1
|
Kumbalathara A D USS, Bartolomeu Halicki PC, Kalera K, Swarts BM, Rohde KH, Sucheck SJ. Synthesis and evaluation of Trehalose-Pks13 inhibitor conjugates targeting mycobacteria. Carbohydr Res 2025; 553:109506. [PMID: 40359660 DOI: 10.1016/j.carres.2025.109506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
One obstacle to developing new drugs targeting Mycobacterium tuberculosis (Mtb) is its unique cell wall, which forms a significant permeability barrier to drug transport. Recently, transporters of trehalose and other disaccharides within this structure have been identified. We hypothesized that conjugating small molecules active against Mtb with trehalose could facilitate selective uptake of the trehalose conjugate into the cell. This strategy might enhance penetration of the hydrophobic mycomembrane or enable selective targeting of mycobacteria. To test this hypothesis, we used Cu(I)-catalyzed azide-alkyne Huisgen cycloaddition to conjugate 6-azido trehalose to known polyketide synthase 13 (Pks13) inhibitors, such as 2-aminothiophenes (AT), and benzofurans (BzF) with alkyne moieties, and tested the conjugates' activity against mycobacteria. We found that, in some instances, trehalose served to significantly enhance either the antimycobacterial potency or improve selectivity (by reducing toxicity) of the Pks13 inhibitors. Somewhat surprisingly, in M. smegmatis (Msm), the activity of trehalose-modified AT derivatives was independent of the trehalose transporter LpqY-SugABC, suggesting an alternative mechanism(s) of passage into the cell. Thus, the mechanisms underlying trehalose-enhanced inhibitor activity remains to be elucidated. Future studies applying this Trojan Horse strategy to alternative inhibitor chemotypes will be needed to assess the potential of this approach to overcoming the mycomembrane permeability barrier.
Collapse
Affiliation(s)
| | - Priscila Cristina Bartolomeu Halicki
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States
| | - Karishma Kalera
- Departments of Chemistry and Biochemistry, and Biochemistry, Cell, and Molecular Biology, Central Michigan University, Mount Pleasant, MI, 48859, United States
| | - Benjamin M Swarts
- Departments of Chemistry and Biochemistry, and Biochemistry, Cell, and Molecular Biology, Central Michigan University, Mount Pleasant, MI, 48859, United States.
| | - Kyle H Rohde
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States.
| | - Steven J Sucheck
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH, 43606, United States.
| |
Collapse
|
2
|
Agu K, Banahene N, Santamaria C, Kim CY, Cabral J, Biegas KJ, Papson C, Kruskamp AD, Siegrist MS, Swarts BM. A Photoactivatable Free Mycolic Acid Probe to Investigate Mycobacteria-Host Interactions. ACS Infect Dis 2025; 11:1233-1245. [PMID: 40228107 PMCID: PMC12070411 DOI: 10.1021/acsinfecdis.5c00068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Mycolic acids are long-chain, α-branched, β-hydroxylated fatty acid lipids that populate the outer mycomembrane of mycobacteria, including the pathogen Mycobacterium tuberculosis. Mycolic acids predominantly occur in the form of glycolipids, but nonglycosylated free mycolic acids (fMA), which are generated during mycomembrane remodeling, are major constituents of the M. tuberculosis biofilm extracellular matrix and promote host immune evasion during M. tuberculosis infection. However, our understanding of these processes is nascent, and there is limited information about the fMA-protein interactions involved. To facilitate such studies, we synthesized a fMA analogue probe (x-Alk-MA) containing a photo-cross-linking diazirine and a clickable alkyne to enable live-cell capture and analysis of protein interactors. The synthetic strategy featured asymmetric hydrogenation to establish the β-hydroxy group, diastereoselective alkylation to establish the α-branch, and late-stage modification to install the functional tags. In macrophages, x-Alk-MA recapitulated the cytokine response of native MA and selectively photolabeled TREM2, a host cell receptor for fMAs that suppresses macrophage activation and has been implicated in M. tuberculosis immune evasion. The synthetic strategy, chemical probes, and photolabeling methods disclosed herein should facilitate future studies aimed at understanding the roles of fMA in mycobacterial physiology and pathogenesis.
Collapse
Affiliation(s)
- Kingsley
C. Agu
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Nicholas Banahene
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| | - Carolina Santamaria
- Molecular
and Cellular Biology Program, University
of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Christi Y. Kim
- Department
of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jessica Cabral
- Department
of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Kyle J. Biegas
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| | - Casey Papson
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Andrew D. Kruskamp
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - M. Sloan Siegrist
- Molecular
and Cellular Biology Program, University
of Massachusetts, Amherst, Massachusetts 01003, United States
- Department
of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Benjamin M. Swarts
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| |
Collapse
|
3
|
Marten AD, Haslitt DP, Martin CA, Karthikeyan A, Swanson DH, Kalera K, Johnson UG, Swarts BM, Conway MJ. Trehalose supports the growth of Aedes aegypti cells and modifies gene expression and dengue virus type 2 replication. PLoS Pathog 2025; 21:e1012795. [PMID: 40327709 PMCID: PMC12077775 DOI: 10.1371/journal.ppat.1012795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 05/14/2025] [Accepted: 04/21/2025] [Indexed: 05/08/2025] Open
Abstract
Trehalose is a non-reducing disaccharide that is the major sugar found in insect hemolymph fluid. Trehalose provides energy, and promotes growth, metamorphosis, stress recovery, chitin synthesis, and insect flight. Trehalase is the only enzyme responsible for the hydrolysis of trehalose, which makes it an attractive molecular target. Here we show that Aedes aegypti (Aag2) cells express trehalase and that they can grow on trehalose-containing cell culture media. Trehalase activity was confirmed by treating Aag2 cells with trehalase inhibitors, which inhibited conversion of trehalose to glucose and reduced cell proliferation. Cell entry of a fluorescent trehalose probe was dependent on trehalose concentration, suggesting that trehalose moves across the cell membrane via passive transport. Culturing Aag2 cells with trehalose-containing cell culture media led to significant changes in gene expression, intracellular lipids, and dengue virus replication and specific infectivity, and increased their susceptibility to trehalase inhibitors. These data describe an in vitro model that can be used to rapidly screen novel trehalase inhibitors and probes and underscores the importance of trehalose metabolism in Ae. aegypti physiology and transmission of a mosquito-borne virus.
Collapse
Affiliation(s)
- Andrew D. Marten
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, Michigan, United States of America
| | - Douglas P. Haslitt
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, Michigan, United States of America
| | - Chad A. Martin
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, Michigan, United States of America
| | - Akshitha Karthikeyan
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, Michigan, United States of America
| | - Daniel H. Swanson
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Karishma Kalera
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan, United States of America
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Ulysses G. Johnson
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan, United States of America
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Benjamin M. Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan, United States of America
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Michael J. Conway
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, Michigan, United States of America
| |
Collapse
|
4
|
Marten AD, Haslitt DP, Martin CA, Swanson DH, Kalera K, Johnson UG, Swarts BM, Conway MJ. Trehalose supports the growth of Aedes aegypti cells and modifies gene expression and dengue virus replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626538. [PMID: 39677712 PMCID: PMC11643125 DOI: 10.1101/2024.12.03.626538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Trehalose is a non-reducing disaccharide that is the major sugar found in insect hemolymph fluid. Trehalose provides energy, and promotes growth, metamorphosis, stress recovery, chitin synthesis, and insect flight. Trehalase is the only enzyme responsible for the hydrolysis of trehalose, which makes it an attractive molecular target. Here we show that Aedes aegypti (Aag2) cells express trehalase and that they can grow on trehalose-containing cell culture media. Trehalase activity was confirmed by treating Aag2 cells with trehalase inhibitors, which inhibited conversion of trehalose to glucose and reduced cell proliferation. Cell entry of a fluorescent trehalose probe was dependent on trehalose concentration, suggesting that trehalose moves across the cell membrane via passive transport. Culturing Aag2 cells with trehalose-containing cell culture media led to significant changes in gene expression, intracellular lipids, and dengue virus replication and specific infectivity, and increased their susceptibility to trehalase inhibitors. These data describe an in vitro model that can be used to rapidly screen novel trehalase inhibitors and probes and underscores the importance of trehalose metabolism in Ae. aegypti physiology and transmission of a mosquito-borne virus.
Collapse
Affiliation(s)
- Andrew D Marten
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, USA
| | - Douglas P Haslitt
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, USA
| | - Chad A Martin
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, USA
| | - Daniel H Swanson
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Karishma Kalera
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Ulysses G Johnson
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Michael J Conway
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, USA
| |
Collapse
|
5
|
Eoh H, Lee JJ, Swanson D, Lee SK, Dihardjo S, Lee GY, Sree G, Maskill E, Taylor Z, Van Nieuwenhze M, Singh A, Lee JS, Eum SY, Cho SN, Swarts B. Trehalose catalytic shift is an intrinsic factor in Mycobacterium tuberculosis that enhances phenotypic heterogeneity and multidrug resistance. RESEARCH SQUARE 2024:rs.3.rs-4999164. [PMID: 39315249 PMCID: PMC11419184 DOI: 10.21203/rs.3.rs-4999164/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Drug-resistance (DR) in many bacterial pathogens often arises from the repetitive formation of drug-tolerant bacilli, known as persisters. However, it is unclear whether Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis (TB), undergoes a similar phenotypic transition. Recent metabolomics studies have identified that a change in trehalose metabolism is necessary for Mtb to develop persisters and plays a crucial role in metabolic networks of DR-TB strains. The present study used Mtb mutants lacking the trehalose catalytic shift and showed that the mutants exhibited a significantly lower frequency of the emergence of DR mutants compared to wildtype, due to reduced persister formation. The trehalose catalytic shift enables Mtb persisters to survive under bactericidal antibiotics by increasing metabolic heterogeneity and drug tolerance, ultimately leading to development of DR. Intriguingly, rifampicin (RIF)-resistant bacilli exhibit cross-resistance to a second antibiotic, due to a high trehalose catalytic shift activity. This phenomenon explains how the development of multidrug resistance (MDR) is facilitated by the acquisition of RIF resistance. In this context, the heightened risk of MDR-TB in the lineage 4 HN878 W-Beijing strain can be attributed to its greater trehalose catalytic shift. Genetic and pharmacological inactivation of the trehalose catalytic shift significantly reduced persister formation, subsequently decreasing the incidence of MDR-TB in HN878 W-Beijing strain. Collectively, the trehalose catalytic shift serves as an intrinsic factor of Mtb responsible for persister formation, cross-resistance to multiple antibiotics, and the emergence of MDR-TB. This study aids in the discovery of new TB therapeutics by targeting the trehalose catalytic shift of Mtb.
Collapse
|
6
|
Liu X, Hu J, Wang W, Yang H, Tao E, Ma Y, Sha S. Mycobacterial Biofilm: Mechanisms, Clinical Problems, and Treatments. Int J Mol Sci 2024; 25:7771. [PMID: 39063012 PMCID: PMC11277187 DOI: 10.3390/ijms25147771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Tuberculosis (TB) remains a threat to human health worldwide. Mycobacterium tuberculosis (Mtb) and other nontuberculous mycobacteria (NTM) can form biofilms, and in vitro and animal experiments have shown that biofilms cause serious drug resistance and mycobacterial persistence. Deeper investigations into the mechanisms of mycobacterial biofilm formation and, consequently, the exploration of appropriate antibiofilm treatments to improve the efficiency of current anti-TB drugs will be useful for curing TB. In this review, the genes and molecules that have been recently reported to be involved in mycobacterial biofilm development, such as ABC transporter, Pks1, PpiB, GroEL1, MprB, (p)ppGpp, poly(P), and c-di-GMP, are summarized. Biofilm-induced clinical problems, including biofilm-related infections and enhanced virulence, as well as their possible mechanisms, are also discussed in detail. Moreover, we also illustrate newly synthesized anti-TB agents that target mycobacterial biofilm, as well as some assistant methods with high efficiency in reducing biofilms in hosts, such as the use of nanoparticles.
Collapse
Affiliation(s)
- Xining Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| | - Junxing Hu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| | - Wenzhen Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| | - Hanyu Yang
- The Queen’s University of Belfast Joint College, China Medical University, Shenyang 110122, China;
| | - Erning Tao
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| | - Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| |
Collapse
|
7
|
Assefa M, Girmay G. Mycobacterium tuberculosis Biofilms: Immune Responses, Role in TB Pathology, and Potential Treatment. Immunotargets Ther 2024; 13:335-342. [PMID: 38974843 PMCID: PMC11227863 DOI: 10.2147/itt.s455744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024] Open
Abstract
Tuberculosis (TB) is a major public health problem worldwide, and the burden of drug-resistant TB is rapidly increasing. Although there are literatures about the Mtb biofilms, their impact on immune responses has not yet been summarized. This review article provides recent knowledge on Mycobacterium tuberculosis (Mtb) biofilm-immunity interactions, their importance in pulmonary TB pathology, and immune-based therapy targeting Mtb biofilms. Pellicle/biofilm formation in Mtb contributes to drug resistance, persistence, chronicity, surface attachment, transfer of resistance genes, and modulation of the immune response, including reduced complement activation, changes in the expression of antigenic proteins, enhanced activation of T-lymphocytes, elevated local IFNγ+ T cells, and strong antibody production. The combination of anti-TB drugs and anti-biofilm agents has recently become an effective strategy to improve TB treatment. Additionally, immune-targeted therapy and biofilm-based vaccines are crucial for TB prevention.
Collapse
Affiliation(s)
- Muluneh Assefa
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Getu Girmay
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
8
|
Urbániková Ľ, Janeček Š. Trehalose synthases from the subfamily GH13_16 involved in α-glucan biosynthesis - a focus on their maltokinase domain. Int J Biol Macromol 2024; 268:131680. [PMID: 38641282 DOI: 10.1016/j.ijbiomac.2024.131680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
The subfamily GH13_16 trehalose synthase (TreS) converts maltose to trehalose and vice versa. Typically, it consists of three domains, but it may contain a C-terminal extension exhibiting clear sequence features of a maltokinase (MaK). The present in silico study was focused on collection of naturally fused TreS-MaKs and their subsequent detailed bioinformatics analysis. Hence a set of total 3354 unique sequences was compared consisting of 1900 single TreSs, 1426 fused TreS-MaKs and 28 single MaKs. Fused TreS-MaKs were divided into five groups, namely with a standard MaK, with mutations in the maltose-binding site, of the catalytic nucleophile, of the general acid/base and of both catalytic residues. Sequence logos bearing the best conserved sequence regions were prepared for both TreSs and MaKs in an effort to find unique sequence features. In addition, linkers connecting the TreS and MaK parts in the fused enzymes were analysed. This analysis revealed that MaKs in fused enzymes have an extended N-terminal regions compared to single MaKs. Finally, the evolutionary relationships were demonstrated by phylogenetic trees of TreS parts from single TreSs and fused TreS-MaKs from the same organism as well as of single TreSs existing in multiple isoforms in the same organism.
Collapse
Affiliation(s)
- Ľubica Urbániková
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia
| | - Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia; Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, SK-91701 Trnava, Slovakia.
| |
Collapse
|