1
|
Bann SJ, Cochrane SA. A novel approach for the synthesis of the cyclic lipopeptide globomycin. RSC Med Chem 2024; 16:d4md00685b. [PMID: 39493230 PMCID: PMC11528322 DOI: 10.1039/d4md00685b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024] Open
Abstract
Cyclic lipopeptides (CLiPs) are a highly diverse class of secondary metabolites produced by bacteria and fungi. Examples of CLiPs have been found that possess potent antimicrobial activity against multidrug-resistant Gram-negative bacteria. Globomycin is a 19-membered CLiP that kills both Gram-positive and Gram-negative bacteria through inhibition of lipoprotein signal peptidase II (Lsp). It can only be obtained in small quantities from its Streptomyces producer strain, so there has been much interest in development of synthetic methods to access globomycin and analogues. Globomycin contains an N-terminal anti-α-methyl-β-hydroxy nonanoyl lipid tail, whose hydroxyl group forms an ester with the C-terminal carboxylate. Constructing the anti-arrangement between the α-methyl and β-hydroxy is synthetically challenging and previous globomycin syntheses are not compatible with diversification of the lipid tail after the stereocenters have been installed. Herein, we describe a new approach for the synthesis of globomycin that allows for facile lipid diversification. Using an anti-Evans Aldol condensation, a common intermediate is obtained that allows different "lipid swapping" through Grubbs-catalyzed cross-metathesis. Upon auxiliary cleavage, the resulting lipid can then be utilized in solid-phase peptide synthesis. Given the plethora of lipopeptides that contain β-hydroxy lipids, this method offers a convenient approach for convergent generation of lipopeptide analogues.
Collapse
Affiliation(s)
- Samantha J Bann
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building, Stranmillis Road Belfast BT9 5AG UK
| | - Stephen A Cochrane
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building, Stranmillis Road Belfast BT9 5AG UK
| |
Collapse
|
2
|
Thombare VJ, Swarbrick JD, Azad MAK, Zhu Y, Lu J, Yu HY, Wickremasinghe H, He X, Bandiatmakur M, Li R, Bergen PJ, Velkov T, Wang J, Roberts KD, Li J, Patil NA. Exploring Structure-Activity Relationships and Modes of Action of Laterocidine. ACS CENTRAL SCIENCE 2024; 10:1703-1717. [PMID: 39345814 PMCID: PMC11428279 DOI: 10.1021/acscentsci.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 10/01/2024]
Abstract
A significant increase in life-threatening infections caused by Gram-negative "superbugs" is a serious threat to global health. With a dearth of new antibiotics in the developmental pipeline, antibiotics with novel mechanisms of action are urgently required to prevent a return to the preantibiotic era. A key strategy to develop novel anti-infective treatments is to discover new natural scaffolds with distinct mechanisms of action. Laterocidine is a unique cyclic lipodepsipeptide with activity against multiple problematic multidrug-resistant Gram-negative pathogens, including Pseudomonas aeruginosa, Acinetobacter baumannii, and Enterobacterales. Here, we developed a total chemical synthesis methodology for laterocidine and undertook systematic structure-activity relationship studies with chemical biology and NMR. We discovered important structural features that drive the antimicrobial activity of laterocidine, leading to the discovery of an engineered peptide surpassing the efficacy of the original peptide. This engineered peptide demonstrated complete inhibition of the growth of a polymyxin-resistant strain of Pseudomonas aeruginosa in static time-kill experiments.
Collapse
Affiliation(s)
- Varsha J Thombare
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - James D Swarbrick
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Mohammad A K Azad
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Yan Zhu
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Jing Lu
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Heidi Y Yu
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Hasini Wickremasinghe
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Xiaoji He
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Mahimna Bandiatmakur
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Rong Li
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Phillip J Bergen
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Tony Velkov
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Jiping Wang
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Kade D Roberts
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Jian Li
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Nitin A Patil
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
3
|
Zeng P, Wang H, Zhang P, Leung SSY. Unearthing naturally-occurring cyclic antibacterial peptides and their structural optimization strategies. Biotechnol Adv 2024; 73:108371. [PMID: 38704105 DOI: 10.1016/j.biotechadv.2024.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/08/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Natural products with antibacterial activity are highly desired globally to combat against multidrug-resistant (MDR) bacteria. Antibacterial peptide (ABP), especially cyclic ABP (CABP), is one of the abundant classes. Most of them were isolated from microbes, demonstrating excellent bactericidal effects. With the improved proteolytic stability, CABPs are normally considered to have better druggability than linear peptides. However, most clinically-used CABP-based antibiotics, such as colistin, also face the challenges of drug resistance soon after they reached the market, urgently requiring the development of next-generation succedaneums. We present here a detail review on the novel naturally-occurring CABPs discovered in the past decade and some of them are under clinical trials, exhibiting anticipated application potential. According to their chemical structures, they were broadly classified into five groups, including (i) lactam/lactone-based CABPs, (ii) cyclic lipopeptides, (iii) glycopeptides, (iv) cyclic sulfur-rich peptides and (v) multiple-modified CABPs. Their chemical structures, antibacterial spectrums and proposed mechanisms are discussed. Moreover, engineered analogs of these novel CABPs are also summarized to preliminarily analyze their structure-activity relationship. This review aims to provide a global perspective on research and development of novel CABPs to highlight the effectiveness of derivatives design in identifying promising antibacterial agents. Further research efforts in this area are believed to play important roles in fighting against the multidrug-resistance crisis.
Collapse
Affiliation(s)
- Ping Zeng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Honglan Wang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Pengfei Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sharon Shui Yee Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
4
|
Machushynets N, Al Ayed K, Terlouw BR, Du C, Buijs NP, Willemse J, Elsayed SS, Schill J, Trebosc V, Pieren M, Alexander FM, Cochrane SA, Liles MR, Medema MH, Martin NI, van Wezel GP. Discovery and Derivatization of Tridecaptin Antibiotics with Altered Host Specificity and Enhanced Bioactivity. ACS Chem Biol 2024; 19:1106-1115. [PMID: 38602492 PMCID: PMC11106739 DOI: 10.1021/acschembio.4c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
The prevalence of multidrug-resistant (MDR) pathogens combined with a decline in antibiotic discovery presents a major challenge for health care. To refill the discovery pipeline, we need to find new ways to uncover new chemical entities. Here, we report the global genome mining-guided discovery of new lipopeptide antibiotics tridecaptin A5 and tridecaptin D, which exhibit unusual bioactivities within their class. The change in the antibacterial spectrum of Oct-TriA5 was explained solely by a Phe to Trp substitution as compared to Oct-TriA1, while Oct-TriD contained 6 substitutions. Metabolomic analysis of producer Paenibacillus sp. JJ-21 validated the predicted amino acid sequence of tridecaptin A5. Screening of tridecaptin analogues substituted at position 9 identified Oct-His9 as a potent congener with exceptional efficacy against Pseudomonas aeruginosa and reduced hemolytic and cytotoxic properties. Our work highlights the promise of tridecaptin analogues to combat MDR pathogens.
Collapse
Affiliation(s)
- Nataliia
V. Machushynets
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Karol Al Ayed
- Biological
Chemistry Group, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Barbara R. Terlouw
- Bioinformatics
Group, Wageningen University, Wageningen 6700 PB, The Netherlands
| | - Chao Du
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Ned P. Buijs
- Biological
Chemistry Group, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Joost Willemse
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Somayah S. Elsayed
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Julian Schill
- BioVersys
AG, c/o Technologiepark, Basel CH-4057, Switzerland
| | - Vincent Trebosc
- BioVersys
AG, c/o Technologiepark, Basel CH-4057, Switzerland
| | - Michel Pieren
- BioVersys
AG, c/o Technologiepark, Basel CH-4057, Switzerland
| | - Francesca M. Alexander
- School of
Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Stephen A. Cochrane
- School of
Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Mark R. Liles
- Department
of Biological Sciences, Auburn University, Auburn, Alabama 36849, United States
| | - Marnix H. Medema
- Bioinformatics
Group, Wageningen University, Wageningen 6700 PB, The Netherlands
| | - Nathaniel I. Martin
- Biological
Chemistry Group, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Gilles P. van Wezel
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
- Department
of Microbial Ecology, Netherlands Institute
of Ecology, Wageningen 6700 PB, The Netherlands
| |
Collapse
|
5
|
Palpal-Latoc D, Horsfall AJ, Cameron AJ, Campbell G, Ferguson SA, Cook GM, Sander V, Davidson AJ, Harris PWR, Brimble MA. Synthesis, Structure-Activity Relationship Study, Bioactivity, and Nephrotoxicity Evaluation of the Proposed Structure of the Cyclic Lipodepsipeptide Brevicidine B. JOURNAL OF NATURAL PRODUCTS 2024; 87:764-773. [PMID: 38423998 DOI: 10.1021/acs.jnatprod.3c00876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The brevicidines represent a novel class of nonribosomal antimicrobial peptides that possess remarkable potency and selectivity toward highly problematic and resistant Gram-negative pathogenic bacteria. A recently discovered member of the brevicidine family, coined brevicidine B (2), comprises a single amino acid substitution (from d-Tyr2 to d-Phe2) in the amino acid sequence of the linear moiety of brevicidine (1) and was reported to exhibit broader antimicrobial activity against both Gram-negative (MIC = 2-4 μgmL-1) and Gram-positive (MIC = 2-8 μgmL-1) pathogens. Encouraged by this, we herein report the first total synthesis of the proposed structure of brevicidine B (2), building on our previously reported synthetic strategy to access brevicidine (1). In agreement with the original isolation paper, pleasingly, synthetic 2 demonstrated antimicrobial activity toward Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae (MIC = 4-8 μgmL-1). Interestingly, however, synthetic 2 was inactive toward all of the tested Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus strains. Substitution of d-Phe2 with its enantiomer, and other hydrophobic residues, yields analogues that were either inactive or only exhibited activity toward Gram-negative strains. The striking difference in the biological activity of our synthetic 2 compared to the reported natural compound warrants the re-evaluation of the original natural product for purity or possible differences in relative configuration. Finally, the evaluation of synthetic 1 and 2 in a human kidney organoid model of nephrotoxicity revealed substantial toxicity of both compounds, although 1 was less toxic than 2 and polymyxin B. These results indicate that modification to position 2 may afford a strategy to mitigate the nephrotoxicity of brevicidine.
Collapse
Affiliation(s)
- Dennise Palpal-Latoc
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Aimee J Horsfall
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Alan J Cameron
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Georgia Campbell
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Scott A Ferguson
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Veronika Sander
- Faculty of Medical and Health Sciences, The University of Auckland 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Alan J Davidson
- Faculty of Medical and Health Sciences, The University of Auckland 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
6
|
Munawar S, Zahoor AF, Hussain SM, Ahmad S, Mansha A, Parveen B, Ali KG, Irfan A. Steglich esterification: A versatile synthetic approach toward the synthesis of natural products, their analogues/derivatives. Heliyon 2024; 10:e23416. [PMID: 38170008 PMCID: PMC10758822 DOI: 10.1016/j.heliyon.2023.e23416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The exploitation of natural products and their analogues in the field of pharmacology has been regarded as of great importance. It can be attributed to the fact that these scaffolds exhibit diverse chemical properties, distinct biological activities and zenith specificity in their biochemical processes, enabling them to act as favorable structures for lead compounds. The synthesis of natural products has been a crafty and hard-to-achieve task. Steglich esterification reaction has played a significant role in that area. It is a mild and efficient technique for constructing ester linkages. This technique involves the establishment of ester moiety via a carbodiimide-based condensation of a carboxylic acid with an alcohol, thiol or an amine catalyzed by dimethyl aminopyridine (DMAP). Specifically, labile reagents with multiple reactive sites are esterified efficiently with the classical and modified Steglich esterification conditions, which accounts for their synthetic utility. This review encloses the performance of the Steglich esterification reaction in forging the ester linkage for executing the total synthesis of natural products and their derivatives since 2018.
Collapse
Affiliation(s)
- Saba Munawar
- Department of Chemistry, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Syed Makhdoom Hussain
- Department of Zoology, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Sajjad Ahmad
- Department of Chemistry, University of Engineering and Technology Lahore, Faisalabad Campus, 38000, Faisalabad, Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Bushra Parveen
- Department of Chemistry, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Kulsoom Ghulam Ali
- Department of Chemistry, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Ahmad Irfan
- Department of Chemistry, King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia
| |
Collapse
|