1
|
Sarathy JP. Molecular and microbiological methods for the identification of nonreplicating Mycobacterium tuberculosis. PLoS Pathog 2024; 20:e1012595. [PMID: 39383167 PMCID: PMC11463790 DOI: 10.1371/journal.ppat.1012595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
Chronic tuberculosis (TB) disease, which requires months-long chemotherapy with multiple antibiotics, is defined by diverse pathological manifestations and bacterial phenotypes. Targeting drug-tolerant bacteria in the host is critical to achieving a faster and durable cure for TB. In order to facilitate this field of research, we need to consider the physiology of persistent MTB during infection, which is often associated with the nonreplicating (NR) state. However, the traditional approach to quantifying bacterial burden through colony enumeration alone only informs on the abundance of live bacilli at the time of sampling, and provides an incomplete picture of the replicative state of the pathogen and the extent to which bacterial replication is balanced by ongoing cell death. Modern approaches to profiling bacterial replication status provide a better understanding of inter- and intra-population dynamics under different culture conditions and in distinct host microenvironments. While some methods use molecular markers of DNA replication and cell division, other approaches take advantage of advances in the field of microfluidics and live-cell microscopy. Considerable effort has been made over the past few decades to develop preclinical in vivo models of TB infection and some are recognized for more closely recapitulating clinical disease pathology than others. Unique lesion compartments presenting different environmental conditions produce significant heterogeneity between Mycobacterium tuberculosis populations within the host. While cellular lesion compartments appear to be more permissive of ongoing bacterial replication, caseous foci are associated with the maintenance of M. tuberculosis in a state of static equilibrium. The accurate identification of nonreplicators and where they hide within the host have significant implications for the way novel chemotherapeutic agents and regimens are designed for persistent infections.
Collapse
Affiliation(s)
- Jansy Passiflora Sarathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, United States of America
- Hackensack Meridian School of Medicine, Department of Medical Sciences, Nutley, New Jersey, United States of America
| |
Collapse
|
2
|
Perveen S, Negi A, Saini S, Gangwar A, Sharma R. Identification of Chemical Scaffolds Targeting Drug-Resistant and Latent Mycobacterium tuberculosis through High-Throughput Whole-Cell Screening. ACS Infect Dis 2024; 10:513-526. [PMID: 38238154 DOI: 10.1021/acsinfecdis.3c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Identification of structurally unique chemical entities targeting unexplored bacterial targets is a prerequisite to combat increasing drug resistance against Mycobacterium tuberculosis. This study employed a whole-cell screening approach as an initial filter to scrutinize a 10,000-compound chemical library, resulting in the discovery of seven potent compounds with MIC values ranging from 1.56 to 25 μM. These compounds were categorized into four distinct chemical groups. Remarkably, they demonstrated efficacy against drug-resistant and nonreplicating tuberculosis strains, highlighting their effectiveness across different infection states. With a favorable selectivity index (>10), these compounds showed a safe therapeutic range and exhibited potency in an intracellular model of Mtb infection, mimicking the in vivo setup. Combining these identified hits with established anti-TB drugs revealed additive effects with rifampicin, isoniazid, and bedaquiline. Notably, IIIM-IDD-01 exhibited synergy with isoniazid and bedaquiline, likely due to their complementary mechanisms of targeting Mtb. Most potent hits, IIIM-IDD-01 and IIIM-IDD-02, displayed time- and concentration-dependent killing of Mtb. Mechanistic insights were sought through SEM and docking studies, although comprehensive evaluation is ongoing to unravel the hits' specific targets and modes of action. The hits demonstrated favorable pharmacokinetic properties (ADME-Tox) and showed a low risk of adverse effects, along with a predicted high level of oral bioavailability. These promising hits can serve as an initial basis for subsequent medicinal chemistry endeavors aimed at developing a new series of anti-TB agents. Moreover, the study affirms the significance of high-throughput in vitro assays for the TB drug discovery. It also emphasizes the necessity of targeting diverse TB strains to address the heterogeneity of tuberculosis bacteria.
Collapse
Affiliation(s)
- Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anjali Negi
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sapna Saini
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anjali Gangwar
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Bonnett S, Jee JA, Chettiar S, Ovechkina Y, Korkegian A, Greve E, Odingo J, Parish T. Identification of 2-Amino Benzothiazoles with Bactericidal Activity against Mycobacterium tuberculosis. Microbiol Spectr 2023; 11:e0497422. [PMID: 36688635 PMCID: PMC9927457 DOI: 10.1128/spectrum.04974-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/24/2023] Open
Abstract
We identified an amino-benzothiazole scaffold from a whole-cell screen against recombinant Mycobacterium tuberculosis under expressing the essential signal peptidase LepB. The seed molecule had 2-fold higher activity against the LepB hypomorph. Through a combination of purchase and chemical synthesis, we explored the structure-activity relationship for this series; 34 analogs were tested for antitubercular activity and for cytotoxicity against eukaryotic cells. We identified molecules with improved potency and reduced cytotoxicity. However, molecules did not appear to target LepB directly and did not inhibit protein secretion. Key compounds showed good permeability, low protein binding, and lack of CYP inhibition, but metabolic stability was poor with short half-lives. The seed molecule showed good bactericidal activity against both replicating and nonreplicating bacteria, as well as potency against intracellular M. tuberculosis in murine macrophages. Overall, the microbiological properties of the series are attractive if metabolic stability can be improved, and identification of the target could assist in the development of this series. IMPORTANCE Mycobacterium tuberculosis, the causative agent of tuberculosis, is a serious global health problem requiring the development of new therapeutics. We previously ran a high-throughput screen and identified a series of compounds with antitubercular activity. In this paper, we test analogs of our hit molecules for activity against M. tuberculosis, as well as for activity against eukaryotic cells. We identified molecules with improved selectivity. Our molecules killed both replicating and nonreplicating bacteria but did not work by targeting protein secretion.
Collapse
Affiliation(s)
- Shilah Bonnett
- TB Discovery Research, Infectious Disease Research Institute, Seattle, Washington, USA
| | - Jo-Ann Jee
- TB Discovery Research, Infectious Disease Research Institute, Seattle, Washington, USA
| | - Somsundaram Chettiar
- TB Discovery Research, Infectious Disease Research Institute, Seattle, Washington, USA
| | - Yulia Ovechkina
- TB Discovery Research, Infectious Disease Research Institute, Seattle, Washington, USA
| | - Aaron Korkegian
- TB Discovery Research, Infectious Disease Research Institute, Seattle, Washington, USA
| | - Eric Greve
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Joshua Odingo
- TB Discovery Research, Infectious Disease Research Institute, Seattle, Washington, USA
| | - Tanya Parish
- TB Discovery Research, Infectious Disease Research Institute, Seattle, Washington, USA
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
4
|
Sullivan JR, Yao J, Courtine C, Lupien A, Herrmann J, Müller R, Behr MA. Natural Products Lysobactin and Sorangicin A Show In Vitro Activity against Mycobacterium abscessus Complex. Microbiol Spectr 2022; 10:e0267222. [PMID: 36342177 PMCID: PMC9769517 DOI: 10.1128/spectrum.02672-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022] Open
Abstract
The prevalence of lung disease caused by Mycobacterium abscessus is increasing among patients with cystic fibrosis. M. abscessus is a multidrug resistant opportunistic pathogen that is notoriously difficult to treat due to a lack of efficacious therapeutic regimens. Currently, there are no standard regimens, and treatment guidelines are based empirically on drug susceptibility testing. Thus, novel antibiotics are required. Natural products represent a vast pool of biologically active compounds that have a history of being a good source of antibiotics. Here, we screened a library of 517 natural products purified from fermentations of various bacteria, fungi, and plants against M. abscessus ATCC 19977. Lysobactin and sorangicin A were active against the M. abscessus complex and drug resistant clinical isolates. These natural products merit further consideration to be included in the M. abscessus drug pipeline. IMPORTANCE The many thousands of people living with cystic fibrosis are at a greater risk of developing a chronic lung infection caused by Mycobacterium abscessus. Since M. abscessus is clinically resistant to most anti-TB drugs available, treatment options are limited to macrolides. Despite macrolide-based therapies, cure rates for M. abscessus lung infections are 50%. Using an in-house library of curated natural products, we identified lysobactin and sorangicin A as novel scaffolds for the future development of antimicrobials for patients with M. abscessus infections.
Collapse
Affiliation(s)
- Jaryd R. Sullivan
- Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- McGill International TB Centre, Montréal, Québec, Canada
| | - Jacqueline Yao
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Christophe Courtine
- Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Andréanne Lupien
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- McGill International TB Centre, Montréal, Québec, Canada
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI),Saarbrücken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI),Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Marcel A. Behr
- Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- McGill International TB Centre, Montréal, Québec, Canada
- Department of Medicine, McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
5
|
Kumar A, Karkara BB, Panda G. Novel candidates in the clinical development pipeline for TB drug development and their Synthetic Approaches. Chem Biol Drug Des 2021; 98:787-827. [PMID: 34397161 DOI: 10.1111/cbdd.13934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 11/29/2022]
Abstract
Tuberculosis (TB) is an infection caused by Mycobacterium tuberculosis (Mtb) and one of the deadliest infectious diseases in the world. Mtb has the ability to become dormant within the host and to develop resistance. Hence, new antitubercular agents are required to overcome problems in the treatment of multidrug resistant-Tb (MDR-Tb) and extensively drug resistant-Tb (XDR-Tb) along with shortening the treatment time. Several efforts are being made to develop very effective new drugs for Tb, within the pharmaceutical industry, the academia, and through public private partnerships. This review will address the anti-tubercular activities, biological target, mode of action, synthetic approaches and thoughtful concept for the development of several new drugs currently in the clinical trial pipeline (up to October 2019) for tuberculosis. The aim of this review may be very useful in scheming new chemical entities (NCEs) for Mtb.
Collapse
Affiliation(s)
- Amit Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
| | - Bidhu Bhusan Karkara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India.,Department of Pharmaceutical Science, Vignan's Foundation for Science, Technology and Research University, Guntur, 522213, AP, India
| | - Gautam Panda
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
| |
Collapse
|
6
|
Abstract
Models of nonreplication help us understand the biology of persistent Mycobacterium tuberculosis. High throughput screening (HTS) against nonreplicating M. tuberculosis may lead to identification of tool compounds that affect pathways on which bacterial survival depends in such states and to development of drugs that can overcome phenotypic resistance to conventional antimycobacterial agents, which are mostly active against replicating M. tuberculosis. We describe a multistress model of nonreplication that mimics some of the microenvironmental conditions that M. tuberculosis faces in the host as adapted for HTS. The model includes acidic pH, mild hypoxia, a flux of nitric oxide, and other reactive nitrogen intermediates arising from nitrite at low pH and low concentrations of a fatty acid (butyrate) as a carbon source.
Collapse
|
7
|
Aldridge BB, Barros-Aguirre D, Barry CE, Bates RH, Berthel SJ, Boshoff HI, Chibale K, Chu XJ, Cooper CB, Dartois V, Duncan K, Fotouhi N, Gusovsky F, Hipskind PA, Kempf DJ, Lelièvre J, Lenaerts AJ, McNamara CW, Mizrahi V, Nathan C, Olsen DB, Parish T, Petrassi HM, Pym A, Rhee KY, Robertson GT, Rock JM, Rubin EJ, Russell B, Russell DG, Sacchettini JC, Schnappinger D, Schrimpf M, Upton AM, Warner P, Wyatt PG, Yuan Y. The Tuberculosis Drug Accelerator at year 10: what have we learned? Nat Med 2021; 27:1333-1337. [PMID: 34226736 PMCID: PMC10478072 DOI: 10.1038/s41591-021-01442-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Tuberculosis Drug Accelerator, an experiment designed to facilitate collaboration in TB drug discovery by breaking down barriers among competing labs and institutions, has reached the 10-year landmark. We review the consortium’s achievements, advantages and limitations and advocate for application of similar models to other diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xin-Jie Chu
- Global Health Drug Discovery Institute, Beijing, China
| | | | - Véronique Dartois
- Hackensack Meridian Health Center for Discovery & Innovation, Nutley, NJ, USA
| | - Ken Duncan
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Nader Fotouhi
- Global Alliance for TB Drug Development, New York, NY, USA
| | | | | | | | | | | | - Case W McNamara
- Calibr, a division of the Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | - Tanya Parish
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Kyu Y Rhee
- Weill Cornell Medicine, New York, NY, USA
| | | | | | - Eric J Rubin
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Betsy Russell
- Bill & Melinda Gates Medical Research Institute, Boston, MA, USA
| | | | | | | | | | | | - Peter Warner
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | | | - Ying Yuan
- Global Health Drug Discovery Institute, Beijing, China
| |
Collapse
|
8
|
Harnagel A, Lopez Quezada L, Park SW, Baranowski C, Kieser K, Jiang X, Roberts J, Vaubourgeix J, Yang A, Nelson B, Fay A, Rubin E, Ehrt S, Nathan C, Lupoli TJ. Nonredundant functions of Mycobacterium tuberculosis chaperones promote survival under stress. Mol Microbiol 2020; 115:272-289. [PMID: 32996193 DOI: 10.1111/mmi.14615] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Bacterial chaperones ClpB and DnaK, homologs of the respective eukaryotic heat shock proteins Hsp104 and Hsp70, are essential in the reactivation of toxic protein aggregates that occur during translation or periods of stress. In the pathogen Mycobacterium tuberculosis (Mtb), the protective effect of chaperones extends to survival in the presence of host stresses, such as protein-damaging oxidants. However, we lack a full understanding of the interplay of Hsps and other stress response genes in mycobacteria. Here, we employ genome-wide transposon mutagenesis to identify the genes that support clpB function in Mtb. In addition to validating the role of ClpB in Mtb's response to oxidants, we show that HtpG, a homolog of Hsp90, plays a distinct role from ClpB in the proteotoxic stress response. While loss of neither clpB nor htpG is lethal to the cell, loss of both through genetic depletion or small molecule inhibition impairs recovery after exposure to host-like stresses, especially reactive nitrogen species. Moreover, defects in cells lacking clpB can be complemented by overexpression of other chaperones, demonstrating that Mtb's stress response network depends upon finely tuned chaperone expression levels. These results suggest that inhibition of multiple chaperones could work in concert with host immunity to disable Mtb.
Collapse
Affiliation(s)
- Alexa Harnagel
- Department of Chemistry, New York University, New York, NY, USA
| | - Landys Lopez Quezada
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Catherine Baranowski
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Karen Kieser
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Yang
- Department of Chemistry, New York University, New York, NY, USA
| | - Brock Nelson
- Department of Chemistry, New York University, New York, NY, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric Rubin
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, NY, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
9
|
Lopez Quezada L, Smith R, Lupoli TJ, Edoo Z, Li X, Gold B, Roberts J, Ling Y, Park SW, Nguyen Q, Schoenen FJ, Li K, Hugonnet JE, Arthur M, Sacchettini JC, Nathan C, Aubé J. Activity-Based Protein Profiling Reveals That Cephalosporins Selectively Active on Non-replicating Mycobacterium tuberculosis Bind Multiple Protein Families and Spare Peptidoglycan Transpeptidases. Front Microbiol 2020; 11:1248. [PMID: 32655524 PMCID: PMC7324553 DOI: 10.3389/fmicb.2020.01248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
As β-lactams are reconsidered for the treatment of tuberculosis (TB), their targets are assumed to be peptidoglycan transpeptidases, as verified by adduct formation and kinetic inhibition of Mycobacterium tuberculosis (Mtb) transpeptidases by carbapenems active against replicating Mtb. Here, we investigated the targets of recently described cephalosporins that are selectively active against non-replicating (NR) Mtb. NR-active cephalosporins failed to inhibit recombinant Mtb transpeptidases. Accordingly, we used alkyne analogs of NR-active cephalosporins to pull down potential targets through unbiased activity-based protein profiling and identified over 30 protein binders. None was a transpeptidase. Several of the target candidates are plausibly related to Mtb's survival in an NR state. However, biochemical tests and studies of loss of function mutants did not identify a unique target that accounts for the bactericidal activity of these beta-lactams against NR Mtb. Instead, NR-active cephalosporins appear to kill Mtb by collective action on multiple targets. These results highlight the ability of these β-lactams to target diverse classes of proteins.
Collapse
Affiliation(s)
- Landys Lopez Quezada
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Robert Smith
- Chemical Methodologies & Library Development Center, The University of Kansas, Lawrence, KS, United States
| | - Tania J. Lupoli
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Zainab Edoo
- Sorbonne Université, Sorbonne Paris Cité, Université de Paris, INSERM, Centre de Recherche des Cordeliers, CRC, Paris, France
| | - Xiaojun Li
- Departments of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Ben Gold
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Julia Roberts
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Yan Ling
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Sae Woong Park
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Quyen Nguyen
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Frank J. Schoenen
- Chemical Methodologies & Library Development Center, The University of Kansas, Lawrence, KS, United States
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jean-Emmanuel Hugonnet
- Sorbonne Université, Sorbonne Paris Cité, Université de Paris, INSERM, Centre de Recherche des Cordeliers, CRC, Paris, France
| | - Michel Arthur
- Sorbonne Université, Sorbonne Paris Cité, Université de Paris, INSERM, Centre de Recherche des Cordeliers, CRC, Paris, France
| | - James C. Sacchettini
- Departments of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Carl Nathan
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Jeffrey Aubé
- Chemical Methodologies & Library Development Center, The University of Kansas, Lawrence, KS, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
10
|
Lopez Quezada L, Li K, McDonald SL, Nguyen Q, Perkowski AJ, Pharr CW, Gold B, Roberts J, McAulay K, Saito K, Somersan Karakaya S, Javidnia PE, Porras de Francisco E, Amieva MM, Dı́az SP, Mendoza Losana A, Zimmerman M, Liang HPH, Zhang J, Dartois V, Sans S, Lagrange S, Goullieux L, Roubert C, Nathan C, Aubé J. Dual-Pharmacophore Pyrithione-Containing Cephalosporins Kill Both Replicating and Nonreplicating Mycobacterium tuberculosis. ACS Infect Dis 2019; 5:1433-1445. [PMID: 31184461 DOI: 10.1021/acsinfecdis.9b00112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The historical view of β-lactams as ineffective antimycobacterials has given way to growing interest in the activity of this class against Mycobacterium tuberculosis (Mtb) in the presence of a β-lactamase inhibitor. However, most antimycobacterial β-lactams kill Mtb only or best when the bacilli are replicating. Here, a screen of 1904 β-lactams led to the identification of cephalosporins substituted with a pyrithione moiety at C3' that are active against Mtb under both replicating and nonreplicating conditions, neither activity requiring a β-lactamase inhibitor. Studies showed that activity against nonreplicating Mtb required the in situ release of the pyrithione, independent of the known class A β-lactamase, BlaC. In contrast, replicating Mtb could be killed both by released pyrithione and by the parent β-lactam. Thus, the antimycobacterial activity of pyrithione-containing cephalosporins arises from two mechanisms that kill mycobacteria in different metabolic states.
Collapse
Affiliation(s)
- Landys Lopez Quezada
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Stacey L. McDonald
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Quyen Nguyen
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Andrew J. Perkowski
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Cameron W. Pharr
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Kathrine McAulay
- Center for Global Health, Weill Cornell Medicine, 402 East 67th Street, New York, New York 10065, United States
- Les Centres GHESKIO, 33, Boulevard Harry Truman, Port-au-Prince, Haiti
| | - Kohta Saito
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Selin Somersan Karakaya
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Prisca Elis Javidnia
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Esther Porras de Francisco
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Manuel Marin Amieva
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Sara Palomo Dı́az
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Alfonso Mendoza Losana
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Matthew Zimmerman
- Public Health Research Institute, New Jersey Medical School, Rutgers, the State University of New Jersey, 225 Warren Street, Newark, New Jersey 07013, United States
| | - Hsin-Pin Ho Liang
- Public Health Research Institute, New Jersey Medical School, Rutgers, the State University of New Jersey, 225 Warren Street, Newark, New Jersey 07013, United States
| | - Jun Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Veronique Dartois
- Public Health Research Institute, New Jersey Medical School, Rutgers, the State University of New Jersey, 225 Warren Street, Newark, New Jersey 07013, United States
| | - Stéphanie Sans
- Evotec ID (Lyon), SAS, 1541, Avenue Marcel Merieux, Marcy l’Etoile 69280, France
| | - Sophie Lagrange
- Evotec ID (Lyon), SAS, 1541, Avenue Marcel Merieux, Marcy l’Etoile 69280, France
| | - Laurent Goullieux
- Evotec ID (Lyon), SAS, 1541, Avenue Marcel Merieux, Marcy l’Etoile 69280, France
| | - Christine Roubert
- Evotec ID (Lyon), SAS, 1541, Avenue Marcel Merieux, Marcy l’Etoile 69280, France
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
11
|
Bactericidal Disruption of Magnesium Metallostasis in Mycobacterium tuberculosis Is Counteracted by Mutations in the Metal Ion Transporter CorA. mBio 2019; 10:mBio.01405-19. [PMID: 31289182 PMCID: PMC6747715 DOI: 10.1128/mbio.01405-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Antimycobacterial agents might shorten the course of treatment by reducing the number of phenotypically tolerant bacteria if they could kill M. tuberculosis in diverse metabolic states. Here we report two chemically disparate classes of agents that kill M. tuberculosis both when it is replicating and when it is not. Under replicating conditions, the tricyclic 4-hydroxyquinolines and a barbituric acid analogue deplete intrabacterial magnesium as a mechanism of action, and for both compounds, mutations in CorA, a putative Mg2+/Co2+ transporter, conferred resistance to the compounds when M. tuberculosis was under replicating conditions but not under nonreplicating conditions, illustrating that a given compound can kill M. tuberculosis in different metabolic states by disparate mechanisms. Targeting magnesium metallostasis represents a previously undescribed antimycobacterial mode of action that might cripple M. tuberculosis in a Mg2+-deficient intraphagosomal environment of macrophages. A defining characteristic of treating tuberculosis is the need for prolonged administration of multiple drugs. This may be due in part to subpopulations of slowly replicating or nonreplicating Mycobacterium tuberculosis bacilli exhibiting phenotypic tolerance to most antibiotics in the standard treatment regimen. Confounding this problem is the increasing incidence of heritable multidrug-resistant M. tuberculosis. A search for new antimycobacterial chemical scaffolds that can kill phenotypically drug-tolerant mycobacteria uncovered tricyclic 4-hydroxyquinolines and a barbituric acid derivative with mycobactericidal activity against both replicating and nonreplicating M. tuberculosis. Both families of compounds depleted M. tuberculosis of intrabacterial magnesium. Complete or partial resistance to both chemotypes arose from mutations in the putative mycobacterial Mg2+/Co2+ ion channel, CorA. Excess extracellular Mg2+, but not other divalent cations, diminished the compounds’ cidality against replicating M. tuberculosis. These findings establish depletion of intrabacterial magnesium as an antimicrobial mechanism of action and show that M. tuberculosis magnesium homeostasis is vulnerable to disruption by structurally diverse, nonchelating, drug-like compounds.
Collapse
|
12
|
Mashabela GT, de Wet TJ, Warner DF. Mycobacterium tuberculosis Metabolism. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0067-2019. [PMID: 31350832 PMCID: PMC10957194 DOI: 10.1128/microbiolspec.gpp3-0067-2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis is the cause of tuberculosis (TB), a disease which continues to overwhelm health systems in endemic regions despite the existence of effective combination chemotherapy and the widespread use of a neonatal anti-TB vaccine. For a professional pathogen, M. tuberculosis retains a surprisingly large proportion of the metabolic repertoire found in nonpathogenic mycobacteria with very different lifestyles. Moreover, evidence that additional functions were acquired during the early evolution of the M. tuberculosis complex suggests the organism has adapted (and augmented) the metabolic pathways of its environmental ancestor to persistence and propagation within its obligate human host. A better understanding of M. tuberculosis pathogenicity, however, requires the elucidation of metabolic functions under disease-relevant conditions, a challenge complicated by limited knowledge of the microenvironments occupied and nutrients accessed by bacilli during host infection, as well as the reliance in experimental mycobacteriology on a restricted number of experimental models with variable relevance to clinical disease. Here, we consider M. tuberculosis metabolism within the framework of an intimate host-pathogen coevolution. Focusing on recent advances in our understanding of mycobacterial metabolic function, we highlight unusual adaptations or departures from the better-characterized model intracellular pathogens. We also discuss the impact of these mycobacterial "innovations" on the susceptibility of M. tuberculosis to existing and experimental anti-TB drugs, as well as strategies for targeting metabolic pathways. Finally, we offer some perspectives on the key gaps in the current knowledge of fundamental mycobacterial metabolism and the lessons which might be learned from other systems.
Collapse
Affiliation(s)
- Gabriel T Mashabela
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Current address: Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, University of Stellenbosch, South Africa
| | - Timothy J de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, South Africa
| |
Collapse
|
13
|
Sankhe K, Khan T, Bhavsar C, Momin M, Omri A. Selective drug deposition in lungs through pulmonary drug delivery system for effective management of drug-resistant TB. Expert Opin Drug Deliv 2019; 16:525-538. [PMID: 31007100 DOI: 10.1080/17425247.2019.1609937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) is a major health issue and continues to be a global health concern. Despite significant advancements in treatment modalities, ~1.6 million deaths worldwide occur due to TB infection. This is because of tuberculosis reservoirs in the alveoli making it a challenge for the formulation scientist to target this. AREAS COVERED This review recent investigations on the forefront of pulmonary drug delivery for managing MDR-TB and XDR-TB. Novel delivery systems like liposomes, niosomes, employing carbohydrate, and -coated molecules via conjugation to selectively deliver the drugs to the lung TB reservoir via pulmonary administration are discussed. EXPERT OPINION Poor patient adherence to treatment due to side effects and extended therapeutic regimen leads to drug-resistant TB. Thus, it is essential to design novel strategies this issue by developing new chemical entities and/or new delivery systems for delivery to the lungs, consequently reducing the side effects, the frequency and the duration of treatment. Delivery of drugs to enhance the efficacy of new/existing anti-TB drugs to overcome the resistance and enhance patient compliance is underway.
Collapse
Affiliation(s)
- Kaksha Sankhe
- a Department of Pharm Chem and QA , SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai , India
| | - Tabassum Khan
- a Department of Pharm Chem and QA , SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai , India
| | - Chintan Bhavsar
- b Department of Pharmaceutics , SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai , India
| | - Munira Momin
- b Department of Pharmaceutics , SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai , India
| | - Abdelwahab Omri
- c Department of Chemistry & Biochemistry , Laurentian University , Sudbury , Canada
| |
Collapse
|
14
|
Lee BS, Pethe K. Therapeutic potential of promiscuous targets in Mycobacterium tuberculosis. Curr Opin Pharmacol 2018; 42:22-26. [PMID: 30015177 DOI: 10.1016/j.coph.2018.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/31/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022]
Abstract
In the field of tuberculosis drug development, the term 'promiscuous' was coined to collectively describe targets that repeatedly show up in whole-cell screenings. With the current climate leaning towards the exclusion of these targets in future drug screens, this review discusses and clarifies misconceptions surrounding this classification, the prospects of developing compounds targeting promiscuous targets, and their potential impact on tuberculosis drug development. The dominance of these targets in cell-based screens reflect not only bias introduced by experimental setup, but also some of the pathogen's greatest vulnerabilities. Coupled with favourable predictions of their in vivo efficacies and synergism with other TB drugs, these targets open opportunities to be explored for the development of rational drug combination for tuberculosis.
Collapse
Affiliation(s)
- Bei Shi Lee
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kevin Pethe
- School of Biological Sciences, Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Singapore.
| |
Collapse
|
15
|
Chikhale RV, Barmade MA, Murumkar PR, Yadav MR. Overview of the Development of DprE1 Inhibitors for Combating the Menace of Tuberculosis. J Med Chem 2018; 61:8563-8593. [PMID: 29851474 DOI: 10.1021/acs.jmedchem.8b00281] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Decaprenylphosphoryl-β-d-ribose 2'-epimerase (DprE1), a vital enzyme for cell wall synthesis, plays a crucial role in the formation of lipoarabinomannan and arabinogalactan. It was first reported as a druggable target on the basis of inhibitors discovered in high throughput screening of a drug library. Since then, inhibitors with different types of chemical scaffolds have been reported for their activity against this enzyme. Formation of a covalent or noncovalent bond by the interacting ligand with the enzyme causes loss of its catalytic activity which ultimately leads to the death of the mycobacterium. This Perspective describes various DprE1 inhibitors as anti-TB agents reported to date.
Collapse
Affiliation(s)
- Rupesh V Chikhale
- Faculty of Pharmacy, Kalabhavan Campus , The Maharaja Sayajirao University of Baroda , Vadodara 390 001 , India.,School of Health Sciences, Division of Pharmacy and Optometry , University of Manchester , Manchester M13 9PL , U.K
| | - Mahesh A Barmade
- Faculty of Pharmacy, Kalabhavan Campus , The Maharaja Sayajirao University of Baroda , Vadodara 390 001 , India
| | - Prashant R Murumkar
- Faculty of Pharmacy, Kalabhavan Campus , The Maharaja Sayajirao University of Baroda , Vadodara 390 001 , India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan Campus , The Maharaja Sayajirao University of Baroda , Vadodara 390 001 , India
| |
Collapse
|
16
|
Dibenzofuran, dibenzothiophene and N-methyl carbazole tethered 2-aminothiazoles and their cinnamamides as potent inhibitors of Mycobacterium tuberculosis. Bioorg Med Chem Lett 2018; 28:1610-1614. [PMID: 29598909 DOI: 10.1016/j.bmcl.2018.03.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/06/2018] [Accepted: 03/17/2018] [Indexed: 11/20/2022]
Abstract
Herein described the design, synthesis and antitubercular evaluation of novel series of dibenzofuran, dibenzothiophene and N-methyl carbazole tethered 2-aminothiazoles and their cinnamamide analogs. One pot condensation of N-methyl carbazole, dibenzofuran and dibenzothiophene methyl ketones with thiourea in the presence of Iodine and CuO gave respective 2-aminothiazoles 4-6 in very good yields. Aminothiazoles were further coupled with substituted cinnamic acids using acid-amine coupling conditions to give desired cinnamamide analogs 8a-e, 9a-e and 10a-e. All the newly synthesized compounds were fully characterized by their NMR and mass spectral analysis. In vitro screening of new derivatives against Mycobacterium tuberculosis H37Rv (Mtb) resulted 8c, 10d and 10e (MIC: 0.78 µg/mL) and 2-aminothiazoles 5 and 6 (MIC: 1.56 µg/mL) as potent compounds with lower cytotoxicity profile.
Collapse
|
17
|
Evans JC, Mizrahi V. Priming the tuberculosis drug pipeline: new antimycobacterial targets and agents. Curr Opin Microbiol 2018; 45:39-46. [PMID: 29482115 DOI: 10.1016/j.mib.2018.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/12/2018] [Indexed: 12/17/2022]
Abstract
Claiming close to two million lives each year, tuberculosis is now the leading cause of death from an infectious disease. The rise in number of Mycobacterium tuberculosis (Mtb) strains resistant to existing TB drugs has underscored the urgent need to develop new antimycobacterials with novel mechanisms of action. To meet this need, a drug pipeline has been established that is populated with new and repurposed drugs. Recent advances in identifying molecules with inhibitory activity against Mtb under conditions modelled on those encountered during infection, and in elucidating their mechanisms of action, have primed the pipeline with promising drug/target couples, hit compounds and new targets. In this review, we highlight recent advances and emerging areas of opportunity in this field.
Collapse
Affiliation(s)
- Joanna C Evans
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa.
| |
Collapse
|
18
|
Abstract
![]()
Current tuberculosis
(TB) drug development efforts are not sufficient
to end the global TB epidemic. Recent efforts have focused on the
development of whole-cell screening assays because biochemical, target-based
inhibitor screens during the last two decades have not delivered new
TB drugs. Mycobacterium tuberculosis (Mtb), the causative
agent of TB, encounters diverse microenvironments and can be found
in a variety of metabolic states in the human host. Due to the complexity
and heterogeneity of Mtb infection, no single model can fully recapitulate
the in vivo conditions in which Mtb is found in TB patients, and there
is no single “standard” screening condition to generate
hit compounds for TB drug development. However, current screening
assays have become more sophisticated as researchers attempt to mirror
the complexity of TB disease in the laboratory. In this review, we
describe efforts using surrogates and engineered strains of Mtb to
focus screens on specific targets. We explain model culture systems
ranging from carbon starvation to hypoxia, and combinations thereof,
designed to represent the microenvironment which Mtb encounters in
the human body. We outline ongoing efforts to model Mtb infection
in the lung granuloma. We assess these different models, their ability
to generate hit compounds, and needs for further TB drug development,
to provide direction for future TB drug discovery.
Collapse
Affiliation(s)
- Tianao Yuan
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University , Stellenbosch 7600, South Africa
| |
Collapse
|
19
|
Gygli SM, Borrell S, Trauner A, Gagneux S. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol Rev 2018; 41:354-373. [PMID: 28369307 DOI: 10.1093/femsre/fux011] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/17/2017] [Indexed: 11/12/2022] Open
Abstract
Antibiotic-resistant Mycobacterium tuberculosis strains are threatening progress in containing the global tuberculosis epidemic. Mycobacterium tuberculosis is intrinsically resistant to many antibiotics, limiting the number of compounds available for treatment. This intrinsic resistance is due to a number of mechanisms including a thick, waxy, hydrophobic cell envelope and the presence of drug degrading and modifying enzymes. Resistance to the drugs which are active against M. tuberculosis is, in the absence of horizontally transferred resistance determinants, conferred by chromosomal mutations. These chromosomal mutations may confer drug resistance via modification or overexpression of the drug target, as well as by prevention of prodrug activation. Drug resistance mutations may have pleiotropic effects leading to a reduction in the bacterium's fitness, quantifiable e.g. by a reduction in the in vitro growth rate. Secondary so-called compensatory mutations, not involved in conferring resistance, can ameliorate the fitness cost by interacting epistatically with the resistance mutation. Although the genetic diversity of M. tuberculosis is low compared to other pathogenic bacteria, the strain genetic background has been demonstrated to influence multiple aspects in the evolution of drug resistance. The rate of resistance evolution and the fitness costs of drug resistance mutations may vary as a function of the genetic background.
Collapse
Affiliation(s)
- Sebastian M Gygli
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, 4002 Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, 4002 Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, 4002 Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, 4002 Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
20
|
Herrmann J, Rybniker J, Müller R. Novel and revisited approaches in antituberculosis drug discovery. Curr Opin Biotechnol 2017; 48:94-101. [DOI: 10.1016/j.copbio.2017.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
|
21
|
Nathan C. Kunkel Lecture: Fundamental immunodeficiency and its correction. J Exp Med 2017; 214:2175-2191. [PMID: 28701368 PMCID: PMC5551579 DOI: 10.1084/jem.20170637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 02/05/2023] Open
Abstract
"Fundamental immunodeficiency" is the inability of the encoded immune system to protect an otherwise healthy host from every infection that could threaten its life. In contrast to primary immunodeficiencies, fundamental immunodeficiency is not rare but nearly universal. It results not from variation in a given host gene but from the rate and extent of variation in the genes of other organisms. The remedy for fundamental immunodeficiency is "adopted immunity," not to be confused with adaptive or adoptive immunity. Adopted immunity arises from four critical societal contributions to the survival of the human species: sanitation, nutrition, vaccines, and antimicrobial agents. Immunologists have a great deal to contribute to the development of vaccines and antimicrobial agents, but they have focused chiefly on vaccines, and vaccinology is thriving. In contrast, the effect of antimicrobial agents in adopted immunity, although fundamental, is fragile and failing. Immunologists can aid the development of sorely needed antimicrobial agents, and the study of antimicrobial agents can help immunologists discover targets and mechanisms of host immunity.
Collapse
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| |
Collapse
|
22
|
Selective Killing of Dormant Mycobacterium tuberculosis by Marine Natural Products. Antimicrob Agents Chemother 2017; 61:AAC.00743-17. [PMID: 28607021 DOI: 10.1128/aac.00743-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/02/2017] [Indexed: 12/17/2022] Open
Abstract
The dormant phenotype acquired by Mycobacterium tuberculosis during infection poses a major challenge in disease treatment, since these bacilli show tolerance to front-line drugs. Therefore, it is imperative to find novel compounds that effectively kill dormant bacteria. By screening 4,400 marine natural product samples against dual-fluorescent M. tuberculosis under both replicating and nonreplicating conditions, we have identified compounds that are selectively active against dormant M. tuberculosis This validates our strategy of screening all compounds in both assays as opposed to using the dormancy model as a secondary screen. Bioassay-guided deconvolution enabled the identification of unique pharmacophores active in each screening model. To confirm the activity of samples against dormant M. tuberculosis, we used a luciferase reporter assay and enumerated CFU. The structures of five purified active compounds were defined by nuclear magnetic resonance (NMR) and mass spectrometry. We identified two lipid compounds with potent activity toward dormant and actively growing M. tuberculosis strains. One of these was commercially obtained and showed similar activity against M. tuberculosis in both screening models. Furthermore, puupehenone-like molecules were purified with potent and selective activity against dormant M. tuberculosis In conclusion, we have identified and characterized antimycobacterial compounds from marine organisms with novel activity profiles which appear to target M. tuberculosis pathways that are conditionally essential for dormancy survival.
Collapse
|
23
|
Boshoff HI. Caught between two proteins: a mycobacterial inhibitor challenges the mold. Mol Microbiol 2017; 103:2-6. [PMID: 27802567 PMCID: PMC5182166 DOI: 10.1111/mmi.13570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2016] [Indexed: 11/30/2022]
Abstract
Elucidating the target or mechanism of action of potential drugs in the discovery pipeline is an integral component of most programs. For antibacterial compounds, generation of resistant mutants followed by whole genome sequencing has often been successful in uncovering the proteins involved in regulating compound activation, uptake, efflux and importantly, target processes. When this process succeeds, we are quick to declare a target. In a study reported by Sing and Dhar et al. (in press), the combination of resistant mutant generation, whole genome sequencing and recombineering to identify the target of a Mycobacterium tuberculosis growth inhibitor, pointed to a mechanism involving a scaffolding protein, Wag31, involved in polar elongation of mycobacterial cells. Time-lapse microscopy and electron microscopy confirmed the view that this inhibitor resulted in interruption of nascent cell wall biosynthesis. However, co-expression as well as regulated titration of the putative Wag31 target demonstrated that the wild-type allele was dominant and showed no synergy with the inhibitor. The most plausible explanation from their results was that this inhibitor interfered with the interaction of Wag31 with one of its interacting partners in the elongation complex.
Collapse
Affiliation(s)
- Helena I. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD20892-3206;
| |
Collapse
|
24
|
Gold B, Nathan C. Targeting Phenotypically Tolerant Mycobacterium tuberculosis. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tbtb2-0031-2016. [PMID: 28233509 PMCID: PMC5367488 DOI: 10.1128/microbiolspec.tbtb2-0031-2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 01/08/2023] Open
Abstract
While the immune system is credited with averting tuberculosis in billions of individuals exposed to Mycobacterium tuberculosis, the immune system is also culpable for tempering the ability of antibiotics to deliver swift and durable cure of disease. In individuals afflicted with tuberculosis, host immunity produces diverse microenvironmental niches that support suboptimal growth, or complete growth arrest, of M. tuberculosis. The physiological state of nonreplication in bacteria is associated with phenotypic drug tolerance. Many of these host microenvironments, when modeled in vitro by carbon starvation, complete nutrient starvation, stationary phase, acidic pH, reactive nitrogen intermediates, hypoxia, biofilms, and withholding streptomycin from the streptomycin-addicted strain SS18b, render M. tuberculosis profoundly tolerant to many of the antibiotics that are given to tuberculosis patients in clinical settings. Targeting nonreplicating persisters is anticipated to reduce the duration of antibiotic treatment and rate of posttreatment relapse. Some promising drugs to treat tuberculosis, such as rifampin and bedaquiline, only kill nonreplicating M. tuberculosisin vitro at concentrations far greater than their minimal inhibitory concentrations against replicating bacilli. There is an urgent demand to identify which of the currently used antibiotics, and which of the molecules in academic and corporate screening collections, have potent bactericidal action on nonreplicating M. tuberculosis. With this goal, we review methods of high-throughput screening to target nonreplicating M. tuberculosis and methods to progress candidate molecules. A classification based on structures and putative targets of molecules that have been reported to kill nonreplicating M. tuberculosis revealed a rich diversity in pharmacophores.
Collapse
Affiliation(s)
- Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
25
|
Gold B, Roberts J, Ling Y, Lopez Quezada L, Glasheen J, Ballinger E, Somersan-Karakaya S, Warrier T, Nathan C. Visualization of the Charcoal Agar Resazurin Assay for Semi-quantitative, Medium-throughput Enumeration of Mycobacteria. J Vis Exp 2016. [PMID: 28060290 PMCID: PMC5226417 DOI: 10.3791/54690] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
There is an urgent need to discover and progress anti-infectives that shorten the duration of tuberculosis (TB) treatment. Mycobacterium tuberculosis, the etiological agent of TB, is refractory to rapid and lasting chemotherapy due to the presence of bacilli exhibiting phenotypic drug resistance. The charcoal agar resazurin assay (CARA) was developed as a tool to characterize active molecules discovered by high-throughput screening campaigns against replicating and non-replicating M. tuberculosis. Inclusion of activated charcoal in bacteriologic agar medium helps mitigate the impact of compound carry-over, and eliminates the requirement to pre-dilute cells prior to spotting on CARA microplates. After a 7-10 day incubation period at 37 °C, the reduction of resazurin by mycobacterial microcolonies growing on the surface of CARA microplate wells permits semi-quantitative assessment of bacterial numbers via fluorometry. The CARA detects approximately a 2-3 log10 difference in bacterial numbers and predicts a minimal bactericidal concentration leading to ≥99% bacterial kill (MBC≥99). The CARA helps determine whether a molecule is active on bacilli that are replicating, non-replicating, or both. Pilot experiments using the CARA facilitate the identification of which concentration of test agent and time of compound exposure require further evaluation by colony forming unit (CFU) assays. In addition, the CARA can predict if replicating actives are bactericidal or bacteriostatic.
Collapse
Affiliation(s)
- Ben Gold
- Departments of Microbiology & Immunology, Weill Cornell Medical College;
| | - Julia Roberts
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| | - Yan Ling
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| | | | - Jou Glasheen
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| | - Elaine Ballinger
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| | | | - Thulasi Warrier
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| | - Carl Nathan
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| |
Collapse
|
26
|
Antibiotic Methylation: A New Mechanism of Antimicrobial Resistance. Trends Microbiol 2016; 24:771-772. [PMID: 27593675 DOI: 10.1016/j.tim.2016.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/16/2016] [Indexed: 11/23/2022]
Abstract
In new research on Mycobacterium tuberculosis, the causative agent of tuberculosis, Warrier and colleagues have discovered a novel mode of bacterial drug resistance, namely antibiotic inactivation via N-methylation.
Collapse
|
27
|
Warrier T, Kapilashrami K, Argyrou A, Ioerger TR, Little D, Murphy KC, Nandakumar M, Park S, Gold B, Mi J, Zhang T, Meiler E, Rees M, Somersan-Karakaya S, Porras-De Francisco E, Martinez-Hoyos M, Burns-Huang K, Roberts J, Ling Y, Rhee KY, Mendoza-Losana A, Luo M, Nathan CF. N-methylation of a bactericidal compound as a resistance mechanism in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2016; 113:E4523-30. [PMID: 27432954 PMCID: PMC4978242 DOI: 10.1073/pnas.1606590113] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rising incidence of antimicrobial resistance (AMR) makes it imperative to understand the underlying mechanisms. Mycobacterium tuberculosis (Mtb) is the single leading cause of death from a bacterial pathogen and estimated to be the leading cause of death from AMR. A pyrido-benzimidazole, 14, was reported to have potent bactericidal activity against Mtb. Here, we isolated multiple Mtb clones resistant to 14. Each had mutations in the putative DNA-binding and dimerization domains of rv2887, a gene encoding a transcriptional repressor of the MarR family. The mutations in Rv2887 led to markedly increased expression of rv0560c. We characterized Rv0560c as an S-adenosyl-L-methionine-dependent methyltransferase that N-methylates 14, abolishing its mycobactericidal activity. An Mtb strain lacking rv0560c became resistant to 14 by mutating decaprenylphosphoryl-β-d-ribose 2-oxidase (DprE1), an essential enzyme in arabinogalactan synthesis; 14 proved to be a nanomolar inhibitor of DprE1, and methylation of 14 by Rv0560c abrogated this activity. Thus, 14 joins a growing list of DprE1 inhibitors that are potently mycobactericidal. Bacterial methylation of an antibacterial agent, 14, catalyzed by Rv0560c of Mtb, is a previously unreported mechanism of AMR.
Collapse
Affiliation(s)
- Thulasi Warrier
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021
| | - Kanishk Kapilashrami
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Argyrides Argyrou
- Platform Technology and Science, GlaxoSmithKline, Stevenage SG1 2NY, United Kingdom
| | - Thomas R Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843-3474
| | - David Little
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021
| | - Kenan C Murphy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Madhumitha Nandakumar
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021
| | - Suna Park
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021
| | - Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021
| | - Jianjie Mi
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021
| | - Tuo Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021
| | - Eugenia Meiler
- Diseases of the Developing World, GlaxoSmithKline (GSK), 28760 Madrid, Spain
| | - Mike Rees
- Platform Technology and Science, GlaxoSmithKline, Stevenage SG1 2NY, United Kingdom
| | | | | | | | - Kristin Burns-Huang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021
| | - Yan Ling
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021
| | - Kyu Y Rhee
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021; Department of Medicine, Weill Cornell Medicine, New York, NY 10021
| | | | - Minkui Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021
| | - Carl F Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021;
| |
Collapse
|
28
|
Gold B, Smith R, Nguyen Q, Roberts J, Ling Y, Lopez Quezada L, Somersan S, Warrier T, Little D, Pingle M, Zhang D, Ballinger E, Zimmerman M, Dartois V, Hanson P, Mitscher LA, Porubsky P, Rogers S, Schoenen FJ, Nathan C, Aubé J. Novel Cephalosporins Selectively Active on Nonreplicating Mycobacterium tuberculosis. J Med Chem 2016; 59:6027-44. [PMID: 27144688 PMCID: PMC4947980 DOI: 10.1021/acs.jmedchem.5b01833] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report two series of novel cephalosporins that are bactericidal to Mycobacterium tuberculosis alone of the pathogens tested, which only kill M. tuberculosis when its replication is halted by conditions resembling those believed to pertain in the host, and whose bactericidal activity is not dependent upon or enhanced by clavulanate, a β-lactamase inhibitor. The two classes of cephalosporins bear an ester or alternatively an oxadiazole isostere at C-2 of the cephalosporin ring system, a position that is almost exclusively a carboxylic acid in clinically used agents in the class. Representatives of the series kill M. tuberculosis within macrophages without toxicity to the macrophages or other mammalian cells.
Collapse
Affiliation(s)
| | | | - Quyen Nguyen
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | | | | | | | | | | - Matthew Zimmerman
- Public Health Research Institute, New Jersey Medical School, Rutgers, the State University of New Jersey , Newark, New Jersey 07013, United States
| | - Véronique Dartois
- Public Health Research Institute, New Jersey Medical School, Rutgers, the State University of New Jersey , Newark, New Jersey 07013, United States
| | | | | | | | - Steven Rogers
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | | | | | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
29
|
Rebollo-Lopez MJ, Lelièvre J, Alvarez-Gomez D, Castro-Pichel J, Martínez-Jiménez F, Papadatos G, Kumar V, Colmenarejo G, Mugumbate G, Hurle M, Barroso V, Young RJ, Martinez-Hoyos M, González del Río R, Bates RH, Lopez-Roman EM, Mendoza-Losana A, Brown JR, Alvarez-Ruiz E, Marti-Renom MA, Overington JP, Cammack N, Ballell L, Barros-Aguire D. Release of 50 new, drug-like compounds and their computational target predictions for open source anti-tubercular drug discovery. PLoS One 2015; 10:e0142293. [PMID: 26642067 PMCID: PMC4671658 DOI: 10.1371/journal.pone.0142293] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022] Open
Abstract
As a follow up to the antimycobacterial screening exercise and the release of GSK´s first Tres Cantos Antimycobacterial Set (TCAMS-TB), this paper presents the results of a second antitubercular screening effort of two hundred and fifty thousand compounds recently added to the GSK collection. The compounds were further prioritized based on not only antitubercular potency but also on physicochemical characteristics. The 50 most attractive compounds were then progressed for evaluation in three different predictive computational biology algorithms based on structural similarity or GSK historical biological assay data in order to determine their possible mechanisms of action. This effort has resulted in the identification of novel compounds and their hypothesized targets that will hopefully fuel future TB drug discovery and target validation programs alike.
Collapse
Affiliation(s)
| | - Joël Lelièvre
- Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
- * E-mail: (JL); (MAMR)
| | | | - Julia Castro-Pichel
- Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Francisco Martínez-Jiménez
- Genome Biology Group, Centre Nacional d’Anàlisi Genòmica (CNAG), Barcelona, Spain
- Gene Regulation Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - George Papadatos
- European Molecular Biology Laboratory–European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, United Kingdom
| | - Vinod Kumar
- Computational Biology, Quantitative Sciences, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Gonzalo Colmenarejo
- Centro de Investigación Básica, CSci Computational Chemistry, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Grace Mugumbate
- European Molecular Biology Laboratory–European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, United Kingdom
| | - Mark Hurle
- Computational Biology, Quantitative Sciences, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Vanessa Barroso
- Centro de Investigación Básica, Platform Technology & Science, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Rob J. Young
- CSC Medicinal Chemistry, Medicines Research Centre, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
| | | | | | - Robert H. Bates
- Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | | | | | - James R. Brown
- Computational Biology, Quantitative Sciences, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Emilio Alvarez-Ruiz
- Centro de Investigación Básica, Platform Technology & Science, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Marc A. Marti-Renom
- Genome Biology Group, Centre Nacional d’Anàlisi Genòmica (CNAG), Barcelona, Spain
- Gene Regulation Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail: (JL); (MAMR)
| | - John P. Overington
- European Molecular Biology Laboratory–European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, United Kingdom
| | - Nicholas Cammack
- Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Lluís Ballell
- Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - David Barros-Aguire
- Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| |
Collapse
|
30
|
Rapid, Semiquantitative Assay To Discriminate among Compounds with Activity against Replicating or Nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 2015; 59:6521-38. [PMID: 26239979 PMCID: PMC4576094 DOI: 10.1128/aac.00803-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/31/2015] [Indexed: 01/31/2023] Open
Abstract
The search for drugs that can kill replicating and nonreplicating Mycobacterium tuberculosis faces practical bottlenecks. Measurement of CFU and discrimination of bacteriostatic from bactericidal activity are costly in compounds, supplies, labor, and time. Testing compounds against M. tuberculosis under conditions that prevent the replication of M. tuberculosis often involves a second phase of the test in which conditions are altered to permit the replication of bacteria that survived the first phase. False-positive determinations of activity against nonreplicating M. tuberculosis may arise from carryover of compounds from the nonreplicating stage of the assay that act in the replicating stage. We mitigate these problems by carrying out a 96-well microplate liquid MIC assay and then transferring an aliquot of each well to a second set of plates in which each well contains agar supplemented with activated charcoal. After 7 to 10 days—about 2 weeks sooner than required to count CFU—fluorometry reveals whether M. tuberculosis bacilli in each well have replicated extensively enough to reduce a resazurin dye added for the final hour. This charcoal agar resazurin assay (CARA) distinguishes between bacterial biomasses in any two wells that differ by 2 to 3 log10 CFU. The CARA thus serves as a pretest and semiquantitative surrogate for longer, more laborious, and expensive CFU-based assays, helps distinguish bactericidal from bacteriostatic activity, and identifies compounds that are active under replicating conditions, nonreplicating conditions, or both. Results for 14 antimycobacterial compounds, including tuberculosis (TB) drugs, revealed that PA-824 (pretomanid) and TMC207 (bedaquiline) are largely bacteriostatic.
Collapse
|