
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Shivangi Sharma
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Erol C Vatansever
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Yuying Ma
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Ge Yu
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Benjamin W Neuman
- Department of Biology, Texas A&M University, College Station, TX 77843, USA; Texas A&M Global Health Research Complex, Texas A&M University, College Station, TX 77843, USA; Health Science Centre, Department of Molecular Pathogenesis and Immunology, Texas A&M University, College Station, TX 77843, USA
| | - Shiqing Xu
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA; Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX 77843, USA.
| | - Wenshe Ray Liu
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA; Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX 77843, USA; Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
7
|
Voget R, Breidenbach J, Claff T, Hingst A, Sylvester K, Steinebach C, Vu LP, Weiße RH, Bartz U, Sträter N, Müller CE, Gütschow M. Development of an active-site titrant for SARS-CoV-2 main protease as an indispensable tool for evaluating enzyme kinetics. Acta Pharm Sin B 2024; 14:2349-2357. [PMID: 38799620 PMCID: PMC11121168 DOI: 10.1016/j.apsb.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/25/2024] [Accepted: 02/27/2024] [Indexed: 05/29/2024] Open
Abstract
A titrant for the SARS-CoV-2 main protease (Mpro) was developed that enables, for the first time, the exact determination of the concentration of the enzymatically active Mpro by active-site titration. The covalent binding mode of the tetrapeptidic titrant was elucidated by the determination of the crystal structure of the enzyme-titrant complex. Four fluorogenic substrates of Mpro, including a prototypical, internally quenched Dabcyl-EDANS peptide, were compared in terms of solubility under typical assay conditions. By exploiting the new titrant, key kinetic parameters for the Mpro-catalyzed cleavage of these substrates were determined.
Collapse
Affiliation(s)
- Rabea Voget
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Julian Breidenbach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Tobias Claff
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Alexandra Hingst
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Katharina Sylvester
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Lan Phuong Vu
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Renato H. Weiße
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig 04103, Germany
| | - Ulrike Bartz
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Rheinbach 53359, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig 04103, Germany
| | - Christa E. Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| |
Collapse
|
8
|
Giroud M, Kuhn B, Haap W. Drug Discovery Efforts to Identify Novel Treatments for Neglected Tropical Diseases - Cysteine Protease Inhibitors. Curr Med Chem 2024; 31:2170-2194. [PMID: 37916489 DOI: 10.2174/0109298673249097231017051733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/19/2023] [Accepted: 09/14/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Neglected tropical diseases are a severe burden for mankind, affecting an increasing number of people around the globe. Many of those diseases are caused by protozoan parasites in which cysteine proteases play a key role in the parasite's pathogenesis. OBJECTIVE In this review article, we summarize the drug discovery efforts of the research community from 2017 - 2022 with a special focus on the optimization of small molecule cysteine protease inhibitors in terms of selectivity profiles or drug-like properties as well as in vivo studies. The cysteine proteases evaluated by this methodology include Cathepsin B1 from Schistosoma mansoni, papain, cruzain, falcipain, and rhodesain. METHODS Exhaustive literature searches were performed using the keywords "Cysteine Proteases" and "Neglected Tropical Diseases" including the years 2017 - 2022. Overall, approximately 3'000 scientific papers were retrieved, which were filtered using specific keywords enabling the focus on drug discovery efforts. RESULTS AND CONCLUSION Potent and selective cysteine protease inhibitors to treat neglected tropical diseases were identified, which progressed to pharmacokinetic and in vivo efficacy studies. As far as the authors are aware of, none of those inhibitors reached the stage of active clinical development. Either the inhibitor's potency or pharmacokinetic properties or safety profile or a combination thereof prevented further development of the compounds. More efforts with particular emphasis on optimizing pharmacokinetic and safety properties are needed, potentially by collaborations of academic and industrial research groups with complementary expertise. Furthermore, new warheads reacting with the catalytic cysteine should be exploited to advance the research field in order to make a meaningful impact on society.
Collapse
Affiliation(s)
- Maude Giroud
- Pharma Research and Early Development pRED, Roche Innovation Center Basel, Medicinal Chemistry, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, CH-4070, Switzerland
| | - Bernd Kuhn
- Pharma Research and Early Development pRED, Roche Innovation Center Basel, Medicinal Chemistry, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, CH-4070, Switzerland
| | - Wolfgang Haap
- Pharma Research and Early Development pRED, Roche Innovation Center Basel, Medicinal Chemistry, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, CH-4070, Switzerland
| |
Collapse
|
9
|
Dos Santos Nascimento IJ, Albino SL, da Silva Menezes KJ, de Azevedo Teotônio Cavalcanti M, de Oliveira MS, Mali SN, de Moura RO. Targeting SmCB1: Perspectives and Insights to Design Antischistosomal Drugs. Curr Med Chem 2024; 31:2264-2284. [PMID: 37921174 DOI: 10.2174/0109298673255826231011114249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 11/04/2023]
Abstract
Neglected tropical diseases (NTDs) are prevalent in tropical and subtropical countries, and schistosomiasis is among the most relevant diseases worldwide. In addition, one of the two biggest problems in developing drugs against this disease is related to drug resistance, which promotes the demand to develop new drug candidates for this purpose. Thus, one of the drug targets most explored, Schistosoma mansoni Cathepsin B1 (SmCB1 or Sm31), provides new opportunities in drug development due to its essential functions for the parasite's survival. In this way, here, the latest developments in drug design studies targeting SmCB1 were approached, focusing on the most promising analogs of nitrile, vinyl sulphones, and peptidomimetics. Thus, it was shown that despite being a disease known since ancient times, it remains prevalent throughout the world, with high mortality rates. The therapeutic arsenal of antischistosomal drugs (ASD) consists only of praziquantel, which is widely used for this purpose and has several advantages, such as efficacy and safety. However, it has limitations, such as the impossibility of acting on the immature worm and exploring new targets to overcome these limitations. SmCB1 shows its potential as a cysteine protease with a catalytic triad consisting of Cys100, His270, and Asn290. Thus, design studies of new inhibitors focus on their catalytic mechanism for designing new analogs. In fact, nitrile and sulfonamide analogs show the most significant potential in drug development, showing that these chemical groups can be better exploited in drug discovery against schistosomiasis. We hope this manuscript guides the authors in searching for promising new antischistosomal drugs.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Pharmacy Department, Cesmac University Center, Maceió, 57051-160, Brazil
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| | - Sonaly Lima Albino
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
| | - Karla Joane da Silva Menezes
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| | - Misael de Azevedo Teotônio Cavalcanti
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| | - Mozaniel Santana de Oliveira
- Coordination of Botany-Laboratory Adolpho Ducke, Avenida Perimetral, Museu Paraense Emílio Goeldi, 1901, Belém, 66077-530, PA Brazil
| | - Suraj N Mali
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga East, Mumbai, 400019, India
| | - Ricardo Olimpio de Moura
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
10
|
Cell Type-Specific Anti-Viral Effects of Novel SARS-CoV-2 Main Protease Inhibitors. Int J Mol Sci 2023; 24:ijms24043972. [PMID: 36835380 PMCID: PMC9959602 DOI: 10.3390/ijms24043972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Recently, we have described novel pyridyl indole esters and peptidomimetics as potent inhibitors of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) main protease. Here, we analysed the impact of these compounds on viral replication. It has been shown that some antivirals against SARS-CoV-2 act in a cell line-specific way. Thus, the compounds were tested in Vero, Huh-7, and Calu-3 cells. We showed that the protease inhibitors at 30 µM suppress viral replication by up to 5 orders of magnitude in Huh-7 cells, while in Calu-3 cells, suppression by 2 orders of magnitude was achieved. Three pyridin-3-yl indole-carboxylates inhibited viral replication in all cell lines, indicating that they might repress viral replication in human tissue as well. Thus, we investigated three compounds in human precision-cut lung slices and observed donor-dependent antiviral activity in this patient-near system. Our results provide evidence that even direct-acting antivirals may act in a cell line-specific manner.
Collapse
|
11
|
Jia Y, Kim RQ, Kooij R, Ovaa H, Sapmaz A, Geurink PP. Chemical Toolkit for PARK7: Potent, Selective, and High-Throughput. J Med Chem 2022; 65:13288-13304. [PMID: 36149939 PMCID: PMC9574860 DOI: 10.1021/acs.jmedchem.2c01113] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The multifunctional human Parkinson's disease protein 7 (PARK7/DJ1) is an attractive therapeutic target due to its link with early-onset Parkinson's disease, upregulation in various cancers, and contribution to chemoresistance. However, only a few compounds have been identified to bind PARK7 due to the lack of a dedicated chemical toolbox. We report the creation of such a toolbox and showcase the application of each of its components. The selective PARK7 submicromolar inhibitor with a cyanimide reactive group covalently modifies the active site Cys106. Installment of different dyes onto the inhibitor delivered two PARK7 probes. The Rhodamine110 probe provides a high-throughput screening compatible FP assay, showcased by screening a compound library (8000 molecules). The SulfoCy5-equipped probe is a valuable tool to assess the effect of PARK7 inhibitors in a cell lysate. Our work creates new possibilities to explore PARK7 function in a physiologically relevant setting and develop new and improved PARK7 inhibitors.
Collapse
Affiliation(s)
- Yuqing Jia
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Robbert Q Kim
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Raymond Kooij
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Huib Ovaa
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Aysegul Sapmaz
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Paul P Geurink
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| |
Collapse
|
12
|
Du H, Jiang D, Gao J, Zhang X, Jiang L, Zeng Y, Wu Z, Shen C, Xu L, Cao D, Hou T, Pan P. Proteome-Wide Profiling of the Covalent-Druggable Cysteines with a Structure-Based Deep Graph Learning Network. Research (Wash D C) 2022; 2022:9873564. [PMID: 35958111 PMCID: PMC9343084 DOI: 10.34133/2022/9873564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/27/2022] [Indexed: 11/06/2022] Open
Abstract
Covalent ligands have attracted increasing attention due to their unique advantages, such as long residence time, high selectivity, and strong binding affinity. They also show promise for targets where previous efforts to identify noncovalent small molecule inhibitors have failed. However, our limited knowledge of covalent binding sites has hindered the discovery of novel ligands. Therefore, developing in silico methods to identify covalent binding sites is highly desirable. Here, we propose DeepCoSI, the first structure-based deep graph learning model to identify ligandable covalent sites in the protein. By integrating the characterization of the binding pocket and the interactions between each cysteine and the surrounding environment, DeepCoSI achieves state-of-the-art predictive performances. The validation on two external test sets which mimic the real application scenarios shows that DeepCoSI has strong ability to distinguish ligandable sites from the others. Finally, we profiled the entire set of protein structures in the RCSB Protein Data Bank (PDB) with DeepCoSI to evaluate the ligandability of each cysteine for covalent ligand design, and made the predicted data publicly available on website.
Collapse
Affiliation(s)
- Hongyan Du
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Dejun Jiang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Junbo Gao
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Xujun Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Lingxiao Jiang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Yundian Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Zhenxing Wu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Chao Shen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410004 Hunan, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Peichen Pan
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| |
Collapse
|
13
|
Benýšek J, Buša M, Rubešová P, Fanfrlík J, Lepšík M, Brynda J, Matoušková Z, Bartz U, Horn M, Gütschow M, Mareš M. Highly potent inhibitors of cathepsin K with a differently positioned cyanohydrazide warhead: structural analysis of binding mode to mature and zymogen-like enzymes. J Enzyme Inhib Med Chem 2022; 37:515-526. [PMID: 35144520 PMCID: PMC8843313 DOI: 10.1080/14756366.2021.2024527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cathepsin K (CatK) is a target for the treatment of osteoporosis, arthritis, and bone metastasis. Peptidomimetics with a cyanohydrazide warhead represent a new class of highly potent CatK inhibitors; however, their binding mechanism is unknown. We investigated two model cyanohydrazide inhibitors with differently positioned warheads: an azadipeptide nitrile Gü1303 and a 3-cyano-3-aza-β-amino acid Gü2602. Crystal structures of their covalent complexes were determined with mature CatK as well as a zymogen-like activation intermediate of CatK. Binding mode analysis, together with quantum chemical calculations, revealed that the extraordinary picomolar potency of Gü2602 is entropically favoured by its conformational flexibility at the nonprimed-primed subsites boundary. Furthermore, we demonstrated by live cell imaging that cyanohydrazides effectively target mature CatK in osteosarcoma cells. Cyanohydrazides also suppressed the maturation of CatK by inhibiting the autoactivation of the CatK zymogen. Our results provide structural insights for the rational design of cyanohydrazide inhibitors of CatK as potential drugs.
Collapse
Affiliation(s)
- Jakub Benýšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.,First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michal Buša
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petra Rubešová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Matoušková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ulrike Bartz
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Rheinbach, Germany
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
14
|
Moreira-Filho JT, Silva AC, Dantas RF, Gomes BF, Souza Neto LR, Brandao-Neto J, Owens RJ, Furnham N, Neves BJ, Silva-Junior FP, Andrade CH. Schistosomiasis Drug Discovery in the Era of Automation and Artificial Intelligence. Front Immunol 2021; 12:642383. [PMID: 34135888 PMCID: PMC8203334 DOI: 10.3389/fimmu.2021.642383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis is a parasitic disease caused by trematode worms of the genus Schistosoma and affects over 200 million people worldwide. The control and treatment of this neglected tropical disease is based on a single drug, praziquantel, which raises concerns about the development of drug resistance. This, and the lack of efficacy of praziquantel against juvenile worms, highlights the urgency for new antischistosomal therapies. In this review we focus on innovative approaches to the identification of antischistosomal drug candidates, including the use of automated assays, fragment-based screening, computer-aided and artificial intelligence-based computational methods. We highlight the current developments that may contribute to optimizing research outputs and lead to more effective drugs for this highly prevalent disease, in a more cost-effective drug discovery endeavor.
Collapse
Affiliation(s)
- José T. Moreira-Filho
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Arthur C. Silva
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Rafael F. Dantas
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Barbara F. Gomes
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lauro R. Souza Neto
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Didcot, United Kingdom
- Research Complex at Harwell, Didcot, United Kingdom
| | - Raymond J. Owens
- The Rosalind Franklin Institute, Harwell, United Kingdom
- Division of Structural Biology, The Wellcome Centre for Human Genetic, University of Oxford, Oxford, United Kingdom
| | - Nicholas Furnham
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bruno J. Neves
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Floriano P. Silva-Junior
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina H. Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| |
Collapse
|
15
|
Ulrychová L, Ostašov P, Chanová M, Mareš M, Horn M, Dvořák J. Spatial expression pattern of serine proteases in the blood fluke Schistosoma mansoni determined by fluorescence RNA in situ hybridization. Parasit Vectors 2021; 14:274. [PMID: 34022917 PMCID: PMC8140508 DOI: 10.1186/s13071-021-04773-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/03/2021] [Indexed: 11/24/2022] Open
Abstract
Background The blood flukes of genus Schistosoma are the causative agent of schistosomiasis, a parasitic disease that infects more than 200 million people worldwide. Proteases of schistosomes are involved in critical steps of host–parasite interactions and are promising therapeutic targets. We recently identified and characterized a group of S1 family Schistosoma mansoni serine proteases, including SmSP1 to SmSP5. Expression levels of some SmSPs in S. mansoni are low, and by standard genome sequencing technologies they are marginally detectable at the method threshold levels. Here, we report their spatial gene expression patterns in adult S. mansoni by the high-sensitivity localization assay. Methodology Highly sensitive fluorescence in situ RNA hybridization (FISH) was modified and used for the localization of mRNAs encoding individual SmSP proteases (including low-expressed SmSPs) in tissues of adult worms. High sensitivity was obtained due to specifically prepared tissue and probes in combination with the employment of a signal amplification approach. The assay method was validated by detecting the expression patterns of a set of relevant reference genes including SmCB1, SmPOP, SmTSP-2, and Sm29 with localization formerly determined by other techniques. Results FISH analysis revealed interesting expression patterns of SmSPs distributed in multiple tissues of S. mansoni adults. The expression patterns of individual SmSPs were distinct but in part overlapping and were consistent with existing transcriptome sequencing data. The exception were genes with significantly low expression, which were also localized in tissues where they had not previously been detected by RNA sequencing methods. In general, SmSPs were found in various tissues including reproductive organs, parenchymal cells, esophagus, and the tegumental surface. Conclusions The FISH-based assay provided spatial information about the expression of five SmSPs in adult S. mansoni females and males. This highly sensitive method allowed visualization of low-abundantly expressed genes that are below the detection limits of standard in situ hybridization or by RNA sequencing. Thus, this technical approach turned out to be suitable for sensitive localization studies and may also be applicable for other trematodes. The results suggest that SmSPs may play roles in diverse processes of the parasite. Certain SmSPs expressed at the surface may be involved in host–parasite interactions. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04773-8.
Collapse
Affiliation(s)
- Lenka Ulrychová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo n. 2, 16610, Prague, Czech Republic.,Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Pavel Ostašov
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300, Pilsen, Czech Republic
| | - Marta Chanová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2028/7, 12800, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo n. 2, 16610, Prague, Czech Republic
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo n. 2, 16610, Prague, Czech Republic.
| | - Jan Dvořák
- Department of Zoology and Fisheries, Centre of Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Kamýcká 129, 16500, Prague 6, Czech Republic.
| |
Collapse
|