1
|
Li XX, Hong ZQ, Xiong ZX, Zhang LW, Wang S, Tao P, Chen P, Li XM, Qian P. Development of a novel chimeric lysin to combine parental phage lysin and cefquinome for preventing sow endometritis after artificial insemination. Vet Res 2025; 56:39. [PMID: 39934866 PMCID: PMC11816537 DOI: 10.1186/s13567-025-01457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/04/2024] [Indexed: 02/13/2025] Open
Abstract
Sow endometritis is usually caused by multiple species of pathogenic bacteria. Numerous isolates from endometritis patients have developed antimicrobial resistance. Thus, novel antibacterial agents and strategies to combat endometritis are needed. A total of 526 bacteria, including Staphylococcus spp. (26.3%), Streptococcus spp. (12.3%), E. coli (28.9%), Enterococcus spp. (20.1%), Proteus spp. (9.5%), and Corynebacterium spp. (2.8%), were isolated from sows with endometritis. We constructed a novel chimeric lysin, ClyL, which is composed of a cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP) catalytic domain from the phage lysin LysGH15 and a cell wall-binding domain (CBD) from the prophage lysin Lys0859. The activities of ClyL and Lys0859 were most pronounced for the Staphylococcus and Streptococcus strains isolated from sow endometritis and bovine mastitis, respectively. ClyL and Lys0859 were combined to create a phage lysin cocktail, which demonstrated a synergistic effect against the coinfection of Staphylococcus and Streptococcus in vitro and in vivo. Furthermore, the combination of phage lysin cocktail and cefquinome had a synergistic bactericidal effect on boar semen that did not influence the activity of sperm. Remarkably, the incidence rate of sow endometritis was 0% (0/7) when the combination of phage lysin cocktail and cefquinome was used in semen via artificial insemination compared with 50% (3/6) when PBS was administered. Overall, the administration of a phage lysin cocktail and cefquinome in semen via artificial insemination is a promising novel strategy to prevent sow endometritis after artificial insemination.
Collapse
Affiliation(s)
- Xin-Xin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Zi-Qiang Hong
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Zhi-Xuan Xiong
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Li-Wen Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Shuang Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Pan Tao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Pin Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Xiang-Min Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
| |
Collapse
|
2
|
Aquib M, Yang W, Yu L, Kannaujiya VK, Zhang Y, Li P, Whittaker A, Fu C, Boyer C. Effect of cyclic topology versus linear terpolymers on antibacterial activity and biocompatibility: antimicrobial peptide avatars. Chem Sci 2024:d4sc05797j. [PMID: 39479165 PMCID: PMC11520352 DOI: 10.1039/d4sc05797j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Host-defense peptides (HDPs) and their analogs hold significant potential for combating multidrug-resistant (MDR) bacterial infections. However, their clinical use has been hindered by susceptibility to proteases, high production costs, and cytotoxicity towards mammalian cells. Synthetic polymers with diverse topologies and compositions, designed to mimic HDPs, show promise for treating bacterial infections. In this study, we explored the antibacterial activity and biocompatibility of synthetic amphiphilic linear (LPs) and cyclic terpolymers (CPs) containing hydrophobic groups 2-ethylhexyl (E) and 2-phenylethyl (P) at 20% and 30% content. LPs were synthesized via RAFT polymerization and then cyclized into CPs through a hetero-Diels-Alder click reaction. The bioactivity of these terpolymers was correlated with their topology (LPs vs. CPs) and hydrophobic composition. LPs demonstrated superior antibacterial efficacy compared to CPs against four Gram-negative bacterial strains, with terpolymers containing (P) outperforming those with (E). Increasing the hydrophobicity from 20% to 30% in the terpolymers increased toxicity to both bacterial and mammalian cells. Notably, our terpolymers inhibited the MDR Gram-negative bacterial strain PA37 more effectively than gentamicin and ciprofloxacin. Furthermore, our terpolymers were able to disrupt cell membranes and rapidly eliminate Gram-negative bacteria (99.99% within 15 minutes). Interestingly, CPs exhibited higher hemocompatibility and biocompatibility with mammalian macrophage cells compared to LPs, showcasing a better safety profile (CPs > LPs). These findings underscore the importance of tailoring polymer architectures and optimizing the hydrophilic/hydrophobic balance to address challenges related to toxicity and selectivity in developing antimicrobial polymers.
Collapse
Affiliation(s)
- Md Aquib
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Wenting Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Queensland 4072 Australia
| | - Luofeng Yu
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Vinod Kumar Kannaujiya
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Yuhao Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Queensland 4072 Australia
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Andrew Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Queensland 4072 Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Queensland 4072 Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| |
Collapse
|
3
|
Shao Z, Luo H, Nguyen THQ, Wong EHH. Effects of Secondary Amine and Molecular Weight on the Biological Activities of Cationic Amphipathic Antimicrobial Macromolecules. Biomacromolecules 2024; 25:6899-6912. [PMID: 39312184 PMCID: PMC11483101 DOI: 10.1021/acs.biomac.4c01137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Cationic amphipathic antimicrobial agents inspired by antimicrobial peptides (AMPs) have shown potential in combating multidrug-resistant bacteria because of minimal resistance development. Here, this study focuses on the development of novel cationic amphipathic macromolecules in the form of dendrons and polymers with different molecular weights that employ secondary amine piperidine derivative as the cationic moiety. Generally, secondary amine compounds, especially at low molecular weights, have stronger bacteriostatic, bactericidal, and inner membrane disruption abilities than those of their primary amine counterparts. Low molecular weight D2 dendrons with two cationic centers and one hydrophobic dodecyl chain produce outstanding synergistic activity with the antibiotic rifampicin against Escherichia coli, where one-eighth of the standalone dose of D2 dendrons could reduce the concentration of rifampicin required by up to 4000-fold. The low molecular weight compounds are also less toxic and therefore have higher therapeutic index values compared to compounds with larger molecular weights. This study thus reveals key information that may inform the design of future synthetic AMPs and mimics, specifically, the design of low-molecular-weight compounds with secondary amine as the cationic center to achieve high antimicrobial potency and biocompatibility.
Collapse
Affiliation(s)
- Zeyu Shao
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Hao Luo
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Thi Hanh Quyen Nguyen
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Edgar H. H. Wong
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Heo HY, Zou G, Baek S, Kim J, Mylonakis E, Ausubel FM, Gao H, Kim W. A Methylazanediyl Bisacetamide Derivative Sensitizes Staphylococcus aureus Persisters to a Combination of Gentamicin And Daptomycin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306112. [PMID: 38126676 PMCID: PMC10916567 DOI: 10.1002/advs.202306112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Infections caused by Staphylococcus aureus, notably methicillin-resistant S. aureus (MRSA), pose treatment challenges due to its ability to tolerate antibiotics and develop antibiotic resistance. The former, a mechanism independent of genetic changes, allows bacteria to withstand antibiotics by altering metabolic processes. Here, a potent methylazanediyl bisacetamide derivative, MB6, is described, which selectively targets MRSA membranes over mammalian membranes without observable resistance development. Although MB6 is effective against growing MRSA cells, its antimicrobial activity against MRSA persisters is limited. Nevertheless, MB6 significantly potentiates the bactericidal activity of gentamicin against MRSA persisters by facilitating gentamicin uptake. In addition, MB6 in combination with daptomycin exhibits enhanced anti-persister activity through mutual reinforcement of their membrane-disrupting activities. Crucially, the "triple" combination of MB6, gentamicin, and daptomycin exhibits a marked enhancement in the killing of MRSA persisters compared to individual components or any double combinations. These findings underscore the potential of MB6 to function as a potent and selective membrane-active antimicrobial adjuvant to enhance the efficacy of existing antibiotics against persister cells. The molecular mechanisms of MB6 elucidated in this study provide valuable insights for designing anti-persister adjuvants and for developing new antimicrobial combination strategies to overcome the current limitations of antibiotic treatments.
Collapse
Affiliation(s)
- Hee Young Heo
- College of PharmacyGraduate School of Pharmaceutical SciencesEwha Womans UniversitySeoul03760Republic of Korea
| | - Guijin Zou
- Institute of High Performance Computing (IHPC)Agency for ScienceTechnology and Research (A*STAR)Singapore138632Republic of Singapore
| | - Seongeun Baek
- College of PharmacyGraduate School of Pharmaceutical SciencesEwha Womans UniversitySeoul03760Republic of Korea
| | - Jae‐Seok Kim
- Department of Laboratory MedicineKangdong Sacred Heart HospitalHallym University College of MedicineSeoul05355Republic of Korea
| | | | - Frederick M. Ausubel
- Department of Molecular BiologyMassachusetts General HospitalBostonMA02114USA
- Department of GeneticsHarvard Medical SchoolBostonMA02115USA
| | - Huajian Gao
- Institute of High Performance Computing (IHPC)Agency for ScienceTechnology and Research (A*STAR)Singapore138632Republic of Singapore
- School of Mechanical and Aerospace EngineeringCollege of EngineeringNanyang Technological UniversitySingapore639789Republic of Singapore
| | - Wooseong Kim
- College of PharmacyGraduate School of Pharmaceutical SciencesEwha Womans UniversitySeoul03760Republic of Korea
| |
Collapse
|
5
|
Xing H, Loya-Perez V, Franzen J, Denton PW, Conda-Sheridan M, Rodrigues de Almeida N. Designing peptide amphiphiles as novel antibacterials and antibiotic adjuvants against gram-negative bacteria. Bioorg Med Chem 2023; 94:117481. [PMID: 37776750 DOI: 10.1016/j.bmc.2023.117481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Gram-negative strains are intrinsically resistant to most antibiotics due to the robust and impermeable characteristic of their outer membrane. Self-assembling cationic peptide amphiphiles (PAs) have the ability to disrupt bacteria membranes, constituting an excellent antibacterial alternative to small molecule drugs that can be used alone or as antibiotic adjuvants to overcome bacteria resistance. PA1 (C16KHKHK), self-assembled into micelles, which exhibited low antibacterial activity against all strains tested, and showed strong synergistic antibacterial activity in combination with Vancomycin with a Fractional Inhibitory Concentration index (FICi) of 0.15 against E. coli. The molecules, PA2 (C16KRKR) and PA3 (C16AAAKRKR), also self-assembled into micelles, displayed a broad-spectrum antibacterial activity against all strains tested, and low susceptibility to resistance development over 21 days. Finally, PA1, PA 2 and PA3 displayed low cytotoxicity against mammalian cells, and PA2 showed a potent antibacterial activity and low toxicity in preliminary in vivo models using G. mellonella. The results show that PAs are a great platform for the future development of effective antibiotics to slow down the antibiotic resistance and can act as antibiotic adjuvants with synergistic mechanism of action, which can be repurposed for use with existing antibiotics commonly used to treat gram-positive bacteria to treat infections caused by gram-negative bacteria.
Collapse
Affiliation(s)
- Huihua Xing
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Vanessa Loya-Perez
- Department of Chemistry, University of Nebraska Omaha, Omaha, NE 68182, United States
| | - Joshua Franzen
- Department of Biology, University of Nebraska Omaha, Omaha, NE 68182, United States
| | - Paul W Denton
- Department of Biology, University of Nebraska Omaha, Omaha, NE 68182, United States
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | | |
Collapse
|
6
|
Bai W, Hu Y, Zhao J, Shi L, Ge C, Zhu Z, Rao J. Precision Dosing of Antibiotics and Potentiators by Hypoxia-Responsive Nanoparticles for Overcoming Antibiotic Resistance in Gram-Negative Bacteria. ACS Macro Lett 2023; 12:1193-1200. [PMID: 37590266 DOI: 10.1021/acsmacrolett.3c00365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The stalling development of antibiotics, especially against intrinsically resistant Gram-negative pathogens associated with outer membranes, leads to an emerging antibiotic crisis across the globe. To breathe life into existing drugs, we herein report a hypoxia-responsive nanoparticle (NP) that encapsulates a hydrophobic antibiotic, rifampicin, and a cationic potentiator, polysulfonium. The simultaneous release of antibiotics and potentiators can be promoted and inhibited in response to the severity of bacterial-induced hypoxia, leading to antimicrobial dosing in a precision manner. Under the synergism of polysulfoniums with membrane-disruption capability, the NPs can intensively decrease the antibiotic dose by up to 66-95% in eliminating planktonic Gram-negative P. aeruginosa bacteria and achieve an 8-log reduction of bacteria in mature biofilms at rifampicin MIC. The NP formulation demonstrates that precision dosing of antibiotics and potentiators regulated by hypoxia provides a promising strategy to maximize efficacy and minimize toxicity in treating Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Weiguang Bai
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Yongjin Hu
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Jinghua Zhao
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Liuqi Shi
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Chunhua Ge
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Zhiyuan Zhu
- Taizhou Research Institute, Southern University of Science and Technology, Taizhou, Zhejiang 318001, PR China
| | - Jingyi Rao
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| |
Collapse
|
7
|
Park J, Nabawy A, Doungchawee J, Mahida N, Foster K, Jantarat T, Jiang M, Chattopadhyay AN, Hassan MA, Agrohia DK, Makabenta JM, Vachet RW, Rotello VM. Synergistic Treatment of Multidrug-Resistant Bacterial Biofilms Using Silver Nanoclusters Incorporated into Biodegradable Nanoemulsions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37205-37213. [PMID: 37523688 DOI: 10.1021/acsami.3c06242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Multidrug resistance (MDR) in bacteria is a critical global health challenge that is exacerbated by the ability of bacteria to form biofilms. We report a combination therapy for biofilm infections that integrates silver nanoclusters (AgNCs) into polymeric biodegradable nanoemulsions (BNEs) incorporating eugenol. These Ag-BNEs demonstrated synergistic antimicrobial activity between the AgNCs and the BNEs. Microscopy studies demonstrated that Ag-BNEs penetrated the dense biofilm matrix and effectively disrupted the bacterial membrane. The Ag-BNE vehicle also resulted in more effective silver delivery into the biofilm than AgNCs alone. This combinacional system featured disruptionof biofilms by BNEs and enhanced delivery of AgNCs for synergy to provide highly efficient killing of MDR biofilms.
Collapse
Affiliation(s)
- Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Jeerapat Doungchawee
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Neel Mahida
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Kiernan Foster
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Teerapong Jantarat
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Aritra Nath Chattopadhyay
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Muhammad Aamir Hassan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Dheeraj K Agrohia
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Jessa Marie Makabenta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
8
|
Duan XC, Li XX, Li XM, Wang S, Zhang FQ, Qian P. Exploiting Broad-Spectrum Chimeric Lysin to Cooperate with Mupirocin against Staphylococcus aureus-Induced Skin Infections and Delay the Development of Mupirocin Resistance. Microbiol Spectr 2023; 11:e0505022. [PMID: 37125939 PMCID: PMC10269905 DOI: 10.1128/spectrum.05050-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
Staphylococcus aureus often leads to severe skin infections. However, S. aureus is facing a crisis of antibiotic resistance. The combination of phage and antibiotics is effective for drug-resistant S. aureus infections. Therefore, it is worth exploiting novel antibacterial agents to cooperate with antibiotics against S. aureus infections. Herein, a novel chimeric lysin ClyQ was constructed, which was composed of a cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP) catalytic domain from S. aureus phage lysin LysGH15 and cell wall-binding domain (CBD) from Enterococcus faecalis phage lysin PlyV12. ClyQ had an exceptionally broad host range targeting streptococci, staphylococci, E. faecalis, and E. rhusiopathiae. ClyQ combined with mupirocin (2.64 log reduction) was more effective at treating S. aureus skin infections than ClyQ (0.46 log reduction) and mupirocin (2.23 log reduction) alone. Of equal importance, none of S. aureus ATCC 29213 or S3 exposed to ClyQ developed resistance, and the combination of ClyQ and mupirocin delayed the development of mupirocin resistance. Collectively, chimeric lysin ClyQ enriches the reservoirs for treating S. aureus infections. Our findings may provide a way to alleviate the current antibiotic resistance crisis. IMPORTANCE Staphylococcus aureus, as an Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species (ESKAPE) pathogen, can escape the elimination of existing antibiotics. At present, phages and phage lysins against S. aureus infections are considered alternative antibacterial agents. However, the development of broad-spectrum chimeric phage lysins to cooperate with antibiotics against S. aureus infections remains at its initial stage. In this study, we found that the broad-host-range chimeric lysin ClyQ can synergize with mupirocin to treat S. aureus skin infections. Furthermore, the development of S. aureus resistance to mupirocin is delayed by the combination of ClyQ and mupirocin in vitro. Our results bring research attention toward the development of chimeric lysin that cooperates with antibiotics to overcome bacterial infections.
Collapse
Affiliation(s)
- Xiao-chao Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xin-xin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiang-min Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shuang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Fen-qiang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
9
|
Saini M, Gaurav A, Kothari A, Omar BJ, Gupta V, Bhattacharjee A, Pathania R. Small Molecule IITR00693 (2-Aminoperimidine) Synergizes Polymyxin B Activity against Staphylococcus aureus and Pseudomonas aeruginosa. ACS Infect Dis 2023; 9:692-705. [PMID: 36716174 DOI: 10.1021/acsinfecdis.2c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The rise of antibiotic resistance among skin-infecting pathogens poses an urgent threat to public health and has fueled the search for new therapies. Enhancing the potency of currently used antibiotics is an alternative for the treatment of infections caused by drug-resistant pathogens. In this study, we aimed to identify a small molecule that can potentiate currently used antibiotics. IITR00693 (2-aminoperimidine), a novel antibacterial small molecule, potentiates the antibacterial activity of polymyxin B against Staphylococcus aureus and Pseudomonas aeruginosa. Herein, we investigated in detail the mode of action of this interaction and the molecule's capability to combat soft-tissue infections caused by S. aureus and P. aeruginosa. A microdilution checkerboard assay was performed to determine the synergistic interaction between polymyxin B and IITR00693 in clinical isolates of S. aureus and P. aeruginosa. Time-kill kinetics, post-antibiotic effect, and resistance generation studies were performed to assess the pharmacodynamics of the combination. Assays based on different fluorescent probes were performed to decipher the mechanism of action of this combination. The in vivo efficacy of the IITR00693-polymyxin B combination was determined in a murine acute wound infection model. IITR00693 exhibited broad-spectrum antibacterial activity. IITR00693 potentiated polymyxin B and colistin against polymyxin-resistant S. aureus. IITR00693 prevented the generation of resistant mutants against multiple antibiotics. The IITR00693-polymyxin B combination decreased the S. aureus count by >3 log10 CFU in a murine acute wound infection model. IITR00693 is a potential and promising candidate for the treatment of soft-tissue infections along with polymyxins.
Collapse
Affiliation(s)
- Mahak Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand247 667, India
| | - Amit Gaurav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand247 667, India
| | - Ashish Kothari
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand249 201, India
| | - Balram Ji Omar
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand249 201, India
| | - Varsha Gupta
- Department of Microbiology, Government Medical College and Hospital Chandigarh, Chandigarh160 030, India
| | | | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand247 667, India
| |
Collapse
|