1
|
Siemer JL, Le TT, Paul A, Boykin DW, Brinton MA, Wilson WD, Germann MW. Conserved Sequences from Dengue Virus Genomes Form Stable G-Quadruplexes. ACS Infect Dis 2025; 11:88-94. [PMID: 39666861 PMCID: PMC11731295 DOI: 10.1021/acsinfecdis.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
Arthropod-borne members of the genus Orthoflavivirus cause significant human disease. Four serotypes of dengue virus are endemic globally, and approximately 50 percent of the world's population lives in a dengue-affected area. Complications from immunoenhancement occurring after a secondary infection with a different dengue serotype make vaccine development challenging. Antiviral therapies that target features conserved in all four serotypes would, therefore, be beneficial. Computational studies identified multiple potential G-quadruplex sites that are conserved in the RNA genome sequences of members of the genus Orthoflavivirus. Biophysical studies confirmed that the NS5-B quadruplex sequences obtained from viruses of each dengue serotype can form quadruplexes in vitro, and binding data showed that known quadruplex binders stabilized NS5-B quadruplexes for all four dengue serotypes.
Collapse
Affiliation(s)
- Jessica L. Siemer
- Department
of Chemistry, Georgia State University; Atlanta, Georgia 30303, United States
| | - Thao T. Le
- Department
of Chemistry, Georgia State University; Atlanta, Georgia 30303, United States
| | - Ananya Paul
- Department
of Chemistry, Georgia State University; Atlanta, Georgia 30303, United States
| | - David. W. Boykin
- Department
of Chemistry, Georgia State University; Atlanta, Georgia 30303, United States
| | - Margo A. Brinton
- Department
of Biology, Georgia State University; Atlanta, Georgia 30303, United States
| | - W. David Wilson
- Department
of Chemistry, Georgia State University; Atlanta, Georgia 30303, United States
| | - Markus W. Germann
- Department
of Chemistry, Georgia State University; Atlanta, Georgia 30303, United States
- Department
of Biology, Georgia State University; Atlanta, Georgia 30303, United States
| |
Collapse
|
2
|
Carrasco L, Utrilla MJ, Fuentes-Romero B, Fernandez-Novo A, Martin-Maldonado B. West Nile Virus: An Update Focusing on Southern Europe. Microorganisms 2024; 12:2623. [PMID: 39770826 PMCID: PMC11677777 DOI: 10.3390/microorganisms12122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
West Nile Virus (WNV) is a zoonotic, vector-borne pathogen affecting humans and animals, particularly in Europe. The virus is primarily transmitted through mosquitoes that infect birds, which serve as the main reservoirs. Humans and horses are incidental hosts. This review focuses on the epidemiology of WNV in southern Europe, particularly its increasing prevalence. Methods included an extensive literature review and analysis of recent outbreaks. WNV is largely asymptomatic in humans, but a small percentage can develop West Nile neuroinvasive disease (WNND), leading to severe neurological symptoms and fatalities. Horses can also suffer from neurological complications, with high mortality rates. Climate change, migratory birds, and mosquito population dynamics contribute to the virus spread across Europe. Control efforts focus on vector management, and while vaccines are available for horses, none has been approved for humans. Surveillance, particularly of bird and mosquito populations, and further research into the virus molecular structure are crucial for understanding and mitigating future outbreaks.
Collapse
Affiliation(s)
- Lara Carrasco
- Department of Veterinary Medicine, Biomedical and Health Sciences School, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (M.J.U.); (B.F.-R.); (A.F.-N.); (B.M.-M.)
| | - Maria Jose Utrilla
- Department of Veterinary Medicine, Biomedical and Health Sciences School, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (M.J.U.); (B.F.-R.); (A.F.-N.); (B.M.-M.)
| | - Beatriz Fuentes-Romero
- Department of Veterinary Medicine, Biomedical and Health Sciences School, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (M.J.U.); (B.F.-R.); (A.F.-N.); (B.M.-M.)
- Veterinary Hospital, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Aitor Fernandez-Novo
- Department of Veterinary Medicine, Biomedical and Health Sciences School, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (M.J.U.); (B.F.-R.); (A.F.-N.); (B.M.-M.)
| | - Barbara Martin-Maldonado
- Department of Veterinary Medicine, Biomedical and Health Sciences School, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (M.J.U.); (B.F.-R.); (A.F.-N.); (B.M.-M.)
| |
Collapse
|
3
|
Terrell JR, Le TT, Paul A, Brinton MA, Wilson WD, Poon GMK, Germann MW, Siemer JL. Structure of an RNA G-quadruplex from the West Nile virus genome. Nat Commun 2024; 15:5428. [PMID: 38926367 PMCID: PMC11208454 DOI: 10.1038/s41467-024-49761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Potential G-quadruplex sites have been identified in the genomes of DNA and RNA viruses and proposed as regulatory elements. The genus Orthoflavivirus contains arthropod-transmitted, positive-sense, single-stranded RNA viruses that cause significant human disease globally. Computational studies have identified multiple potential G-quadruplex sites that are conserved across members of this genus. Subsequent biophysical studies established that some G-quadruplexes predicted in Zika and tickborne encephalitis virus genomes can form and known quadruplex binders reduced viral yields from cells infected with these viruses. The susceptibility of RNA to degradation and the variability of loop regions have made structure determination challenging. Despite these difficulties, we report a high-resolution structure of the NS5-B quadruplex from the West Nile virus genome. Analysis reveals two stacked tetrads that are further stabilized by a stacked triad and transient noncanonical base pairing. This structure expands the landscape of solved RNA quadruplex structures and demonstrates the diversity and complexity of biological quadruplexes. We anticipate that the availability of this structure will assist in solving further viral RNA quadruplexes and provides a model for a conserved antiviral target in Orthoflavivirus genomes.
Collapse
Affiliation(s)
- J Ross Terrell
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Thao T Le
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Ananya Paul
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Margo A Brinton
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Markus W Germann
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.
| | - Jessica L Siemer
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
4
|
Berner A, Das RN, Bhuma N, Golebiewska J, Abrahamsson A, Andréasson M, Chaudhari N, Doimo M, Bose PP, Chand K, Strömberg R, Wanrooij S, Chorell E. G4-Ligand-Conjugated Oligonucleotides Mediate Selective Binding and Stabilization of Individual G4 DNA Structures. J Am Chem Soc 2024; 146:6926-6935. [PMID: 38430200 PMCID: PMC10941181 DOI: 10.1021/jacs.3c14408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
G-quadruplex (G4) DNA structures are prevalent secondary DNA structures implicated in fundamental cellular functions, such as replication and transcription. Furthermore, G4 structures are directly correlated to human diseases such as cancer and have been highlighted as promising therapeutic targets for their ability to regulate disease-causing genes, e.g., oncogenes. Small molecules that bind and stabilize these structures are thus valuable from a therapeutic perspective and helpful in studying the biological functions of the G4 structures. However, there are hundreds of thousands of G4 DNA motifs in the human genome, and a long-standing problem in the field is how to achieve specificity among these different G4 structures. Here, we developed a strategy to selectively target an individual G4 DNA structure. The strategy is based on a ligand that binds and stabilizes G4s without selectivity, conjugated to a guide oligonucleotide, that specifically directs the G4-Ligand-conjugated oligo (GL-O) to the single target G4 structure. By employing various biophysical and biochemical techniques, we show that the developed method enables the targeting of a unique, specific G4 structure without impacting other off-target G4 formations. Considering the vast amount of G4s in the human genome, this represents a promising strategy to study the presence and functions of individual G4s but may also hold potential as a future therapeutic modality.
Collapse
Affiliation(s)
- Andreas Berner
- Department
of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | | | - Naresh Bhuma
- Department
of Chemistry, Umeå University, Umeå 901 87, Sweden
| | | | | | - Måns Andréasson
- Department
of Chemistry, Umeå University, Umeå 901 87, Sweden
| | - Namrata Chaudhari
- Department
of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Mara Doimo
- Department
of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Partha Pratim Bose
- Department
of Biosciences and Nutrition, Karolinska
Institutet, Neo, Huddinge 141 57, Sweden
| | - Karam Chand
- Department
of Chemistry, Umeå University, Umeå 901 87, Sweden
| | - Roger Strömberg
- Department
of Biosciences and Nutrition, Karolinska
Institutet, Neo, Huddinge 141 57, Sweden
| | - Sjoerd Wanrooij
- Department
of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Erik Chorell
- Department
of Chemistry, Umeå University, Umeå 901 87, Sweden
| |
Collapse
|
5
|
Sarkar S. Recent advancements in bionanomaterial applications of peptide nucleic acid assemblies. Biopolymers 2024; 115:e23567. [PMID: 37792292 DOI: 10.1002/bip.23567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/02/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Peptide nucleic acid (PNA) is a unique combination of peptides and nucleic acids. PNA can exhibit hydrogen bonding interactions with complementary nucleobases like DNA/RNA. Also, its polyamide backbone allows easy incorporation of biomolecules like peptides and proteins to build hybrid molecular constructs. Because of chimeric structural properties, PNA has lots of potential to build diverse nanostructures. However, progress in the PNA material field is still immature compared with its massive applications in antisense oligonucleotide research. Examples of well-defined molecular assemblies have been reported with PNA amphiphiles, self-assembling guanine-PNA monomers/dimers, and PNA-decorated nucleic acids/ polymers/ peptides. All these works indicate the great potential of PNA to be used as bionanomaterials. The review summarizes the recent reports on PNA-based nanostructures and their versatile applications. Additionally, this review shares a perspective to promote a better understanding of controlling molecular assembly by the systematic structural modifications of PNA monomers.
Collapse
Affiliation(s)
- Srijani Sarkar
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
6
|
Sakar S, Anderson CF, Schneider JP. The Design of a Participatory Peptide Nucleic Acid Duplex Crosslinker to Enhance the Stiffness of Self-Assembled Peptide Gels. Angew Chem Int Ed Engl 2024; 63:e202313507. [PMID: 38057633 PMCID: PMC10872331 DOI: 10.1002/anie.202313507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Herein, peptide nucleic acids (PNAs) are employed in the design of a participatory duplex PNA-peptide crosslinking agent. Biophysical and mechanical studies show that crosslinkers present during peptide assembly leading to hydrogelation participate in the formation of fibrils while simultaneously installing crosslinks into the higher-order network that constitutes the peptide gel. The addition of 2 mol % crosslinker into the assembling system results in a ~100 % increase in mechanical stiffness without affecting the rate of peptide assembly or the local morphology of fibrils within the gel network. Stiffness enhancement is realized by only affecting change in the elastic component of the viscoelastic gel. A synthesis of the PNA-peptide duplex crosslinkers is provided that allows facile variation in peptide composition and addresses the notorious hydrophobic content of PNAs. This crosslinking system represents a new tool for modulating the mechanical properties of peptide-based hydrogels.
Collapse
Affiliation(s)
- Srijani Sakar
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, 376 Boyles Street, Frederick, MD 21702, USA
| | - Caleb F Anderson
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, 376 Boyles Street, Frederick, MD 21702, USA
| | - Joel P Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, 376 Boyles Street, Frederick, MD 21702, USA
| |
Collapse
|
7
|
Pathak R. G-Quadruplexes in the Viral Genome: Unlocking Targets for Therapeutic Interventions and Antiviral Strategies. Viruses 2023; 15:2216. [PMID: 38005893 PMCID: PMC10674748 DOI: 10.3390/v15112216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
G-quadruplexes (G4s) are unique non-canonical four-stranded nucleic acid secondary structures formed by guanine-rich DNA or RNA sequences. Sequences with the potential to form quadruplex motifs (pG4s) are prevalent throughout the genomes of all organisms, spanning from prokaryotes to eukaryotes, and are enriched within regions of biological significance. In the past few years, the identification of pG4s within most of the Baltimore group viruses has attracted increasing attention due to their occurrence in regulatory regions of the genome and the subsequent implications for regulating critical stages of viral life cycles. In this context, the employment of specific G4 ligands has aided in comprehending the intricate G4-mediated regulatory mechanisms in the viral life cycle, showcasing the potential of targeting viral G4s as a novel antiviral strategy. This review offers a thorough update on the literature concerning G4s in viruses, including their identification and functional significance across most of the human-infecting viruses. Furthermore, it delves into potential therapeutic avenues targeting G4s, encompassing various G4-binding ligands, G4-interacting proteins, and oligonucleotide-based strategies. Finally, the article highlights both progress and challenges in the field, providing valuable insights into leveraging this unusual nucleic acid structure for therapeutic purposes.
Collapse
Affiliation(s)
- Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
8
|
Miclot T, Froux A, D'Anna L, Bignon E, Grandemange S, Barone G, Monari A, Terenzi A. Understanding the Interactions of Guanine Quadruplexes with Peptides as Novel Strategies for Diagnosis or Tuning Biological Functions. Chembiochem 2023; 24:e202200624. [PMID: 36598366 DOI: 10.1002/cbic.202200624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Guanine quadruplexes (G4s) are nucleic acid structures exhibiting a complex structural behavior and exerting crucial biological functions in both cells and viruses. The specific interactions of peptides with G4s, as well as an understanding of the factors driving the specific recognition are important for the rational design of both therapeutic and diagnostic agents. In this review, we examine the most important studies dealing with the interactions between G4s and peptides, highlighting the strengths and limitations of current analytic approaches. We also show how the combined use of high-level molecular simulation techniques and experimental spectroscopy is the best avenue to design specifically tuned and selective peptides, thus leading to the control of important biological functions.
Collapse
Affiliation(s)
- Tom Miclot
- Universita di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, 90128, Palermo, Italy.,Université de Lorraine and CNRS, UMR 7019 LPCT, 54000, Nancy, France
| | - Aurane Froux
- Universita di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, 90128, Palermo, Italy.,Université de Lorraine and CNRS, UMR 7039 CRAN, 54000, Nancy, France
| | - Luisa D'Anna
- Universita di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, 90128, Palermo, Italy
| | - Emmanuelle Bignon
- Université de Lorraine and CNRS, UMR 7019 LPCT, 54000, Nancy, France
| | | | - Giampaolo Barone
- Universita di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, 90128, Palermo, Italy
| | - Antonio Monari
- Université Paris Cité and CNRS, ITODYS, 75006, Paris, France
| | - Alessio Terenzi
- Universita di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, 90128, Palermo, Italy
| |
Collapse
|
9
|
Ruggiero E, Richter SN. Targeting G-quadruplexes to achieve antiviral activity. Bioorg Med Chem Lett 2023; 79:129085. [PMID: 36423824 PMCID: PMC9760570 DOI: 10.1016/j.bmcl.2022.129085] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
With the emergence of new viruses in the human population and the fast mutation rates of existing viruses, new antiviral targets and compounds are needed. Most existing antiviral drugs are active against proteins of a handful of viruses. Most of these proteins in the end affect viral nucleic acid processing, but direct nucleic acid targeting is less represented due to the difficulty of selectively acting at the nucleic acid of interest. Recently, nucleic acids have been shown to fold in structures alternative to the classic double helix and Watson and Crick base-pairing. Among these non-canonical structures, G-quadruplexes (G4s) have attracted interest because of their key biological roles that are being discovered. Molecules able to selectively target G4s have been developed and since G4s have been investigated as targets in several human pathologies, including viral infections. Here, after briefly introducing viruses, G4s and the G4-binding molecules with antiviral properties, we comment on the mechanisms at the base of the antiviral activity reported for G4-binding molecules. Understanding how G4-ligands act in infected cells will possibly help designing and developing next-generation antiviral drugs.
Collapse
Affiliation(s)
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Italy; Microbiology and Virology Unit, Padua University Hospital, Padua, Italy.
| |
Collapse
|
10
|
Sarkar S, Colón‐Roura G, Pearse A, Armitage BA. Targeting a KRAS i-motif forming sequence by unmodified and gamma-modified peptide nucleic acid oligomers. Biopolymers 2023; 114:e23529. [PMID: 36573547 PMCID: PMC10078108 DOI: 10.1002/bip.23529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022]
Abstract
Growing interest in i-motif DNA as a transcriptional regulatory element motivates development of synthetic molecules capable of targeting these structures. In this study, we designed unmodified peptide nucleic acid (PNA) and gamma-modified PNA (γPNA) oligomers complementary to an i-motif forming sequence derived from the promoter of the KRAS oncogene. Biophysical techniques such as circular dichroism (CD) spectroscopy, CD melting, and fluorescence spectroscopy demonstrated the successful invasion of the i-motif by PNA and γPNA. Both PNA and γPNA showed very strong binding to the target sequence with high thermal stability of the resulting heteroduplexes. Interestingly fluorescence and CD experiments indicated formation of an intermolecular i-motif structure via the overhangs of target-probe heteroduplexes formed by PNA/γPNA invasion of the intramolecular i-motif. Targeting promoter i-motif forming sequences with high-affinity oligonucleotide mimics like γPNAs may represent a new approach for inhibiting KRAS transcription, thereby representing a potentially useful anti-cancer strategy.
Collapse
Affiliation(s)
- Srijani Sarkar
- Department of Chemistry and Center for Nucleic Acids Science and TechnologyCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Gabriela Colón‐Roura
- Department of Chemistry and Center for Nucleic Acids Science and TechnologyCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Alexander Pearse
- Department of Chemistry and Center for Nucleic Acids Science and TechnologyCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Bruce A. Armitage
- Department of Chemistry and Center for Nucleic Acids Science and TechnologyCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| |
Collapse
|
11
|
Nalewaj M, Szabat M. Examples of Structural Motifs in Viral Genomes and Approaches for RNA Structure Characterization. Int J Mol Sci 2022; 23:ijms232415917. [PMID: 36555559 PMCID: PMC9784701 DOI: 10.3390/ijms232415917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The relationship between conserved structural motifs and their biological function in the virus replication cycle is the interest of many researchers around the world. RNA structure is closely related to RNA function. Therefore, technological progress in high-throughput approaches for RNA structure analysis and the development of new ones are very important. In this mini review, we discuss a few perspectives on the structural elements of viral genomes and some methods used for RNA structure prediction and characterization. Based on the recent literature, we describe several examples of studies concerning the viral genomes, especially severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV). Herein, we emphasize that a better understanding of viral genome architecture allows for the discovery of the structure-function relationship, and as a result, the discovery of new potential antiviral therapeutics.
Collapse
|
12
|
Xu J, Huang H, Zhou X. G-Quadruplexes in Neurobiology and Virology: Functional Roles and Potential Therapeutic Approaches. JACS AU 2021; 1:2146-2161. [PMID: 34977886 PMCID: PMC8715485 DOI: 10.1021/jacsau.1c00451] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 05/11/2023]
Abstract
A G-quadruplex (G4) is a four-stranded nucleic acid secondary structure maintained by Hoogsteen hydrogen bonds established between four guanines. Experimental studies and bioinformatics predictions support the hypothesis that these structures are involved in different cellular functions associated with both DNA and RNA processes. An increasing number of diseases have been shown to be associated with abnormal G4 regulation. Here, we describe the existence of G4 and then discuss G4-related pathogenic mechanisms in neurodegenerative diseases and the viral life cycle. Furthermore, we focus on the role of G4s in the design of antiviral therapy and neuropharmacology, including G4 ligands, G4-based aptamers, G4-related proteins, and CRISPR-based sequence editing, along with a discussion of limitations and insights into the prospects of this unusual nucleic acid secondary structure in therapeutics. Finally, we highlight progress and challenges in this field and the potential G4-related research fields.
Collapse
Affiliation(s)
- Jinglei Xu
- The
Institute of Advanced Studies, Key Laboratory of Biomedical Polymers-Ministry
of Education, Wuhan University, Wuhan 430072, China
| | - Haiyan Huang
- Key
Laboratory of Biomedical Polymers-Ministry of Education, College of
Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Xiang Zhou
- The
Institute of Advanced Studies, Key Laboratory of Biomedical Polymers-Ministry
of Education, Wuhan University, Wuhan 430072, China
- Key
Laboratory of Biomedical Polymers-Ministry of Education, College of
Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
- Email to X.Z.:
| |
Collapse
|
13
|
Müller D, Saha P, Panda D, Dash J, Schwalbe H. Insights from Binding on Quadruplex Selective Carbazole Ligands. Chemistry 2021; 27:12726-12736. [PMID: 34138492 PMCID: PMC8518889 DOI: 10.1002/chem.202101866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 01/11/2023]
Abstract
Polymorphic G-quadruplex (G4) secondary DNA structures have received increasing attention in medicinal chemistry owing to their key involvement in the regulation of the maintenance of genomic stability, telomere length homeostasis and transcription of important proto-oncogenes. Different classes of G4 ligands have been developed for the potential treatment of several human diseases. Among them, the carbazole scaffold with appropriate side chain appendages has attracted much interest for designing G4 ligands. Because of its large and rigid π-conjugation system and ease of functionalization at three different positions, a variety of carbazole derivatives have been synthesized from various natural or synthetic sources for potential applications in G4-based therapeutics and biosensors. Herein, we provide an updated close-up of the literatures on carbazole-based G4 ligands with particular focus given on their detailed binding insights studied by NMR spectroscopy. The structure-activity relationships and the opportunities and challenges of their potential applications as biosensors and therapeutics are also discussed. This review will provide an overall picture of carbazole ligands with remarkable G4 topological preference, fluorescence properties and significant bioactivity; portraying carbazole as a very promising scaffold for assembling G4 ligands with a range of novel functional applications.
Collapse
Affiliation(s)
- Diana Müller
- Institute of Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Strasse 7Frankfurt am Main60438Germany
| | - Puja Saha
- School of Chemical SciencesIndian Association for the Cultivation of ScienceJadavpurKolkata-700032India
| | - Deepanjan Panda
- School of Chemical SciencesIndian Association for the Cultivation of ScienceJadavpurKolkata-700032India
| | - Jyotirmayee Dash
- School of Chemical SciencesIndian Association for the Cultivation of ScienceJadavpurKolkata-700032India
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Strasse 7Frankfurt am Main60438Germany
| |
Collapse
|