1
|
Asadi Tokmedash M, Kim C, Chavda AP, Li A, Robins J, Min J. Engineering multifunctional surface topography to regulate multiple biological responses. Biomaterials 2025; 319:123136. [PMID: 39978049 PMCID: PMC11893264 DOI: 10.1016/j.biomaterials.2025.123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Accepted: 01/23/2025] [Indexed: 02/22/2025]
Abstract
Surface topography or curvature plays a crucial role in regulating cell behavior, influencing processes such as adhesion, proliferation, and gene expression. Recent advancements in nano- and micro-fabrication techniques have enabled the development of biomimetic systems that mimic native extracellular matrix (ECM) structures, providing new insights into cell-adhesion mechanisms, mechanotransduction, and cell-environment interactions. This review examines the diverse applications of engineered topographies across multiple domains, including antibacterial surfaces, immunomodulatory devices, tissue engineering scaffolds, and cancer therapies. It highlights how nanoscale features like nanopillars and nanospikes exhibit bactericidal properties, while many microscale patterns can direct stem cell differentiation and modulate immune cell responses. Furthermore, we discuss the interdisciplinary use of topography for combined applications, such as the simultaneous regulation of immune and tissue cells in 2D and 3D environments. Despite significant advances, key knowledge gaps remain, particularly regarding the effects of topographical cues on multicellular interactions and dynamic 3D contexts. This review summarizes current fabrication methods, explores specific and interdisciplinary applications, and proposes future research directions to enhance the design and utility of topographically patterned biomaterials in clinical and experimental settings.
Collapse
Affiliation(s)
| | - Changheon Kim
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ajay P Chavda
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Adrian Li
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob Robins
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jouha Min
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Du N, Li C, Zou L, Wang Z, Liu Y, Hou J, Song K, Xiao Y, Kang J, Dong A, Xu R. Upcycling of Expanded Polystyrene Waste into Multifunctional Antibacterial Platforms for Microbial Control. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23656-23665. [PMID: 40211434 DOI: 10.1021/acsami.5c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Plastic wastes have emerged as a great challenge for ecological and environmental governance with the global spread of white pollution. There is an urgent need for the development of an advanced technique for combating plastic contamination. Herein, we developed an N-halamine-modified hyper-cross-linked polystyrene (i.e., EPS-3TDETA-Cl) with the assistance of Friedel-Crafts alkylation reaction on the expanded polystyrene (EPS) waste. Subsequently, a multifunctional antibacterial platform was constructed by integrating EPS-3TDETA-Cl with gold nanorods (AuNRs) to achieve synergistic antibacterial performance (>99.999%) in vitro against pathogenic bacteria using Escherichia coli (E. coli) as a model strain while exhibiting good hemocompatibility. The results of the E. coli-infected skin defect therapy revealed that the obtained platform resisted wound bacterial infection, accelerated the healing process, and promoted epithelial regeneration. This strategy provides a new idea for the recycling of plastic waste and the platform would be very promising in the practical biomedical applications.
Collapse
Affiliation(s)
- Nan Du
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Chenghao Li
- Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Liang Zou
- Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Zhiqiang Wang
- Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Yanfang Liu
- Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Jili Hou
- Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Kuntong Song
- Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Yuanhao Xiao
- Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Run Xu
- Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| |
Collapse
|
3
|
Jiang W, Huang C, Muyldermans S, Jia L. Small but Mighty: Nanobodies in the Fight Against Infectious Diseases. Biomolecules 2025; 15:610. [PMID: 40427503 PMCID: PMC12109223 DOI: 10.3390/biom15050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/20/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Infectious diseases, caused by pathogenic microorganisms and capable of spreading, pose a significant threat to global public health. Developing efficient and cost-effective techniques for treating infectious diseases is crucial in curbing their progression and reducing patients' morbidity and mortality. Nanobodies (Nbs), a novel class of affinity reagents derived from unique heavy chain-only antibodies in camelids, represent the smallest intact and fully functional antigen-binding fragments. Compared with conventional antibodies and their antigen binding fragments, Nbs offer numerous advantages, including high affinity, exceptional target specificity, cost-effective production, easy accessibility, and robust stability, demonstrating immense potential in infectious disease treatment. This review introduces Nbs and focuses on discussing their mechanisms and intervention strategies in the treatment of viral and bacterial infections.
Collapse
Affiliation(s)
- Wenning Jiang
- Department of Public Security Administration, Liaoning Police College, Dalian 116036, China
| | - Chundong Huang
- Dalian Kangyuan Medical Technology Co., Ltd., Dalian 116014, China
| | - Serge Muyldermans
- Dalian Kangyuan Medical Technology Co., Ltd., Dalian 116014, China
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Lingyun Jia
- The School of Bioengineering, Dalian University of Technology, Dalian 116036, China
| |
Collapse
|
4
|
Sivakumar R, Lim N, Park SK, Lee NY. Curcumin - a natural colorant-based pH indicator for molecular diagnostics. Analyst 2025; 150:1632-1641. [PMID: 40095609 DOI: 10.1039/d4an01570c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Loop-mediated isothermal amplification (LAMP) provides highly selective and sensitive DNA amplification and generates hydrogen ions as a byproduct under weakly buffered conditions, causing the solutions' pH to decrease from the initial basic to an acidic environment. This distinctive feature allows the color of the amplified DNA solution to change readily when suitable pH indicators are employed. In this study, curcumin, a biodegradable, non-toxic, and natural colorant, was used as a pH indicator to visually identify LAMP-amplified Staphylococcus aureus (S. aureus) and Streptococcus pneumoniae (S. pneumoniae). Curcumin (10 mM) displayed a unique color difference between negative (red) and positive (yellow) samples, and the detection process was completed within 30 s, demonstrating the effectiveness of using curcumin for on-site diagnostics. Under optimum conditions, curcumin enabled S. aureus and S. pneumoniae detection as low as 10 fg μL-1 and 1 pg μL-1, respectively, due to its unique halochromic properties. Owing to its adaptability, ease of use, and rapid visual detection, the introduced colorimetric pH-based LAMP method can be employed as a practical alternative to conventional colorimetry for infectious pathogen identification in both laboratory and field settings.
Collapse
Affiliation(s)
- Rajamanickam Sivakumar
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| | - Nahyung Lim
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| | - Seung Kyun Park
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| |
Collapse
|
5
|
Maghami AA, Mobarez AM, Yadegar A, Nikkhah M, Sadeghi A, Mousazadeh M. Evaluation of optimized Real time-PCR HRM assay and SPR-based biosensor for noninvasive isolation of H. pylori and Clarithromycin resistance 23S-SNP subtype. Diagn Microbiol Infect Dis 2025; 111:116722. [PMID: 39919347 DOI: 10.1016/j.diagmicrobio.2025.116722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
High Resolution Melting analysis is a highly sensitive molecular method, and the plasmonic-based sensor is a convenient test, be clinically elicited, in simultaneous H. pylori control and the prevention of Clarithromycin resistant strains related to SNPs. Comparing gold standard tests, we evaluated HRMA and the SPR-based biosensor in regard to noninvasive forms of H. pylori management, and explored resistance through a possible mechanism by 23S-SNPs.We optimized Realtime-PCR HRM analysis, and SPR-based biosensor. Referring to CTs ± 38, isolation sensitivity was evaluated at 74 %. Compared to the reference-test, results agreements were assessed with a kappa of 43 %, p = 0.001. Within melting plots (differentiation plot), the strains were detectable at Tms ranging from 81.5 to 82.3 (°C). Contributing to phenotypically determined resistant strains for 44 %, there was a wide distribution among resistant variants assessed through Tms of 82, 81.5, 82, 82.3, and 81.7 (°C). A2143C was the only mutation isolated at a specific Tm of 82.3°C; kappa = 8 %, p = 0.3. For sensing analysis, including 100 % specificity, this sensor type was associated with lower sensitivity of 49 %, kappa=19 %, p = 0. 01. For SNP, specificity, kappa value, and p-value of isolation were 100 %, 100 %, and 0.001. Lod was 0.003 ng/mL and 0.03 µg/mL for HRM assay and sensing analysis. In our evaluations, applicable priority of HRM analysis was the higher estimation of sensitivity; its differentiation plot was completely covered the results of strain variability regarding specific SNPs detection. Consistent with the biosensor for isolation of SNP, the development of biosensors is the necessity for noninvasive H. pylori detection.
Collapse
Affiliation(s)
- Atena Abedi Maghami
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ashraf Mohabati Mobarez
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Department of Sensor and Biosensor, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical, Sciences, Tehran, Iran
| | - Marziyeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Zlotnikov ID, Belogurova NG, Kudryashova EV. Targeted Delivery Inside the Cells Directly Visualized with Förster Resonance Energy Transfer (FRET). Polymers (Basel) 2025; 17:790. [PMID: 40292615 PMCID: PMC11944702 DOI: 10.3390/polym17060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
We established a real-time Förster resonance energy transfer (FRET) based assay to evaluate targeted drug delivery using polymeric micelles. Red fluorescent protein (RFP)-expressing E. coli cells were used as a test system to monitor the delivery of drug-fluorophore such as curcumin and umbelliferones (MUmb and AMC) encapsulated in the polymeric micellar formulations. The efficiency of the drug delivery was quantified using the FRET efficiency, measured as the degree of energy transfer from the drug to the RFP. FRET efficiency directly provides the determination of the delivery efficacy, offering a versatile platform adaptable to various drugs and cell types. We used polymer micelles as a carrier for targeted delivery of fluorescent drugs to bacterial cells expressing RFP. The physicochemical characterization of the interaction between the drugs and the micelles including spectral properties, and the solubility and binding constants, were determined. We revealed a stronger affinity of MUmb for heparin-based micelles (Kd~10-5 M) compared to chitosan-based micelles (Kd~10-4 M), underscoring the influence of polymer composition on drug loading efficiency. For micelles containing MUmb, a FRET efficiency significantly exceeds (by three times) the efficiency for non-micellar MUmb, which have minimal penetration into bacterial cells. The most noticeable effect was observed with the use of the micellar curcumin providing pronounced activation of the RPF fluorescence signal, due to the interaction with curcumins (fluorophore-donor). Curcumin delivery using Chit5-OA micelle resulted in a 115% increase in RFP fluorescence intensity, and Hep-LA showed a significant seven-fold increase. These results highlight the significant effect of micellar composition on the effectiveness of drug delivery. In addition, we have developed a visual platform designed to evaluate the effectiveness of a pharmaceutical product through the visualization of the fluorescence of a bacterial culture on a Petri dish. This method allows us to quickly and accurately assess the penetration of a drug into bacteria, or those located inside other cells, such as macrophages, where the intercellular latent forms of the infection are located. Micellar formulations show enhanced antibacterial activity compared to free drugs, and formulations with Hep-OA micelles demonstrate the most significant reduction in E. coli viability. Synergistic effects were observed when combining curcumin and MUmb with moxifloxacin, resulting in a remarkable 40-50% increase in efficacy. The presented approach, based on the FRET test system with RFP expressed in the bacterial cells, establishes a powerful platform for development and optimizing targeted drug delivery systems.
Collapse
Affiliation(s)
| | | | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (I.D.Z.)
| |
Collapse
|
7
|
Zhang Z, Xing E, Zhao W, Song M, Zhang C, Liu H, Li X, Yu H. Rapid identification of pathogenic bacteria from clinical positive blood cultures via virus-like magnetic bead enrichment and MALDI-TOF MS profiling. Analyst 2025; 150:827-840. [PMID: 39831737 DOI: 10.1039/d4an01424c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Reducing the time required for the detection of bacteria in blood samples is a critical area of investigation in the field of clinical diagnosis. Positive blood culture samples often require a plate culture stage due to the interference of blood cells and proteins, which can result in significant delays before the isolation of single colonies suitable for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. In this study, we developed a non-specific enrichment strategy based on SiO2-encapsulated Fe3O4 nanoparticles combined with MALDI-TOF MS for direct identification of bacteria from aqueous environments or positive blood culture samples. Three distinct types of Fe3O4@SiO2 magnetic nanoparticles (MNPs) with unique surface morphologies were developed: spherical MNPs with smooth surfaces (Fe3O4@SN), mesoporous silica coated MNPs (Fe3O4@MSN), and MNPs exhibiting a viral spiked structure (Fe3O4@VSN). These MNPs exhibited excellent binding affinity towards both Staphylococcus aureus and Klebsiella pneumoniae in PBS and artificial saliva solutions. Furthermore, the strategy of using Fe3O4@VSN, which involves non-specific interactions between bacterial cells and the virus-like surface, resulted in a dramatic reduction in the minimum detectable concentrations of target pathogens by up to 1000-fold compared to conventional methods. Our results demonstrate that the use of Fe3O4@VSN has the potential to significantly reduce the processing time required after blood culture and may be useful for enrichment and identification of microorganisms in complex clinical samples.
Collapse
Affiliation(s)
- Zhirou Zhang
- Institutes of Biomedical Sciences & Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Enyun Xing
- Institutes of Biomedical Sciences & Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Wenzhuo Zhao
- Institutes of Biomedical Sciences & Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Minghui Song
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai 200233, China
| | - Cuiping Zhang
- Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Hong Liu
- Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Xiaomin Li
- Institutes of Biomedical Sciences & Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Hongxiu Yu
- Institutes of Biomedical Sciences & Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
8
|
Zhou W, Li Q, Liu M, Gu X, He X, Xie C, Fan Q. Biodegradable semiconducting polymer nanoparticles for phototheranostics. J Mater Chem B 2025; 13:2242-2253. [PMID: 39815890 DOI: 10.1039/d4tb02437k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Semiconducting polymer nanoparticles (SPNs) have been widely applied for phototheranostics. However, the disadvantage of in vivo long-term metabolism greatly suppresses the clinical application of SPNs. To improve the metabolic rate and minimize the long-term toxicity of SPNs, biodegradable semiconducting polymers (BSPs), whose backbones may be degraded under certain conditions, have been designed. This review summarizes recent advances in BSP-constructed nanoparticles (BSPNs) for phototheranostics. BSPs are divided into two categories: conjugated backbone degradable BSPs (CBD-BSPs) and non-conjugated backbone degradable BSPs (NCBD-BSPs), based on the feature of chemical structure. The biological applications, including cancer imaging and combination therapy, of these BSPNs are described. Finally, the conclusion and future perspectives of this field are discussed.
Collapse
Affiliation(s)
- Wen Zhou
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Qiang Li
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Mingming Liu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Xuxuan Gu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Xiaowen He
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Chen Xie
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Quli Fan
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
9
|
Azizian R, Mamishi S, Jafari E, Mohammadi MR, Heidari Tajabadi F, Pourakbari B. From Conventional Detection to Point-of-care Tests (POCT) Method for Pediatric Respiratory Infections Diagnosis: A Systematic Review. ARCHIVES OF IRANIAN MEDICINE 2025; 28:112-123. [PMID: 40062500 PMCID: PMC11892094 DOI: 10.34172/aim.33505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 11/30/2024] [Accepted: 01/01/2025] [Indexed: 04/18/2025]
Abstract
Bacterial respiratory infections pose significant health risks to children, particularly infants susceptible to upper respiratory tract infections (URTIs). The COVID-19 pandemic has further exacerbated the prevalence of these infections, with pathogens such as Mycoplasma pneumoniae, Streptococcus pneumoniae, Legionella pneumophila, Staphylococcus aureus, Haemophilus influenzae, and Klebsiella species commonly implicated in pediatric cases. The critical need for accurate and timely detection of these bacterial agents has highlighted the importance of advanced diagnostic techniques, including multiplex real-time PCR, in clinical practice. Multiplex real-time polymerase chain reaction (PCR) offers several advantages, including rapid results, high sensitivity, and specificity. By accelerating the diagnostic process, this approach enables early intervention and targeted treatment, ultimately improving patient outcomes. In addition to PCR technologies, rapid and point-of-care testing (POCT) play a crucial role in the prompt diagnosis of bacterial respiratory infections. These tests are designed to be user-friendly, sensitive, and deliver quick results, making them particularly valuable in urgent clinical settings. POCT tests are often categorized into two main groups: those aimed at determining the cause of infection and those focused on confirming the presence of specific pathogens. By utilizing POCT, healthcare providers can make rapid and informed treatment decisions, leading to more effective management of bacterial respiratory infections in children. As the medical community continues to explore innovative diagnostic approaches, the integration of molecular and rapid testing methods offers significant promise in the realm of bacterial respiratory infections. By adopting these cutting-edge technologies, healthcare professionals can enhance their ability to accurately diagnose these infections, tailor treatment strategies, and ultimately improve patient care.
Collapse
Affiliation(s)
- Reza Azizian
- Pediatric Infectious Diseases Research Center (PIDRC), Tehran University of Medical Sciences, Tehran, Iran
- Biomedical Innovation and Start-up Student Association (Biomino), Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Mamishi
- Pediatric Infectious Diseases Research Center (PIDRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Erfaneh Jafari
- Pediatric Infectious Diseases Research Center (PIDRC), Tehran University of Medical Sciences, Tehran, Iran
- Biomedical Innovation and Start-up Student Association (Biomino), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Mohammadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Babak Pourakbari
- Pediatric Infectious Diseases Research Center (PIDRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Ramaiah KB, Suresh I, Nesakumar N, Sai Subramanian N, Rayappan JBB. "Urinary tract infection: Conventional testing to developing Technologies". Clin Chim Acta 2025; 565:119979. [PMID: 39341530 DOI: 10.1016/j.cca.2024.119979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Urinary tract infections (UTIs) present an escalating global health concern, precipitating increased hospitalizations and antibiotic utilization, thereby fostering the emergence of antimicrobial resistance. Current diagnostic modalities exhibit protracted timelines and substantial financial burdens, necessitating specialized infrastructures. Addressing these impediments mandates the development of a precise diagnostic paradigm to expedite identification and augment antibiotic stewardship. The application of biosensors, recognized for their transformative efficacy, emerges as a promising resolution. Recent strides in biosensor technologies have introduced pioneering methodologies, yielding pertinent biosensors and integrated systems with significant implications for point-of-care applications. This review delves into historical perspectives, furnishing a comprehensive delineation of advancements in UTI diagnostics, disease etiology, and biomarkers, underscoring the potential merits of these innovations for optimizing patient care.
Collapse
Affiliation(s)
- Kavi Bharathi Ramaiah
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Biofilm Biology Lab & Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Indhu Suresh
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India; School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Noel Nesakumar
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - N Sai Subramanian
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Biofilm Biology Lab & Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India; School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
11
|
Silva WFSM, Migliolo L, Silva PS, Lima GMS, Oliveira MDL, Andrade CAS. Nanosensor based on HP-MAP1 and carbon nanotubes for bacteria detection. Biotechnol Prog 2025; 41:e3510. [PMID: 39324859 DOI: 10.1002/btpr.3510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Healthcare-associated infections (HAIs) pose significant challenges to global health due to pathogen complexity and antimicrobial resistance. Biosensors utilizing antimicrobial peptides offer innovative solutions. Hylarana picturata Multiple Active Peptide 1 (Hp-MAP1), derived from Temporin-PTA, exhibits antibacterial properties sourced from the skin secretions of the Malaysian fire-bellied frog. An innovative sensing layer was developed for the electrochemical biorecognition of diverse pathogens: Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus. Electrochemical impedance spectroscopy differentiated microorganisms based on distinct electrochemical responses. The sensor layer, composed of functionalized multi-walled carbon nanotubes (MWCNTs) associated with Hp-MAP1, exhibited varying levels of charge transfer resistance (RCT) for different microorganisms. Gram-negative species, especially P. aeruginosa, displayed higher RCT values, indicating better impedimetric responses. Excellent LODs were observed for P. aeruginosa (0.60), K. pneumoniae (0.42), E. coli (0.67), and S. aureus (0.59), highlighting the efficacy of the MWCNTs/Hp-MAP1 biosensor in microbial identification. The MWCNTs/Hp-MAP1 biosensor platform presents a promising and effective microbial identification strategy with potential healthcare applications to mitigate HAIs and enhance patient care.
Collapse
Affiliation(s)
- Winne F S M Silva
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, Brazil
| | - Ludovico Migliolo
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Patrícia S Silva
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Glaucia M S Lima
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, Brazil
| | - Maria D L Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, Brazil
- Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Brazil
| | - Cesar A S Andrade
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, Brazil
- Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
12
|
Zhang X, Upputuri PK, Coughlan MF, Kemble DJ, Khan U, Zakharov YN, Zhang L, Perelman LT, Qiu L. Dual-angle light scattering spectroscopy for calibration-free measurements of scatterer suspensions. OPTICS LETTERS 2025; 50:33-36. [PMID: 39718846 PMCID: PMC11891018 DOI: 10.1364/ol.543614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/16/2024] [Indexed: 12/26/2024]
Abstract
It can be difficult to employ optical techniques for analyzing biological structures smaller than or comparable to the wavelength of light, such as extracellular vesicles or some types of bacteria. Biological light scattering spectroscopy (LSS), developed to address this problem, has been successfully used for characterizing tissue on cellular and subcellular scales. At the same time, calibration with a reference sample of known optical properties can complicate LSS measurements. In this Letter, we present dual-angle LSS (daLSS), which is designed for calibration-free measurements of scatterer suspensions. It employs measurements of a sample at two distinct angles, which then allows system effects to be removed entirely. Not only does daLSS simplify and speed up the measurement procedure, but it also makes spectra more reproducible, an important feature for diagnostic techniques. We validated the technique by accurately reconstructing the sizes of polystyrene microspheres with diameters less than 100 nm and then demonstrated that not only are the daLSS spectra of several common bacteria strains easily distinguishable but they are also highly reproducible.
Collapse
Affiliation(s)
- Xuejun Zhang
- Center for Advanced Biomedical Imaging and Photonics, Harvard University, Boston, Massachusetts 02215 USA
| | - Paul K Upputuri
- Center for Advanced Biomedical Imaging and Photonics, Harvard University, Boston, Massachusetts 02215 USA
| | - Mark F Coughlan
- Center for Advanced Biomedical Imaging and Photonics, Harvard University, Boston, Massachusetts 02215 USA
| | - David J Kemble
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts 02215 USA
| | - Umar Khan
- Center for Advanced Biomedical Imaging and Photonics, Harvard University, Boston, Massachusetts 02215 USA
| | - Yuri N Zakharov
- Center for Advanced Biomedical Imaging and Photonics, Harvard University, Boston, Massachusetts 02215 USA
| | - Lei Zhang
- Center for Advanced Biomedical Imaging and Photonics, Harvard University, Boston, Massachusetts 02215 USA
| | - Lev T Perelman
- Center for Advanced Biomedical Imaging and Photonics, Harvard University, Boston, Massachusetts 02215 USA
| | - Le Qiu
- Center for Advanced Biomedical Imaging and Photonics, Harvard University, Boston, Massachusetts 02215 USA
| |
Collapse
|
13
|
Wang M, Wang Y, Chen G, Gao H, Peng Q. Chitosan-Based Multifunctional Biomaterials as Active Agents or Delivery Systems for Antibacterial Therapy. Bioengineering (Basel) 2024; 11:1278. [PMID: 39768096 PMCID: PMC11673874 DOI: 10.3390/bioengineering11121278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Antibiotic therapy has been a common method for treating bacterial infections over the past century, but with the rise in bacterial resistance caused by antibiotic abuse, better control and more rational use of antibiotics have been increasingly demanded. At the same time, a journey to explore alternatives to antibiotic therapies has also been undertaken. Chitosan and its derivatives, materials with good biocompatibility, biodegradability, and excellent antibacterial properties, have garnered significant attention, and more and more studies on chitosan and its derivatives have been conducted in recent years. In this work, we aim to elucidate the biological properties of chitosan and its derivatives and to track their clinical applications, as well as to propose issues that need to be addressed and possible solutions to further their future development and application.
Collapse
Affiliation(s)
| | | | | | | | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
He M, Yin S, Huang X, Li Y, Li B, Gong T, Liu Q. Insights into the regulatory role of bacterial sncRNA and its extracellular delivery via OMVs. Appl Microbiol Biotechnol 2024; 108:29. [PMID: 38159117 DOI: 10.1007/s00253-023-12855-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 01/03/2024]
Abstract
Small noncoding RNAs (sncRNAs) play important regulatory roles in bacterial physiological processes and host-pathogen interactions. Meanwhile, bacterial outer membrane vesicles (OMVs), as naturally secreted outer membrane structures, play a vital role in the interaction between bacteria and their living environment, including the host environment. However, most current studies focus on the biological functions of sncRNAs in bacteria or hosts, while neglecting the roles and regulatory mechanisms of the OMVs that encapsulate these sncRNAs. Therefore, this review aims to summarize the intracellular regulatory roles of bacterial sncRNAs in promoting pathogen survival by regulating virulence, modulating bacterial drug resistance, and regulating iron metabolism, and their extracellular regulatory function for influencing host immunity through host-pathogen interactions. Additionally, we introduce the key role played by OMVs, which serve as important cargoes in bacterial sncRNA-host interactions. We propose emerging pathways of sncRNA action to further discuss the mode of host-pathogen interactions, highlighting that the inhibition of sncRNA delivery by OMVs may prevent the occurrence of infection to some extent. Hence, this review lays the foundation for future prophylactic treatments against bacterial infections and strategies for addressing bacterial drug resistance. KEY POINTS: •sncRNAs have intracellular and extracellular regulatory functions in bacterial physiological processes and host-pathogen interactions. •OMVs are potential mediators between bacterial sncRNAs and host cells. •OMVs encapsulating sncRNAs have more potential biological functions.
Collapse
Affiliation(s)
- Mengdan He
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, 330006, China
| | - Shuanshuan Yin
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, 330006, China
| | - Xinlei Huang
- Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Yi Li
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, 330006, China
| | - Biaoxian Li
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Tian Gong
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Qiong Liu
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
15
|
Maleki‐Ghaleh H, Kamiński B, Moradpur‐Tari E, Raza S, Khanmohammadi M, Zbonikowski R, Shakeri MS, Siadati MH, Akbari‐Fakhrabadi A, Paczesny J. Visible Light-Sensitive Sustainable Quantum Dot Crystals of Co/Mg Doped Natural Hydroxyapatite Possessing Antimicrobial Activity and Biocompatibility. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405708. [PMID: 39449217 PMCID: PMC11673459 DOI: 10.1002/smll.202405708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Cutting-edge research in advanced materials is increasingly turning toward the development of novel multifunctional nanomaterials for use in high-tech applications. This research uses the solid-state method as a solvent-free technique to create multifunctional quantum dot (QD) hydroxyapatite (HA) crystals from bovine bone waste. By incorporating cobalt (Co) and magnesium (Mg) into the HA structure, the crystallinity of the hexagonal HA nanoparticles (99.7%), showing QD crystals is enhanced. Oxygen vacancies on the surfaces of the HA nanoparticles contributed to their bandgap falling within the visible light range. In addition, the dopants substituted calcium in the HA crystal structure and generated a divalent oxidation state, shifting the bandgap of natural HA toward red wavelengths (3.26 to 1.94 eV). Moreover, the incorporation of Co led to magnetization within the HA structure through spin polarization. Additionally, the doped QD crystals of HA nanoparticles showed significant antimicrobial activity against Escherichia coli, Staphylococcus aureus, and bacteriophages MS2, particularly under visible light exposure. In short, the Co/Mg co-doped HA nanoparticles exhibited ferromagnetic properties, sensitivity to visible light, biocompatibility, and considerable antimicrobial effects, establishing their potential as sustainable multifunctional materials for biomedical applications, especially in anti-infection treatments.
Collapse
Affiliation(s)
- Hossein Maleki‐Ghaleh
- Institute of Physical ChemistryPolish Academy of SciencesKasprzaka 44/52Warsaw01–224Poland
| | - Bartosz Kamiński
- Institute of Physical ChemistryPolish Academy of SciencesKasprzaka 44/52Warsaw01–224Poland
| | | | - Sada Raza
- Institute of Physical ChemistryPolish Academy of SciencesKasprzaka 44/52Warsaw01–224Poland
| | - Mehdi Khanmohammadi
- Biomaterials GroupMaterials Design DivisionFaculty of Materials Science and EngineeringWarsaw University of TechnologyWołoska 141Warsaw02–507Poland
| | - Rafał Zbonikowski
- Institute of Physical ChemistryPolish Academy of SciencesKasprzaka 44/52Warsaw01–224Poland
| | | | - M. Hossein Siadati
- Materials Science and Engineering FacultyK. N. Toosi University of TechnologyTehran15418Iran
| | - Ali Akbari‐Fakhrabadi
- Advanced Materials LaboratoryDepartment of Mechanical EngineeringUniversity of ChileSantiago8370456Chile
| | - Jan Paczesny
- Institute of Physical ChemistryPolish Academy of SciencesKasprzaka 44/52Warsaw01–224Poland
| |
Collapse
|
16
|
Verma R, Gaba S, Chauhan N, Chandra R, Jain U. Biodetection Strategies for Selective Identification of Candidiasis. Indian J Microbiol 2024; 64:1461-1476. [PMID: 39678986 PMCID: PMC11645395 DOI: 10.1007/s12088-024-01288-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/18/2024] [Indexed: 12/17/2024] Open
Abstract
Fungi are among the predominant pathogens seen in a greater proportion of infections acquired in healthcare settings. A common fungus that causes infections in medical settings is Candida species. Hospitalized patients who suffer from fungal diseases such as candidiasis and candidemia often have elevated rates of mortality and morbidity. It is evident that longer hospital stays have the possibility of bacterial and fungal recurrence and also have a negative economic impact. If left untreated, a Candida infection can spread to other organs and cause a systemic infection that can result in sepsis. Clinicians can treat patients quickly when fungal infections are timely detected, this enhances the results of clinical trials. Developing novel, sensitive, and quick methods for detecting Candida species is imperative. Conventional detection techniques are unsuitable for clinical settings and point-of-care systems as they require expensive equipment and take a longer detection time. This review examines a few of the most widely used biosensor systems for the detection of Candida species, their sensitivity, and the limit of detection. It focuses on various biorecognition elements used and follows utilization and advances in nanotechnology in the context of sensing. In addition to enabling general analysis and quick real-time analysis, crucial for detecting Candida species, biosensors provide an intriguing alternative to more conventional techniques.
Collapse
Affiliation(s)
- Riya Verma
- School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand 248007 India
| | - Smriti Gaba
- School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand 248007 India
| | - Nidhi Chauhan
- School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand 248007 India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi, India
- Institute of Nanomedical Sciences (INMS), University of Delhi, Delhi, India
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
- Maharaja Surajmal Brij University, Kumher, Bharatpur, 321201 India
| | - Utkarsh Jain
- School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand 248007 India
| |
Collapse
|
17
|
Jiang F, Jin N, Wang L, Wang S, Li Y, Lin J. A multimetallic nanozyme enhanced colorimetric biosensor for Salmonella detection on finger-actuated microfluidic chip. Food Chem 2024; 460:140488. [PMID: 39043075 DOI: 10.1016/j.foodchem.2024.140488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
Salmonella screening is essential to avoid food poisoning. A simple, fast and sensitive colorimetric biosensor was elaborately developed for Salmonella detection on a microfluidic chip through limiting air chambers for precise air control, switching rotary valves for accurate fluid selection, a convergence-and-divergence passive micromixer and an extrusion-and-suction active micromixer for efficient fluid mixing, and immune gold@platinum palladium nanocatalysts for effective signal amplification. The mixture of bacteria, immune magnetic nanobeads and nanocatalysts was first rapidly mixed to form nanobead-bacteria-nanocatalyst conjugates and magnetically separated for enrichment. After washing with water, the conjugates were used to catalyze colorless substrate and blue product was finally analyzed using ImageJ for quantifying bacterial concentration. The finger-actuated microfluidic chip enabled designated control of designated fluids in designated places towards designated directions by simple press-release operations on designated air chambers without any external power. Under optimal conditions, this sensor could detect Salmonella at 45 CFU/mL in 25 min.
Collapse
Affiliation(s)
- Fan Jiang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Nana Jin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Lei Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Siyuan Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
18
|
Zhou Y, Zou W, Zhang Y, Fang H, Mo F, Sun D, Zhang X, You T. Aptamer modified CeCo MOF hybrid catalysts with multiple enzymatic activities for enhanced catalytic therapy of infected wounds. Int J Biol Macromol 2024; 285:138215. [PMID: 39617230 DOI: 10.1016/j.ijbiomac.2024.138215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Designing and inventing synergistic emerging antimicrobial strategies is critical for mitigating potential resistance to conventional antibiotics. This task is challenging because these antimicrobial agents should need to eliminate bacteria, slow oxidative stress in wounds, and be safe and nontoxic. Here, we report a highly safe antimicrobial nanocatalyst for bacterial scavenging through aptamer-synergistic multienzyme activity. The nanocatalysts (termed as ASCM) were constructed by loading copper nanoparticles (Cu NPs), natural superoxide dismutase (SOD), and functionalized aptamers on bimetallic metal-organic frameworks (CeCo MOFs). The hybrid nanocatalysts exhibit remarkable SOD-like activity as well as its catalase (CAT)-, peroxidase (POD)- and glutathione peroxidase (GPx)-like activities to release highly toxic hydroxyl radicals (•OH) and oxygen (O2) to kill bacteria and relieve wound hypoxia. Systematic antimicrobial testing revealed that ASCM exhibited a high inactivation efficiency (>99 %) against both methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PA). Animal experiments have shown that ASCM can effectively treat MRSA-infected wounds and has a good biosafety profile while inhibiting the inflammatory response. Overall, this work describes the design of an efficient, strategically synergistic antibacterial nanocatalysts that can achieve safe bacterial scavenging and alleviate oxidative stress.
Collapse
Affiliation(s)
- Yingxin Zhou
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Nursing, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Wanqing Zou
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Nursing, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Yulu Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Nursing, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Haolan Fang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Nursing, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Fayin Mo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Nursing, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Duanping Sun
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Nursing, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China.
| | - Xuanxuan Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Nursing, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China.
| | - Tianhui You
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Nursing, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
19
|
Chen J, He Z, Zheng S, Gao W, Wang Y. Ultrasonic-Assisted Electrodeposition of Cu-TiO 2 Nanocomposite Coatings with Long-Term Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39562028 DOI: 10.1021/acsami.4c14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Bacterial adhesion, colonization, and spread on aluminum alloy surfaces pose significant risks to human health and public safety. To address these issues, this investigation employed an ultrasonic-assisted electrodeposition method to synthesize long-lasting antibacterial Cu-TiO2 nanocomposite coatings on porous anodized aluminum oxide (AAO) substrates. Leveraging the cavitation effect of ultrasound, this approach fostered the dispersive incorporation of TiO2 nanoparticles into the resulting composite coating, thereby expediting the crystallization process of electrodeposition and refining the granular structure. With an optimal concentration of 4 g/L of TiO2 nanoparticles, the resultant C-4T composite coating displayed a dense and homogeneous microstructure, with TiO2 nanoparticles predominantly localized at the grain boundaries of Cu grains. Rigorous testing revealed that the surface of the C-4T sample maintained an enduring antibacterial efficacy of 96.8%, even after the outer Cu-TiO2 layer was worn away. This high level of durability stems from the continuous release of Cu ions and reactive oxygen species (ROS) from the coating's composite region (CR) composed of a porous AAO film and Cu-TiO2. The porous AAO film, serving as "nanocontainers," offers an ideal deposition carrier for the uniform Cu-TiO2 composite coating. These agents actively disrupt the integrity and chemical composition of Escherichia coli (E. coli) cells, leading to significant bacterial cell damage and death, thereby conferring superior and persistent antibacterial effects even after specific polishing. This study advances the field of durable antibacterial surface treatments and opens avenues for the sanitary use of nanocomposite coatings in the public health and medical sectors.
Collapse
Affiliation(s)
- Jiahuan Chen
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, Jiangsu, China
- School of Pharmaceutical & Chemical Technology, Zhenjiang College, Zhenjiang 212028, Jiangsu, China
| | - Zhen He
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, Jiangsu, China
| | - Songlin Zheng
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, Jiangsu, China
| | - Wei Gao
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Yuxin Wang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, Jiangsu, China
| |
Collapse
|
20
|
Meng M, Ma X, Yu L, Zhang X, Chen Y, Li W, Wen Q, Xu D, Chen Q, Xiong Y, Ren J. Phage-induced "one-to-many" FRET sensor for highly sensitive detection of Escherichia coli O157:H7. Biosens Bioelectron 2024; 264:116661. [PMID: 39142229 DOI: 10.1016/j.bios.2024.116661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
As a foodborne pathogen capable of causing severe illnesses, early detection of Escherichia coli O157:H7 (E. coli O157:H7) is crucial for ensuring food safety. While Förster resonance energy transfer (FRET) is an efficient and precise detection technique, there remains a need for amplification strategies to detect low concentrations of E. coli O157:H7. In this study, we presented a phage (M13)-induced "one to many" FRET platform for sensitively detecting E. coli O157:H7. The aptamers, which specifically recognize E. coli O157:H7 were attached to magnetic beads as capture probes for separating E. coli O157:H7 from food samples. The peptide O157S, which specifically targets E. coli O157:H7, and streptavidin binding peptide (SBP), which binds to streptavidin (SA), were displayed on the P3 and P8 proteins of M13, respectively, to construct the O157S-M13K07-SBP phage as a detection probe for signal output. Due to the precise distance (≈3.2 nm) between two neighboring N-terminus of P8 protein, the SA-labeled FRET donor and acceptor can be fixed at the Förster distance on the surface of O157S-M13K07-SBP via the binding of SA and SBP, inducing FRET. Moreover, the P8 protein, with ≈2700 copies, enabled multiple FRET (≈605) occurrences, amplifying FRET in each E. coli O157:H7 recognition event. The O157S-M13K07-SBP-based FRET sensor can detect E. coli O157:H7 at concentration as low as 6 CFU/mL and demonstrates excellent performance in terms of selectivity, detection time (≈3 h), accuracy, precision, practical application, and storage stability. In summary, we have developed a powerful tool for detecting various targets in food safety, environmental monitoring, and medical diagnosis.
Collapse
Affiliation(s)
- Meng Meng
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Xiaoyong Ma
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Liping Yu
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Xinfang Zhang
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Yanni Chen
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Wang Li
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Qian Wen
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Dong Xu
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Qi Chen
- Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Ying Xiong
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| |
Collapse
|
21
|
Wu W, Wang Y, Yang H, Chen H, Wang C, Liang J, Song Y, Xu S, Sun Y, Wang L. Antibacterial and Biofilm Removal Strategies Based on Micro/Nanomotors in the Biomedical Field. ChemMedChem 2024; 19:e202400349. [PMID: 38965060 DOI: 10.1002/cmdc.202400349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Bacterial infection, which can trigger varieties of diseases and tens of thousands of deaths each year, poses serious threats to human health. Particularly, the new dilemma caused by biofilms is gradually becoming a severe and tough problem in the biomedical field. Thus, the strategies to address these problems are considered an urgent task at present. Micro/nanomotors (MNMs), also named micro/nanoscale robots, are mostly driven by chemical energy or external field, exhibiting strong diffusion and self-propulsion in the liquid media, which has the potential for antibacterial applications. In particular, when MNMs are assembled in swarms, they become robust and efficient for biofilm removal. However, there is a lack of comprehensive review discussing the progress in this aspect. Bearing it in mind and based on our own research experience in this regard, the studies on MNMs driven by different mechanisms orchestrated for antibacterial activity and biofilm removal are timely and concisely summarized and discussed in this work, aiming to show the advantages of MNMs brought to this field. In addition, an outlook was proposed, hoping to provide the fundamental guidance for future development in this area.
Collapse
Affiliation(s)
- Wenlu Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuxin Wang
- Emergency Department, Harbin First Hospital, Harbin, 150010, China
| | - Haiyue Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Haixu Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Cong Wang
- Department of Microwave Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Junge Liang
- Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yiran Song
- Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, China
| | - Shanshan Xu
- Emergency Department, Harbin First Hospital, Harbin, 150010, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, 150076, China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
22
|
Li Q, Yang Y, Tan M, Xia H, Peng Y, Fu X, Huang Y, Ma X. Rapid Detection of Single Bacteria Using Filter-Array-Based Hyperspectral Imaging Technology. Anal Chem 2024; 96:17244-17252. [PMID: 39420628 DOI: 10.1021/acs.analchem.4c03265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Rapid and accurate detection of bacterial pathogens is crucial for preventing widespread public health crises, particularly in the food industry. Traditional methods are often slow and require extensive labeling, which hampers timely responses to potential threats. In response, we introduce a groundbreaking approach using filter-array-based hyperspectral imaging technology, enhanced by a super-resolution demosaicking technique. This innovative technology streamlines the detection process and significantly enhances the resolution of mosaic hyperspectral imaging. By utilizing a snapshot hyperspectral camera with a 15 ms integration time, it facilitates the identification of bacteria at the single-cell level without requiring chemical labels. The integration of a 3D convolutional neural network optimizes the recognition of pathogenic bacteria, achieving an impressive accuracy of 91.7%. Our approach dramatically improves the efficiency and effectiveness of bacterial detection, providing a promising solution for critical applications in public health and the food industry.
Collapse
Affiliation(s)
- Qifeng Li
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Yunpeng Yang
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Mei Tan
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Hua Xia
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yingxiao Peng
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaoran Fu
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yinguo Huang
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiangyun Ma
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
23
|
Cui W, Liu Y, Yue Y, Wang J, Meng X, Yang Z, Gong C, Yang JL. Novel antibacterial pullulan derivatives modified with quaternary phosphonium salts for infected wound treatments. Int J Biol Macromol 2024; 282:136893. [PMID: 39490496 DOI: 10.1016/j.ijbiomac.2024.136893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The development of novel antibacterial agents is urgently needed to tackle bacterial infection, the major global issue menacing human health. Among them, polymeric quaternary phosphonium salts are worth noticing owing to their strong antibacterial activities and other merits including low bacterial drug resistance. Herein, pullulan modified with quaternary phosphonium salts (PQP) was synthesized using esterification reactions of pullulan and (5-carboxypentyl)triphenylphosphonium bromide (CPTPPB) mediated by N,N'‑carbonyldiimidazole (CDI), and was evaluated as novel antibacterial agents for treating wound infection for the first time. The chemical structures, chemical bonding, elemental compositions, crystalline properties and thermostability of PQP were systematically investigated. PQP exhibited in vitro antibacterial activities against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), which were unveiled by the spread plate method and possibly resulted from the damage of bacterial cell walls/membranes mediated by electrostatic and hydrophobic interactions according to preliminary mechanism studies. Weak cytotoxicity and excellent hemocompatibility of PQP at the effective bactericidal concentration were observed. Moreover, in the infected wound model of mice, PQP was capable of disinfecting the wound and accelerating the healing. We opine PQP in this work is promising for antibacterial applications and will inspire the synthesis of novel antibacterial agents derived from natural polymers.
Collapse
Affiliation(s)
- Wenzhuang Cui
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China; School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yujie Liu
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China
| | - Ying Yue
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Jun Wang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China
| | - Xianhua Meng
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264000, China
| | - Zhizhou Yang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chu Gong
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China.
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences (CAS), Lanzhou 730000, China.
| |
Collapse
|
24
|
Yu J, Gao Y, Liu F, Zhang Y, Li J, Ding L, Ren S, Yang J, Jiao J, Feng G, Chen Z, Sun W, Wu J. m6A-modified exosome-derived circHIF1α binding to KH domain of IGF2BP3 mediates DNA damage and arrests G1/S transition phase to resists bacterial infection in bacteremia. J Nanobiotechnology 2024; 22:654. [PMID: 39443946 PMCID: PMC11515445 DOI: 10.1186/s12951-024-02932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Animal and human health are seriously threatened by bacterial infections, which can lead to bacteremia and extremely high rates of morbidity and mortality. Recently, there have been reports indicating the involvement of exosomal circular RNAs (circRNAs) in a range of human disorders and tumor types. However, the role of exosomal circRNAs in bacterial infection remains elusive. METHODS We extracted and identified exosomes from the culture medium of PIEC cells infected with or without Glaesserella parasuis. RNA sequencing analysis was performed on the exosomes to screen and identify circRNAs (circHIF1α) associated with Glaesserella parasuis infection. PIEC cells were infected with Staphylococcus aureus or Streptococcus suis 2 to further determine whether exosome-derived circHIF1α was the crucial circHIF1α associated with bacterial infections. The transmission process of exosomes and their circHIF1α between cells was clarified via exosome tracing and co-culture assay. Moreover, the mechanism of circHIF1α being packaged into exosomes was explored, and the effects of exosomes and their circHIF1α on cell proliferation, DNA damage and cell cycle were analyzed. In addition, the binding mode and site of interacting proteins with circHIF1α were further determined. In vivo and in vitro, the role of exosomes and their circHIF1α in host resistance to bacterial infection was confirmed. RESULTS We first discovered a new circHIF1α that was very stable and detectable, encapsulated into exosomes by hnRNPA2B1, and whose expression in exosomes of bacterially infected PIEC cells significantly decreased. Additionally, exosomal circHIF1α reduced bacterial infection both in vitro and in vivo and suppressed the growth of reception cells. Mechanistically, the circHIF1α interacted with the KH domain of IGF2BP3 in an m6A-modified manner, which mediated DNA damage to arrest the cells at the G1/S phase through the interaction between the regulator of Chromosome Condensation 2 (RCC2) and γ-H2AX protein. Exosomal circHIF1α is a unique therapeutic target for bacterial infection since this work highlights its critical function in fighting bacterial infection.
Collapse
Affiliation(s)
- Jiang Yu
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China.
- School of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Yidan Gao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- School of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Fei Liu
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Yuyu Zhang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- School of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jianda Li
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Luogang Ding
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Sufang Ren
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Jie Yang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Jian Jiao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Gong Feng
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Zhi Chen
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Wenbo Sun
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Jiaqiang Wu
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China.
- School of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
25
|
Li Y, Wang Y, Wu Q, Qi R, Li L, Xu L, Yuan H. High-throughput fluorescence sensing array based on tetraphenylethylene derivatives for detecting and distinguishing pathogenic microbes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124435. [PMID: 38796890 DOI: 10.1016/j.saa.2024.124435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Infections induced by pathogenic microorganisms will bring negative effects such as diseases that damage health and result in heavy economic burden. Therefore, it is very important to detect and identify the pathogens in time. Moreover, traditional clinical diagnosis or food testing often faces the problem of dealing with a large number of samples. Here, we designed a high-throughput fluorescent sensor array based on the different binding ability of five tetraphenylethylene derivatives (TPEs) with various side chains to different kinds of pathogenic microbes, which is used to detect and distinguish various species, so as to realize rapid mass diagnosis, and hopefully provide guidance for further determination of microbial infections and clinical treatment.
Collapse
Affiliation(s)
- Yutong Li
- Department of Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Yi Wang
- Department of Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Qiaoyue Wu
- Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ruilian Qi
- Department of Chemistry, Beijing Technology and Business University, Beijing 100048, China.
| | - Li Li
- Department of Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Li Xu
- Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Huanxiang Yuan
- Department of Chemistry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
26
|
Su W, Chen J, Zhang Y, Luo X, Lin C, Li P. Chitosan/agarose hydrogel dressing: pH response real-time monitoring and chemo-/photodynamic therapy synergistic treatment of infected wounds. Int J Biol Macromol 2024; 277:134513. [PMID: 39111468 DOI: 10.1016/j.ijbiomac.2024.134513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/28/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
The early diagnosis and real-time monitoring of bacterial infections are of great significance for the establishment of integrated diagnosis and treatment systems. In this study, a pH-responsive smart hydrogel patch system, named CABP, was developed to monitor and treat wound infections. CABP has a sandwich structure, with non-woven fabric/chitosan (NF/CS) as the intermediate skeleton layer, Agarose/chitosan/Bromothymol Blue (AG/CS/BTB) hydrogel as the detection layer, and Agarose/chitosan/phthalocyanine (AG/CS/Pc) hydrogel as the treatment layer. When Staphylococcus aureus (S. aureus) infection occurs, the pH of the environment decreases, which triggers the CABP to change from its original blue color to yellow, achieving an intuitive visual transformation. Moreover, the hydrogel patch showed a significant inhibition rate of up to 99.99971 % against S. aureus under 660 nm light radiation, showing a good photodynamic therapy (PDT)/ chemotherapy (CT) synergistic effect. In addition, CABP showed excellent antibacterial and wound healing effects on S. aureus infection in a full-layer skin defect experiment. In short, the patch system is simple to prepare and easy to use, and can provide important research value for the integrated diagnosis and treatment system in biomedical applications.
Collapse
Affiliation(s)
- Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China.
| | - Jiayin Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China
| | - Ying Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaoyan Luo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China
| | - Chenxiang Lin
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China
| | - Peiyuan Li
- Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
27
|
Kanungo R, Hippargi SB. CD64 Expression on Neutrophils (nCD64) as a Biomarker in Adult Patients With Sepsis: A Cross-Sectional Study. Cureus 2024; 16:e71912. [PMID: 39429998 PMCID: PMC11490971 DOI: 10.7759/cureus.71912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/20/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Neutrophils that are at rest exhibit very low expression of CD64, the high-affinity immunoglobulin fragment crystallizable γ receptor I, which is also found in monocytes. Neutrophils that have been exposed to endotoxins or are infected express more CD64. Objectives The aim of this study was to assess the CD64 biomarker expression on neutrophils using the flow cytometry method and its comparison with total leukocyte count, C-reactive protein (CRP) level, and blood culture sensitivity test in the diagnosis of sepsis in adults. Materials and methods Using the quick Sequential Organ Failure Assessment (qSOFA) scoring criteria, 94 blood samples from individuals with clinical indications of sepsis were included in this investigation. Samples were collected in K2 EDTA (ethylenediaminetetraacetic acid) vacutainers and analyzed for neutrophil CD64 (nCD64) levels using BD FACSLyricTM flow cytometer (BD, Franklin Lakes, NJ) within 24 hours of collection. Total leukocyte count, CRP levels, and blood culture sensitivity tests were also assessed simultaneously. Results Majority of the patients, i.e., 29 (30.9%), belonged to the age group of 19 to 35 years, with a female preponderance. The mean total leukocyte count was 19.49 ± 8.12 x 103/µL, mean CRP level was 81.19 ± 56.33 mg/dL, and the mean nCD64 expression - median fluorescence intensity was 197.26 ± 79.56. A positive blood culture was found in 59 (62.8%) cases. Neutrophils showed bright expression of nCD64 in 39 (41.5%) patients, dim expression in 35 (37.2%) patients, and moderate expression in 20 (21.3%) patients in the present study. The correlation between nCD64 expression with CRP, total leukocyte count, and blood culture sensitivity test was statistically significant (p=0.001). nCD64 expression showed a sensitivity of 93.2% and specificity of 91.4% for diagnosing sepsis, with an area under the curve (AUC) of 0.973. This proves nCD64 to be a highly effective biomarker compared to conventional methods. Conclusion nCD64 has a higher sensitivity and specificity as compared to total leukocyte count, CRP levels, and blood culture sensitivity test in the diagnosis of sepsis. It is an effective and rapid test that can enhance sepsis diagnostic accuracy, when combined with other biomarkers. Multicentric research needs to be conducted to validate these findings.
Collapse
Affiliation(s)
- Rahul Kanungo
- Pathology, Shri B.M. Patil Medical College, Hospital and Research Centre, Bijapur Lingayat District Educational Association (BLDE) (Deemed to be University), Vijayapura, IND
| | - Surekha B Hippargi
- Pathology, Shri B.M. Patil Medical College, Hospital and Research Centre, Bijapur Lingayat District Educational Association (BLDE) (Deemed to be University), Vijayapura, IND
| |
Collapse
|
28
|
Screpis GA, Aleo A, Privitera N, Capuano GE, Farina R, Corso D, Libertino S, Coniglio MA. Biosensing Technologies for Detecting Legionella in Environmental Samples: A Systematic Review. Microorganisms 2024; 12:1855. [PMID: 39338529 PMCID: PMC11434302 DOI: 10.3390/microorganisms12091855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The detection of Legionella in environmental samples, such as water, is crucial for public health monitoring and outbreak prevention. Although effective, traditional detection methods, including culture-based techniques and polymerase chain reaction, have limitations such as long processing times, trained operators, and the need for specialized laboratory equipment. Biosensing technologies offer a promising alternative due to their rapid, sensitive, cost-effectiveness, and on-site detection capabilities. To summarize the current advancements in biosensor development for detecting Legionella in environmental samples, we used 'Legionella' AND 'biosensors' NEAR 'environmental samples' OR 'water' as keywords searching through the most relevant biomedical databases for research articles. After removing duplicates and inadequate articles from the n.1268 records identified using the PRISMA methodology exclusion criteria, we selected n.65 full-text articles which suited the inclusion criteria. Different results between the studies describing the current biosensing techniques, including optical, electrochemical, magnetic, and mass-sensitive sensors were observed. For each biosensing technique, sensitivity, specificity, and detection limits were evaluated. Furthermore, the integration of nanomaterials, microfluidics, and portable devices in biosensor systems' design were discussed, highlighting their role in enhancing detection performance. The potential challenges and future directions in the field of Legionella biosensing were also addressed, providing insights into the feasibility of implementing these technologies in routine environmental monitoring. Undoubtedly, biosensors can play a crucial role in the early detection and management of Legionella infections and outbreaks, ultimately protecting public health and safety.
Collapse
Affiliation(s)
- Giuseppe Andrea Screpis
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.A.S.); (A.A.); (N.P.); (M.A.C.)
| | - Andrea Aleo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.A.S.); (A.A.); (N.P.); (M.A.C.)
| | - Natalia Privitera
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.A.S.); (A.A.); (N.P.); (M.A.C.)
| | - Giuseppe Emanuele Capuano
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
| | - Roberta Farina
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Domenico Corso
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
| | - Sebania Libertino
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
| | - Maria Anna Coniglio
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.A.S.); (A.A.); (N.P.); (M.A.C.)
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, Via S. Sofia 78, 95123 Catania, Italy
| |
Collapse
|
29
|
Gao M, Wang Y, Zhuang H, Zhu Y, Chen N, Teng T. Insights into the Preparation of and Evaluation of the Bactericidal Effects of Phage-Based Hydrogels. Int J Mol Sci 2024; 25:9472. [PMID: 39273419 PMCID: PMC11394800 DOI: 10.3390/ijms25179472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The rise of antibiotic-resistant strains demands new alternatives in antibacterial treatment. Bacteriophages, with their precise host specificity and ability to target and eliminate bacteria safely, present a valuable option. Meanwhile, hydrogels, known for their excellent biodegradability and biocompatibility, serve as ideal carriers for bacteriophages. The combination of bacteriophages and hydrogels ensures heightened phage activity, concentration, controlled release, and strong antibacterial properties, making it a promising avenue for antibacterial treatment. This article provides a comprehensive review of different crosslinking methods for phage hydrogels, focusing on their application in treating infections caused by various drug-resistant bacteria and highlighting their effective antibacterial properties and controlled release capabilities.
Collapse
Affiliation(s)
- Mengyuan Gao
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yuhan Wang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Hanyue Zhuang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yanxia Zhu
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Na Chen
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Tieshan Teng
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
30
|
Ding S, Chen X, Yu B, Liu Z. Electrochemical biosensors for clinical detection of bacterial pathogens: advances, applications, and challenges. Chem Commun (Camb) 2024; 60:9513-9525. [PMID: 39120607 DOI: 10.1039/d4cc02272f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Bacterial pathogens are responsible for a variety of human diseases, necessitating their prompt detection for effective diagnosis and treatment of infectious diseases. Over recent years, electrochemical methods have gained significant attention owing to their exceptional sensitivity and rapidity. This review outlines the current landscape of electrochemical biosensors employed in clinical diagnostics for the detection of bacterial pathogens. We categorize these biosensors into four types: amperometry, potentiometry, electrochemical impedance spectroscopy, and conductometry, targeting various bacterial components, including toxins, virulence factors, metabolic activity, and events related to bacterial adhesion and invasion. We discuss the merits and challenges associated with electrochemical methods, underscoring their rapid response, high sensitivity, and specificity, while acknowledging the necessity for skilled operators and potential interference from biological and environmental factors. Furthermore, we examine future prospects and potential applications of electrochemical biosensors in clinical diagnostics. While electrochemical biosensors offer a promising avenue for detecting bacterial pathogens, further research in optimizing the robustness and surmounting the challenges hindering their seamless integration into clinical practice is imperative.
Collapse
Affiliation(s)
- Shengyong Ding
- Research Center of Biomedical Sensing Engineering Technology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People's Republic of China
| | - Xiaodi Chen
- Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bin Yu
- Research Center of Biomedical Sensing Engineering Technology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhiyuan Liu
- Research Center of Biomedical Sensing Engineering Technology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Neural Engineering Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| |
Collapse
|
31
|
Chen M, Xia L, Wu C, Wang Z, Ding L, Xie Y, Feng W, Chen Y. Microbe-material hybrids for therapeutic applications. Chem Soc Rev 2024; 53:8306-8378. [PMID: 39005165 DOI: 10.1039/d3cs00655g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
As natural living substances, microorganisms have emerged as useful resources in medicine for creating microbe-material hybrids ranging from nano to macro dimensions. The engineering of microbe-involved nanomedicine capitalizes on the distinctive physiological attributes of microbes, particularly their intrinsic "living" properties such as hypoxia tendency and oxygen production capabilities. Exploiting these remarkable characteristics in combination with other functional materials or molecules enables synergistic enhancements that hold tremendous promise for improved drug delivery, site-specific therapy, and enhanced monitoring of treatment outcomes, presenting substantial opportunities for amplifying the efficacy of disease treatments. This comprehensive review outlines the microorganisms and microbial derivatives used in biomedicine and their specific advantages for therapeutic application. In addition, we delineate the fundamental strategies and mechanisms employed for constructing microbe-material hybrids. The diverse biomedical applications of the constructed microbe-material hybrids, encompassing bioimaging, anti-tumor, anti-bacteria, anti-inflammation and other diseases therapy are exhaustively illustrated. We also discuss the current challenges and prospects associated with the clinical translation of microbe-material hybrid platforms. Therefore, the unique versatility and potential exhibited by microbe-material hybrids position them as promising candidates for the development of next-generation nanomedicine and biomaterials with unique theranostic properties and functionalities.
Collapse
Affiliation(s)
- Meng Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China.
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Li Ding
- Department of Medical Ultrasound, National Clinical Research Center of Interventional Medicine, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
- Shanghai Institute of Materdicine, Shanghai 200051, P. R. China
| |
Collapse
|
32
|
Zhang X, Zhang D, Zhang X, Zhang X. Artificial intelligence applications in the diagnosis and treatment of bacterial infections. Front Microbiol 2024; 15:1449844. [PMID: 39165576 PMCID: PMC11334354 DOI: 10.3389/fmicb.2024.1449844] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/04/2024] [Indexed: 08/22/2024] Open
Abstract
The diagnosis and treatment of bacterial infections in the medical and public health field in the 21st century remain significantly challenging. Artificial Intelligence (AI) has emerged as a powerful new tool in diagnosing and treating bacterial infections. AI is rapidly revolutionizing epidemiological studies of infectious diseases, providing effective early warning, prevention, and control of outbreaks. Machine learning models provide a highly flexible way to simulate and predict the complex mechanisms of pathogen-host interactions, which is crucial for a comprehensive understanding of the nature of diseases. Machine learning-based pathogen identification technology and antimicrobial drug susceptibility testing break through the limitations of traditional methods, significantly shorten the time from sample collection to the determination of result, and greatly improve the speed and accuracy of laboratory testing. In addition, AI technology application in treating bacterial infections, particularly in the research and development of drugs and vaccines, and the application of innovative therapies such as bacteriophage, provides new strategies for improving therapy and curbing bacterial resistance. Although AI has a broad application prospect in diagnosing and treating bacterial infections, significant challenges remain in data quality and quantity, model interpretability, clinical integration, and patient privacy protection. To overcome these challenges and, realize widespread application in clinical practice, interdisciplinary cooperation, technology innovation, and policy support are essential components of the joint efforts required. In summary, with continuous advancements and in-depth application of AI technology, AI will enable doctors to more effectivelyaddress the challenge of bacterial infection, promoting the development of medical practice toward precision, efficiency, and personalization; optimizing the best nursing and treatment plans for patients; and providing strong support for public health safety.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- First Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Deng Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xifan Zhang
- First Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xin Zhang
- First Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
33
|
Tong Y, Chen M, Huang X, Xu Y, Zhang L, Yu Z, Liu SY, Dai Z. Aptasensor based on gold nanostructure-decorated 2D Cu metal-organic framework nanosheets for highly sensitive and specific electrochemical lipopolysaccharide detection. Mikrochim Acta 2024; 191:500. [PMID: 39088046 DOI: 10.1007/s00604-024-06587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Detecting lipopolysaccharide (LPS) using electrochemical methods is significant because of their exceptional sensitivity, simplicity, and user-friendliness. Two-dimensional metal-organic framework (2D-MOF) that merges the benefits of MOF and 2D nanostructure has exhibited remarkable performance in constructing electrochemical sensors, notably surpassing traditional 3D-MOFs. In this study, Cu[tetrakis(4-carboxylphenyl)porphyrin] (Cu-TCPP) and Cu(tetrahydroxyquinone) (Cu-THQ) 2D nanosheets were synthesized and applied on a glassy carbon electrode (GCE). The 2D-MOF nanosheets, which serve as supporting layers, exhibit improved electron transfer and electronic conductivity characteristics. Subsequently, the modified electrode was subjected to electrodeposition with Au nanostructures, resulting in the formation of Au/Cu-TCPP/GCE and Au/Cu-THQ/GCE. Notably, the Au/Cu-THQ/GCE demonstrated superior electrochemical activity because of the 2D morphology, redox ligand, dense Cu sites, and improved deposition of flower-like Au nanostructure based on Cu-THQ. The electron transfer specific surface area was increased by the improved deposition of Au nanostructures, which facilitates enriched binding of LPS aptamer and significantly improved the detection performance of Apt/Au/Cu-THQ/GCE electrochemical aptasensor. The limit of detection for LPS reached 0.15 fg/mL with a linear range of 1 fg/mL - 100 pg/mL. The proposed aptasensor demonstrated the ability to detect LPS in serum samples with satisfactory accuracy, indicating significant potential for clinical diagnosis.
Collapse
Affiliation(s)
- Yanli Tong
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Meng Chen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xing Huang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yuzhi Xu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Lang Zhang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhenning Yu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
34
|
Williams A, Aguilar MR, Pattiya Arachchillage KGG, Chandra S, Rangan S, Ghosal Gupta S, Artes Vivancos JM. Biosensors for Public Health and Environmental Monitoring: The Case for Sustainable Biosensing. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:10296-10312. [PMID: 39027730 PMCID: PMC11253101 DOI: 10.1021/acssuschemeng.3c06112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024]
Abstract
Climate change is a profound crisis that affects every aspect of life, including public health. Changes in environmental conditions can promote the spread of pathogens and the development of new mutants and strains. Early detection is essential in managing and controlling this spread and improving overall health outcomes. This perspective article introduces basic biosensing concepts and various biosensors, including electrochemical, optical, mass-based, nano biosensors, and single-molecule biosensors, as important sustainability and public health preventive tools. The discussion also includes how the sustainability of a biosensor is crucial to minimizing environmental impacts and ensuring the long-term availability of vital technologies and resources for healthcare, environmental monitoring, and beyond. One promising avenue for pathogen screening could be the electrical detection of biomolecules at the single-molecule level, and some recent developments based on single-molecule bioelectronics using the Scanning Tunneling Microscopy-assisted break junctions (STM-BJ) technique are shown here. Using this technique, biomolecules can be detected with high sensitivity, eliminating the need for amplification and cell culture steps, thereby enhancing speed and efficiency. Furthermore, the STM-BJ technique demonstrates exceptional specificity, accurately detects single-base mismatches, and exhibits a detection limit essentially at the level of individual biomolecules. Finally, a case is made here for sustainable biosensors, how they can help, the paradigm shift needed to achieve them, and some potential applications.
Collapse
Affiliation(s)
- Ajoke Williams
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Mauricio R. Aguilar
- Departament
de Química Inorgànica i Orgànica, Diagonal 645, 08028 Barcelona, Spain
- Institut
de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | | | - Subrata Chandra
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Srijith Rangan
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Sonakshi Ghosal Gupta
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Juan M. Artes Vivancos
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
35
|
Zhang W, Li W, Song Y, Xu Q, Xu H. Bacterial detection based on Förster resonance energy transfer. Biosens Bioelectron 2024; 255:116244. [PMID: 38547644 DOI: 10.1016/j.bios.2024.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
The huge economic loss and threat to human health caused by bacterial infection have attracted the public's concern, and there is an urgent need to relieve and improve the tough problem. Therefore, it is significant to establish a facile, rapid, and sensitive method for bacterial detection considering the shortcomings of existing methods. Förster resonance energy transfer (FRET)-based sensors have exhibited immense potential and applicability for bacterial detection given their high signal-to-noise ratio and high sensitivity. This review focuses on the development of FRET-based fluorescence assays for bacterial detection. We summarize the principle of FRET-based assays, discuss the commonly used recognition molecules and further introduce three frequent construction strategies. Based on the strategies and materials, relevant applications are presented. Moreover, some restrictions of FRET fluorescence sensors and development prospects are discussed. Suitable donor-acceptor pairs and stable recognition molecules are the essential conditions for sensors to play their roles, and there is still some room for development. Besides, applying FRET fluorescence sensors to point-of-care detection is still difficult. Future developments could focus on near-infrared fluorescent dyes and simultaneous detection of multiple analytes.
Collapse
Affiliation(s)
- Wanqing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Weiqiang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Yang Song
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Qian Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
36
|
Zhou T, Hao J, Tang Q, Chandarajoti K, Ye W, Fan C, Wang X, Wang C, Zhang K, Han X, Zhou W, Ge Y. Antimicrobial activity and structure-activity relationships of molecules containing mono- or di- or oligosaccharides: An update. Bioorg Chem 2024; 148:107406. [PMID: 38728907 DOI: 10.1016/j.bioorg.2024.107406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
Bacterial infections are the second leading cause of death worldwide, and the evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens exacerbate the threat crisis. Carbohydrates participate in bacterial infection, drug resistance and the process of host immune regulation. Numerous antimicrobials derived from carbohydrates or contained carbohydrate scaffolds that are conducive to an increase in pathogenic bacteria targeting, the physicochemical properties and druggability profiles. In the paper, according to the type and number of sugar residues contained in antimicrobial molecules collected from the literatures ranging from 2014 to 2024, the antimicrobial activities, action mechanisms and structure-activity relationships were delineated and summarized, for purpose to provide the guiding template to select the type and size of sugars in the design of oligosaccharide-based antimicrobials to fight the looming antibiotic resistance crisis.
Collapse
Affiliation(s)
- Tiantian Zhou
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, E. 280, University town, Waihuan Rd, Panyu, Guangzhou 510006, Guangdong, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Jiongkai Hao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Qun Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Kasemsiri Chandarajoti
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat‑Yai, Songkhla, 90112, Thailand
| | - Wenchong Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chuangchuang Fan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yuewei Ge
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, E. 280, University town, Waihuan Rd, Panyu, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
37
|
Jiang H, Huang X, Li H, Ren F, Li D, Liu Y, Tong Y, Ran P. Bacterial lipase-responsive polydopamine nanoparticles for detection and synergistic therapy of wound biofilms infection. Int J Biol Macromol 2024; 270:132350. [PMID: 38750839 DOI: 10.1016/j.ijbiomac.2024.132350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Wound biofilms represent an elusive conundrum in contemporary treatment and diagnostic options, accredited to their escalating antibiotic resistance and interference in chronic wound healing processes. Here, we developed mesoporous polydopamine (mPDA) nanoparticles, and grafted with rhodamine B (Rb) as biofilm lipase responsive detection probe, followed by π - π stacking mediated ciprofloxacin (CIP) loading to create mP-Rb@CIP nanoparticles. mPDA NPs with a melanin structure could quench fluorescence emissions of Rb. Once encountering biofilm in vivo, the ester bond in Rb and mPDA is hydrolyzed by elevated lipase concentrations, triggering the liberation of Rb and restore fluorescence emissions to achieve real-time imaging of biofilm-infected wounds. Afterwards, the 808 nm near-infrared (NIR) illumination initiates a spatiotemporal controlled antibacterial photothermal therapy (PTT), boosting its effectiveness through photothermal-triggered CIP release for synergistic biofilm eradication. The mP-Rb@CIP platform exhibits dual diagnostic and therapeutic functions, efficaciously treating biofilm-infected wounds in vivo and in vitro. Particularly, the mP-Rb@CIP/NIR procedure expedites wound-healing by alleviating oxidative stress, modulating inflammatory mediators, boosting collagen synthesis, and promoting angiogenesis. Taken together, the theranostic nanosystem strategy holds significant potential for addressing wound biofilm-associated infections.
Collapse
Affiliation(s)
- Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Xiting Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Huanhuan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Feifei Ren
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Dongqiu Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yuan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Yan Tong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Pan Ran
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu Medical College, Chengdu 610051, China.
| |
Collapse
|
38
|
Karagüzel A, Buran Uğur S, Çetinkaya Y, Doğan ŞD, Stevanovic M, Nikodinovic-Runic J, Gündüz MG. Azole rings linked to COX inhibitors via hydrazone bridge: Synthesis, stereochemical analysis, and investigation of antimicrobial activity. J Mol Struct 2024; 1306:137787. [DOI: 10.1016/j.molstruc.2024.137787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
39
|
Jia Y, Zhang L, Xu J, Xiang L. Recent advances in cell membrane camouflaged nanotherapeutics for the treatment of bacterial infection. Biomed Mater 2024; 19:042006. [PMID: 38697197 DOI: 10.1088/1748-605x/ad46d4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
Infectious diseases caused by bacterial infections are common in clinical practice. Cell membrane coating nanotechnology represents a pioneering approach for the delivery of therapeutic agents without being cleared by the immune system in the meantime. And the mechanism of infection treatment should be divided into two parts: suppression of pathogenic bacteria and suppression of excessive immune response. The membrane-coated nanoparticles exert anti-bacterial function by neutralizing exotoxins and endotoxins, and some other bacterial proteins. Inflammation, the second procedure of bacterial infection, can also be suppressed through targeting the inflamed site, neutralization of toxins, and the suppression of pro-inflammatory cytokines. And platelet membrane can affect the complement process to suppress inflammation. Membrane-coated nanoparticles treat bacterial infections through the combined action of membranes and nanoparticles, and diagnose by imaging, forming a theranostic system. Several strategies have been discovered to enhance the anti-bacterial/anti-inflammatory capability, such as synthesizing the material through electroporation, pretreating with the corresponding pathogen, membrane hybridization, or incorporating with genetic modification, lipid insertion, and click chemistry. Here we aim to provide a comprehensive overview of the current knowledge regarding the application of membrane-coated nanoparticles in preventing bacterial infections as well as addressing existing uncertainties and misconceptions.
Collapse
Affiliation(s)
- Yinan Jia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Li Zhang
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Junhua Xu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
40
|
Correia AAV, de Almeida Campos LA, de Queiroz Macêdo HLR, de Lacerda Coriolano D, Agreles MAA, Xavier DE, de Siqueira Ferraz-Carvalho R, de Andrade Aguiar JL, Cavalcanti IMF. Antibacterial and Antibiofilm Potential of Bacterial Cellulose Hydrogel Containing Vancomycin against Multidrug-Resistant Staphylococcus aureus and Staphylococcus epidermidis. BIOLOGY 2024; 13:354. [PMID: 38785836 PMCID: PMC11118175 DOI: 10.3390/biology13050354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
The present study aimed to evaluate the in vitro antibacterial and antibiofilm activity of bacterial cellulose hydrogel produced by Zoogloea sp. (HYDROGEL) containing vancomycin (VAN) against bacterial strains that cause wound infections, such as multidrug-resistant (MDR) Staphylococcus aureus and Staphylococcus epidermidis. Initially, HYDROGEL was obtained from sugar cane molasses, and scanning electron microscopy (SEM) was performed to determine morphological characteristics. Then, VAN was incorporated into HYDROGEL (VAN-HYDROGEL). The antibacterial activity of VAN, HYDROGEL, and VAN-HYDROGEL was assessed using the broth microdilution method to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) against methicillin-sensitive S. aureus (MSSA) ATCC 25923, methicillin-resistant S. aureus (MRSA) ATCC 33591, S. epidermidis INCQS 00016 (ATCC 12228), five clinical isolates of MRSA, and nine clinical isolates of methicillin-resistant S. epidermidis, following the Clinical and Laboratory Standards Institute (CLSI) guidelines. Additionally, the antibacterial activity of VAN, HYDROGEL, and VAN-HYDROGEL was studied using the time-kill assay. Subsequently, the antibiofilm activity of VAN, HYDROGEL, and VAN-HYDROGEL was evaluated using crystal violet and Congo red methods, as well as SEM analysis. VAN and VAN-HYDROGEL showed bacteriostatic and bactericidal activity against MRSA and methicillin-resistant S. epidermidis strains. HYDROGEL did not show any antibacterial activity. Analysis of the time-kill assay indicated that HYDROGEL maintained the antibacterial efficacy of VAN, highlighting its efficiency as a promising carrier. Regarding antibiofilm activity, VAN and HYDROGEL inhibited biofilm formation but did not demonstrate biofilm eradication activity against methicillin-resistant S. aureus and S. epidermidis strains. However, it was observed that the biofilm eradication potential of VAN was enhanced after incorporation into HYDROGEL, a result also proven through images obtained by SEM. From the methods carried out in this study, it was possible to observe that HYDROGEL preserved the antibacterial activity of vancomycin, aside from exhibiting antibiofilm activity and enhancing the antibiofilm effect of VAN. In conclusion, this study demonstrated the potential of HYDROGEL as a candidate and/or vehicle for antibiotics against MDR bacteria that cause wound infections.
Collapse
Affiliation(s)
| | | | | | | | | | - Danilo Elias Xavier
- Department of Microbiology, Aggeu Magalhães Institute, FIOCRUZ-PE, Recife 50740-465, Brazil
| | | | | | - Isabella Macário Ferro Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, Brazil
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Brazil
| |
Collapse
|
41
|
Li L, Zhang J, Jiao Z, Zhou X, Ren L, Wang M. Seamless Integration of Rapid Separation and Ultrasensitive Detection for Complex Biological Samples Using Multistage Annular Functionalized Carbon Nanotube Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312518. [PMID: 38354403 DOI: 10.1002/adma.202312518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/13/2024] [Indexed: 02/16/2024]
Abstract
Efficient separation, enrichment, and detection of bacteria in diverse media are pivotal for identifying bacterial diseases and their transmission pathways. However, conventional bacterial detection methods that split the separation and detection steps are plagued by prolonged processing times. Herein, a multistage annular functionalized carbon nanotube array device designed for the seamless integration of complex biological sample separation and multimarker detection is introduced. This device resorts to the supersmooth fluidity of the liquid sample in the carbon nanotubes interstice through rotation assistance, achieving the ability to quickly separate impurities and capture biomarkers (1 mL sample cost time of 2.5 s). Fluid dynamics simulations show that the reduction of near-surface hydrodynamic resistance drives the capture of bacteria and related biomarkers on the functionalized surface of carbon nanotube in sufficient time. When further assembled as an even detection device, it exhibited fast detection (<30 min), robust linear correlation (101-107 colony-forming units [CFU] mL-1, R2 = 0.997), ultrasensitivity (limit of detection = 1.7 CFU mL-1), and multitarget detection (Staphylococcus aureus, extracellular vesicles, and enterotoxin proteins). Collectively, the material and system offer an expanded platform for real-time diagnostics, enabling integrated rapid separation and detection of various disease biomarkers.
Collapse
Affiliation(s)
- Lihuang Li
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Jialing Zhang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhengqi Jiao
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Xi Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Lei Ren
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- State Key Lab of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Miao Wang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
42
|
Liao Y, Liu Y, Feng Y, Zhen D, He F. Rapid Detection of Broad-Spectrum Pathogenic Bacteria Based on Highly Sensitive Proton Response of the Nucleic Acid Amplification SPQC Platform. Anal Chem 2024; 96:6756-6763. [PMID: 38625745 DOI: 10.1021/acs.analchem.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Pathogenic bacteria significantly contribute to elevated morbidity and mortality rates, highlighting the urgent need for early and precise detection. Currently, there is a paucity of effective broad-spectrum methods for detecting pathogenic bacteria. We have developed an innovative proton-responsive series piezoelectric quartz crystal (PR-SPQC) platform for the broad-spectrum identification of pathogenic bacteria. This was achieved by retrieving and aligning sequences from the NCBI GenBank database to identify and validate 16S rRNA oligonucleotide sequences that are signatures of pathogenic bacteria but absent in humans or fungi. The hyperbranched rolling circle amplification, activated exclusively by the screened target, exponentially generates protons that are detected by SPQC through a 2D polyaniline (PANI) film. The PR-SPQC platform demonstrates broad-spectrum capabilities in detecting pathogenic bacteria, with a detection limit of 2 CFU/mL within 90 min. Clinical testing of blood samples yielded satisfactory results. With its advantages in miniaturization, cost efficiency, and suitability for point-of-care testing, PR-SPQC has the potential to be extensively used for the rapid identification of diverse pathogenic bacteria within clinical practice and public health sectors.
Collapse
Affiliation(s)
- Yusheng Liao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Yu Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Ye Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Deshuai Zhen
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, PR China
| | - Fengjiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
43
|
Fahim YA, El-Khawaga AM, Sallam RM, Elsayed MA, Assar MFA. Immobilized lipase enzyme on green synthesized magnetic nanoparticles using Psidium guava leaves for dye degradation and antimicrobial activities. Sci Rep 2024; 14:8820. [PMID: 38627424 PMCID: PMC11021406 DOI: 10.1038/s41598-024-58840-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Zinc ferrite nanoparticles (ZnF NPs) were synthesized by a green method using Psidium guava Leaves extract and characterized via structural and optical properties. The surface of ZnF NPs was stabilized with citric acid (CA) by a direct addition method to obtain (ZnF-CA NPs), and then lipase (LP) enzyme was immobilized on ZnF-CA NPs to obtain a modified ZnF-CA-LP nanocomposite (NCs). The prepared sample's photocatalytic activity against Methylene blue dye (MB) was determined. The antioxidant activity of ZnF-CA-LP NCs was measured using 1,1-diphenyl-2-picryl hydrazyl (DPPH) as a source of free radicals. In addition, the antibacterial and antibiofilm capabilities of these substances were investigated by testing them against gram-positive Staphylococcus aureus (S. aureus ATCC 25923) and gram-negative Escherichia coli (E. coli ATCC 25922) bacterial strains. The synthesized ZnF NPs were discovered to be situated at the core of the material, as determined by XRD, HRTEM, and SEM investigations, while the CA and lipase enzymes were coated in this core. The ZnF-CA-LP NCs crystallite size was around 35.0 nm at the (311) plane. Results obtained suggested that 0.01 g of ZnF-CA-LP NCs achieved 96.0% removal of 5.0 ppm of MB at pH 9.0. In-vitro zone of inhibition (ZOI) and minimum inhibitory concentration (MIC) results verified that ZnF-CA-LP NCs exhibited its encouraged antimicrobial activity against S. aureus and E. coli (20.0 ± 0.512, and 27.0 ± 0.651 mm ZOI, respectively) & (1.25, and 0.625 μg/ml MIC, respectively). ZnF-CA-LP NPs showed antibiofilm percentage against S. aureus (88.4%) and E. coli (96.6%). Hence, ZnF-CA-LP NCs are promising for potential applications in environmental and biomedical uses.
Collapse
Affiliation(s)
- Yosri A Fahim
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Galala City, 43511, Suez, Egypt.
| | - Ahmed M El-Khawaga
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Galala City, 43511, Suez, Egypt.
| | - Reem M Sallam
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Galala City, 43511, Suez, Egypt
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, 11566, Egypt
| | - Mohamed A Elsayed
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt
| | - Mohamed Farag Ali Assar
- Department of Chemistry, Biochemistry Division, Faculty of Science, Menoufia University, Shibin El Kom, Menoufia, Egypt
| |
Collapse
|
44
|
Liu Y, Su G, Wang W, Wei H, Dang L. A novel multifunctional SERS microfluidic sensor based on ZnO/Ag nanoflower arrays for label-free ultrasensitive detection of bacteria. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2085-2092. [PMID: 38511545 DOI: 10.1039/d4ay00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
This study proposes a microfluidic platform for rapid enrichment and ultrasensitive SERS detection of bacteria. The platform comprises ZnO nanoflower arrays decorated with silver nanoparticles to enhance the SERS sensitivity. The ZnO nanoflower array substrate with a 3D reticular columnar structure is prepared using the hydrothermal method. SEM analysis depicts the 3.05 μm gap distribution of the substrate array to intercept the most bacteria in the particle sizes range of 0.5 to 3 μm. Then, silver nanoparticles are deposited on the ZnO nano-array surface by liquid evaporation self-assembly. TEM and SEM analysis indicate nanosize of Ag particles, evenly distributed on the substrate, enhancing the SERS efficiency and improving sensing reproducibility. The probe molecules (R6G) are tested to demonstrate the high SERS activity of the proposed microfluidic sensor. Then, Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, and Bacillus subtilis are selected, demonstrating the sensor's excellent bacterial capture and sensitive recognition capabilities, with a detection limit as low as 102 CFU mL-1. Additionally, the antibacterial properties of ZnO/Ag heterojunction nanostructures are studied, suggesting their ability to inactivate bacteria. Compared with the traditional Au-enhanced chip, the sensor preparation is easy, safe, reliable, and low-cost. Moreover, the ZnO nano-array exhibits a large specific surface area, high interception ability, stronger and uniform SERS performance, and effective and reliable detection of trace pathogens. This work provides potential future ZnO/Ag microfluidic SERS sensor applications for rapid, unlabeled, and trace pathogens detection in clinical and environmental applications, potentially achieving breakthroughs in early detection, prevention, and treatment.
Collapse
Affiliation(s)
- Yue Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Guanwen Su
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Wei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hongyuan Wei
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Leping Dang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
45
|
Rao S, Sun Z, Liu Q, Cheng C, Jin C, Gao J, Li B, Li Y, Liu L, Yang J, Zhu Y. Engineering Atomic Ag 1-N 6 Sites with Enhanced Performance of Eradication Drug-Resistant Bacteria over Visible-Light-Driven Antibacterial Membrane. ACS NANO 2024; 18:7074-7083. [PMID: 38386076 DOI: 10.1021/acsnano.3c10765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Utilizing visible light for water disinfection is a more convenient, safe, and practical alternative to ultraviolet-light sterilization. Herein, we developed silver (Ag) single-atom anchored g-C3N4 (P-CN) nanosheets (Ag1/CN) and then utilized a spin-coating method to fabricate the Ag1/CN-based-membrane for effective antibacterial performance in natural water and domestic wastewater. The incorporated Ag single atom formed a Ag1-N6 motif, which increased the charge density around the N atoms, resulting in a built-in electric field ∼17.2 times stronger than that of pure P-CN and optimizing the dynamics of reactive oxygen species (ROS) production. Additionally, the Ag1-N6 motif inhibited the release of Ag ions, ensuring good biocompatibility. Based on the first-principles calculation, the adsorption energy of O2 on the Ag1/CN (-0.32 eV) was lower than that of P-CN (-0.07 eV), indicating that loaded Ag single atom can lower the energy barrier for O2 activation, generating extra *OH radicals that cooperated with *O2- to effectively neutralize bacteria. As a result, the Ag1/CN powder-catalyst with the concentration of 30 ppm demonstrated a 99.9% antibacterial efficiency against drug-resistant bacteria (Escherichia coli, Staphylococcus aureus, kanamycin-resistant Escherichia coli, and methicillin-resistant Staphylococcus aureus) under visible-light irradiation for 4 h. This efficacy was 24.8 times higher than that of the P-CN powder catalyst. Moreover, the Ag1/CN-based-membrane can maintain a 99.9% bactericidal efficiency for natural water and domestic wastewater treatment using a homemade flow device, demonstrating its potential for water disinfection. Notably, the visible-light-driven antibacterial efficiency of the Ag1/CN catalyst outperformed the majority of the reported g-C3N4-based catalysts/membranes.
Collapse
Affiliation(s)
- Shaosheng Rao
- Department of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhongti Sun
- Department of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qinqin Liu
- Department of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chao Cheng
- Department of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Cheng Jin
- Department of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jinsong Gao
- Department of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Bing Li
- Department of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yi Li
- Department of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lei Liu
- Department of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Juan Yang
- Department of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
46
|
Jiang YN, Tan M, He C, Wang J, Wei Y, Jing N, Wang B, Yang F, Zhang Y, Li M. Supramolecular Switch for the Regulation of Antibacterial Efficacy of Near-Infrared Photosensitizer. Molecules 2024; 29:1040. [PMID: 38474550 DOI: 10.3390/molecules29051040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The global antibiotic resistance crisis has drawn attention to the development of treatment methods less prone to inducing drug resistance, such as antimicrobial photodynamic therapy (aPDT). However, there is an increasing demand for new photosensitizers capable of efficiently absorbing in the near-infrared (NIR) region, enabling antibacterial treatment in deeper sites. Additionally, advanced strategies need to be developed to avert drug resistance stemming from prolonged exposure. Herein, we have designed a conjugated oligoelectrolyte, namely TTQAd, with a donor-acceptor-donor (D-A-D) backbone, enabling the generation of reactive oxygen species (ROS) under NIR light irradiation, and cationic adamantaneammonium groups on the side chains, enabling the host-guest interaction with curcubit[7]uril (CB7). Due to the amphiphilic nature of TTQAd, it could spontaneously form nanoassemblies in aqueous solution. Upon CB7 treatment, the positive charge of the cationic adamantaneammonium group was largely shielded by CB7, leading to a further aggregation of the nanoassemblies and a reduced antibacterial efficacy of TTQAd. Subsequent treatment with competitor guests enables the release of TTQAd and restores its antibacterial effect. The reversible supramolecular switch for regulating the antibacterial effect offers the potential for the controlled release of active photosensitizers, thereby showing promise in preventing the emergence of drug-resistant bacteria.
Collapse
Affiliation(s)
- Yu-Na Jiang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315302, China
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Manqi Tan
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315302, China
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Chenglong He
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315302, China
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jiaxi Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yi Wei
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ningning Jing
- College of Science and Technology, Ningbo University, Ningbo 315300, China
| | - Bing Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Fang Yang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315302, China
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Yujie Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315302, China
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Meng Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| |
Collapse
|
47
|
Lehnert T, Gijs MAM. Microfluidic systems for infectious disease diagnostics. LAB ON A CHIP 2024; 24:1441-1493. [PMID: 38372324 DOI: 10.1039/d4lc00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Microorganisms, encompassing both uni- and multicellular entities, exhibit remarkable diversity as omnipresent life forms in nature. They play a pivotal role by supplying essential components for sustaining biological processes across diverse ecosystems, including higher host organisms. The complex interactions within the human gut microbiota are crucial for metabolic functions, immune responses, and biochemical signalling, particularly through the gut-brain axis. Viruses also play important roles in biological processes, for example by increasing genetic diversity through horizontal gene transfer when replicating inside living cells. On the other hand, infection of the human body by microbiological agents may lead to severe physiological disorders and diseases. Infectious diseases pose a significant burden on global healthcare systems, characterized by substantial variations in the epidemiological landscape. Fast spreading antibiotic resistance or uncontrolled outbreaks of communicable diseases are major challenges at present. Furthermore, delivering field-proven point-of-care diagnostic tools to the most severely affected populations in low-resource settings is particularly important and challenging. New paradigms and technological approaches enabling rapid and informed disease management need to be implemented. In this respect, infectious disease diagnostics taking advantage of microfluidic systems combined with integrated biosensor-based pathogen detection offers a host of innovative and promising solutions. In this review, we aim to outline recent activities and progress in the development of microfluidic diagnostic tools. Our literature research mainly covers the last 5 years. We will follow a classification scheme based on the human body systems primarily involved at the clinical level or on specific pathogen transmission modes. Important diseases, such as tuberculosis and malaria, will be addressed more extensively.
Collapse
Affiliation(s)
- Thomas Lehnert
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| | - Martin A M Gijs
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| |
Collapse
|
48
|
Lan H, Shu W, Jiang D, Yu L, Xu G. Cas-based bacterial detection: recent advances and perspectives. Analyst 2024; 149:1398-1415. [PMID: 38357966 DOI: 10.1039/d3an02120c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Persistent bacterial infections pose a formidable threat to global health, contributing to widespread challenges in areas such as food safety, medical hygiene, and animal husbandry. Addressing this peril demands the urgent implementation of swift and highly sensitive detection methodologies suitable for point-of-care testing and large-scale screening. These methodologies play a pivotal role in the identification of pathogenic bacteria, discerning drug-resistant strains, and managing and treating diseases. Fortunately, new technology, the CRISPR/Cas system, has emerged. The clustered regularly interspaced short joint repeats (CRISPR) system, which is part of bacterial adaptive immunity, has already played a huge role in the field of gene editing. It has been employed as a diagnostic tool for virus detection, featuring high sensitivity, specificity, and single-nucleotide resolution. When applied to bacterial detection, it also surpasses expectations. In this review, we summarise recent advances in the detection of bacteria such as Mycobacterium tuberculosis (MTB), methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli (E. coli), Salmonella and Acinetobacter baumannii (A. baumannii) using the CRISPR/Cas system. We emphasize the significance and benefits of this methodology, showcasing the capability of diverse effector proteins to swiftly and precisely recognize bacterial pathogens. Furthermore, the CRISPR/Cas system exhibits promise in the identification of antibiotic-resistant strains. Nevertheless, this technology is not without challenges that need to be resolved. For example, CRISPR/Cas systems must overcome natural off-target effects and require high-quality nucleic acid samples to improve sensitivity and specificity. In addition, limited applicability due to the protospacer adjacent motif (PAM) needs to be addressed to increase its versatility. Despite the challenges, we are optimistic about the future of bacterial detection using CRISPR/Cas. We have already highlighted its potential in medical microbiology. As research progresses, this technology will revolutionize the detection of bacterial infections.
Collapse
Affiliation(s)
- Huatao Lan
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Weitong Shu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Dan Jiang
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Luxin Yu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Guangxian Xu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
49
|
Soni J, Sinha S, Pandey R. Understanding bacterial pathogenicity: a closer look at the journey of harmful microbes. Front Microbiol 2024; 15:1370818. [PMID: 38444801 PMCID: PMC10912505 DOI: 10.3389/fmicb.2024.1370818] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Bacteria are the most prevalent form of microorganisms and are classified into two categories based on their mode of existence: intracellular and extracellular. While most bacteria are beneficial to human health, others are pathogenic and can cause mild to severe infections. These bacteria use various mechanisms to evade host immunity and cause diseases in humans. The susceptibility of a host to bacterial infection depends on the effectiveness of the immune system, overall health, and genetic factors. Malnutrition, chronic illnesses, and age-related vulnerabilities are the additional confounders to disease severity phenotypes. The impact of bacterial pathogens on public health includes the transmission of these pathogens from healthcare facilities, which contributes to increased morbidity and mortality. To identify the most significant threats to public health, it is crucial to understand the global burden of common bacterial pathogens and their pathogenicity. This knowledge is required to improve immunization rates, improve the effectiveness of vaccines, and consider the impact of antimicrobial resistance when assessing the situation. Many bacteria have developed antimicrobial resistance, which has significant implications for infectious diseases and favors the survival of resilient microorganisms. This review emphasizes the significance of understanding the bacterial pathogens that cause this health threat on a global scale.
Collapse
Affiliation(s)
- Jyoti Soni
- Division of Immunology and Infectious Disease Biology, Integrative Genomics of Host Pathogen Laboratory, Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Sristi Sinha
- Division of Immunology and Infectious Disease Biology, Integrative Genomics of Host Pathogen Laboratory, Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, Integrative Genomics of Host Pathogen Laboratory, Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
50
|
Liu C, Guan C, Li Y, Li Z, Wang Y, Han G. Advances in Electrochemical Biosensors for the Detection of Common Oral Diseases. Crit Rev Anal Chem 2024:1-21. [PMID: 38366356 DOI: 10.1080/10408347.2024.2315112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Limiting and preventing oral diseases remains a major challenge to the health of populations around the world, so finding ways to detect early-stage diseases (e.g., caries, periodontal disease, and oral cancer) and aiding in their prevention has always been an important clinical treatment concept. The development and application of electrochemical detection technology can provide important support for the early detection and non-invasive diagnosis of oral diseases and make up for the shortcomings of traditional diagnostic methods, which are highly sensitive, non-invasive, cost-effective, and less labor-intensive. It detects specific disease markers in body fluids through electrochemical reactions, discovers early warning signals of diseases, and realizes rapid and reliable diagnosis. This paper comprehensively summarizes the development and application of electrochemical biosensors in the detection and diagnosis of common oral diseases in terms of application platforms, sensing types, and disease detection, and discusses the challenges faced by electrochemical biosensors in the detection of oral diseases as well as the great prospects for future applications, in the hope of providing important insights for the future development of electrochemical biosensors for the early detection of oral diseases.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Changjun Guan
- School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, China
| | - Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanchun Wang
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|