1
|
Rivière F, Dian C, Dutheil RF, Monassa P, Giglione C, Meinnel T. Novel, tightly structurally related N-myristoyltransferase inhibitors display equally potent yet distinct inhibitory mechanisms. Structure 2024; 32:1737-1750.e3. [PMID: 39208793 DOI: 10.1016/j.str.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/02/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
N-myristoyltransferases (NMTs) catalyze essential acylations of N-terminal alpha or epsilon amino groups of glycines or lysines. Here, we reveal that peptides tightly fitting the optimal glycine recognition pattern of human NMTs are potent prodrugs relying on a single-turnover mechanism. Sequence scanning of the inhibitory potency of the series closely reflects NMT glycine substrate specificity rules, with the lead inhibitor blocking myristoylation by NMTs of various species. We further redesigned the series based on the recently recognized lysine-myristoylation mechanism by taking advantage of (1) the optimal peptide chassis and (2) lysine side chain mimicry with unnatural enantiomers. Unlike the lead series, the inhibitory properties of the new compounds rely on the protonated state of the side chain amine, which stabilizes a salt bridge with the catalytic base at the active site. Our study provides the basis for designing first-in-class NMT inhibitors tailored for infectious diseases and alternative active site targeting.
Collapse
Affiliation(s)
- Frédéric Rivière
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Cyril Dian
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Rémi F Dutheil
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Paul Monassa
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Chang YH. Impact of Protein N α-Modifications on Cellular Functions and Human Health. Life (Basel) 2023; 13:1613. [PMID: 37511988 PMCID: PMC10381334 DOI: 10.3390/life13071613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Most human proteins are modified by enzymes that act on the α-amino group of a newly synthesized polypeptide. Methionine aminopeptidases can remove the initiator methionine and expose the second amino acid for further modification by enzymes responsible for myristoylation, acetylation, methylation, or other chemical reactions. Specific acetyltransferases can also modify the initiator methionine and sometimes the acetylated methionine can be removed, followed by further modifications. These modifications at the protein N-termini play critical roles in cellular protein localization, protein-protein interaction, protein-DNA interaction, and protein stability. Consequently, the dysregulation of these modifications could significantly change the development and progression status of certain human diseases. The focus of this review is to highlight recent progress in our understanding of the roles of these modifications in regulating protein functions and how these enzymes have been used as potential novel therapeutic targets for various human diseases.
Collapse
Affiliation(s)
- Yie-Hwa Chang
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University Medical School, Saint Louis, MO 63104, USA
| |
Collapse
|
3
|
Shaw S, Roditi I. The sweet and sour sides of trypanosome social motility. Trends Parasitol 2023; 39:242-250. [PMID: 36732111 DOI: 10.1016/j.pt.2023.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 02/04/2023]
Abstract
Recent studies showed that the formation of elegant geometric patterns by communities of Trypanosoma brucei on semi-solid surfaces, dubbed social motility (SoMo) by its discoverers, is a manifestation of pH taxis. This is caused by procyclic forms generating and responding to pH gradients through glucose metabolism and cAMP signalling. These findings established that trypanosomes can sense and manipulate gradients, potentially helping them to navigate through host tissues. At the same time, the host itself and bystanders such as endosymbionts have the potential to shape the environment and influence the chances of successful transmission. We postulate that the ability to sense and contribute to the gradient landscape may also underlie the tissue tropism and migration of other parasites in their hosts.
Collapse
Affiliation(s)
- Sebastian Shaw
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
4
|
Fedoryshchak RO, Gorelik A, Shen M, Shchepinova MM, Pérez-Dorado I, Tate EW. Discovery of lipid-mediated protein-protein interactions in living cells using metabolic labeling with photoactivatable clickable probes. Chem Sci 2023; 14:2419-2430. [PMID: 36873846 PMCID: PMC9977449 DOI: 10.1039/d2sc06116c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/29/2023] [Indexed: 01/31/2023] Open
Abstract
Protein-protein interactions (PPIs) are essential and pervasive regulatory elements in biology. Despite the development of a range of techniques to probe PPIs in living systems, there is a dearth of approaches to capture interactions driven by specific post-translational modifications (PTMs). Myristoylation is a lipid PTM added to more than 200 human proteins, where it may regulate membrane localization, stability or activity. Here we report the design and synthesis of a panel of novel photocrosslinkable and clickable myristic acid analog probes, and their characterization as efficient substrates for human N-myristoyltransferases NMT1 and NMT2, both biochemically and through X-ray crystallography. We demonstrate metabolic incorporation of probes to label NMT substrates in cell culture and in situ intracellular photoactivation to form a covalent crosslink between modified proteins and their interactors, capturing a snapshot of interactions in the presence of the lipid PTM. Proteomic analyses revealed both known and multiple novel interactors of a series of myristoylated proteins, including ferroptosis suppressor protein 1 (FSP1) and spliceosome-associated RNA helicase DDX46. The concept exemplified by these probes offers an efficient approach for exploring the PTM-specific interactome without the requirement for genetic modification, which may prove broadly applicable to other PTMs.
Collapse
Affiliation(s)
- Roman O Fedoryshchak
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 80 Wood Lane London W12 0BZ UK .,The Francis Crick Institute 1 Midland Road London NW1 1AT UK
| | - Andrii Gorelik
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 80 Wood Lane London W12 0BZ UK .,The Francis Crick Institute 1 Midland Road London NW1 1AT UK
| | - Mengjie Shen
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 80 Wood Lane London W12 0BZ UK
| | - Maria M Shchepinova
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 80 Wood Lane London W12 0BZ UK
| | - Inmaculada Pérez-Dorado
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 80 Wood Lane London W12 0BZ UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 80 Wood Lane London W12 0BZ UK .,The Francis Crick Institute 1 Midland Road London NW1 1AT UK
| |
Collapse
|
5
|
Rivière F, Monassa P, Giglione C, Meinnel T. Kinetic and catalytic features of N-myristoyltransferases. Methods Enzymol 2023; 684:167-190. [DOI: 10.1016/bs.mie.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Priyamvada L, Kallemeijn WW, Faronato M, Wilkins K, Goldsmith CS, Cotter CA, Ojeda S, Solari R, Moss B, Tate EW, Satheshkumar PS. Inhibition of vaccinia virus L1 N-myristoylation by the host N-myristoyltransferase inhibitor IMP-1088 generates non-infectious virions defective in cell entry. PLoS Pathog 2022; 18:e1010662. [PMID: 36215331 PMCID: PMC9584500 DOI: 10.1371/journal.ppat.1010662] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/20/2022] [Accepted: 08/26/2022] [Indexed: 11/06/2022] Open
Abstract
We have recently shown that the replication of rhinovirus, poliovirus and foot-and-mouth disease virus requires the co-translational N-myristoylation of viral proteins by human host cell N-myristoyltransferases (NMTs), and is inhibited by treatment with IMP-1088, an ultrapotent small molecule NMT inhibitor. Here, we examine the importance of N-myristoylation during vaccinia virus (VACV) infection in primate cells and demonstrate the anti-poxviral effects of IMP-1088. N-myristoylated proteins from VACV and the host were metabolically labelled with myristic acid alkyne during infection using quantitative chemical proteomics. We identified VACV proteins A16, G9 and L1 to be N-myristoylated. Treatment with NMT inhibitor IMP-1088 potently abrogated VACV infection, while VACV gene expression, DNA replication, morphogenesis and EV formation remained unaffected. Importantly, we observed that loss of N-myristoylation resulted in greatly reduced infectivity of assembled mature virus particles, characterized by significantly reduced host cell entry and a decline in membrane fusion activity of progeny virus. While the N-myristoylation of VACV entry proteins L1, A16 and G9 was inhibited by IMP-1088, mutational and genetic studies demonstrated that the N-myristoylation of L1 was the most critical for VACV entry. Given the significant genetic identity between VACV, monkeypox virus and variola virus L1 homologs, our data provides a basis for further investigating the role of N-myristoylation in poxviral infections as well as the potential of selective NMT inhibitors like IMP-1088 as broad-spectrum poxvirus inhibitors.
Collapse
Affiliation(s)
- Lalita Priyamvada
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Wouter W. Kallemeijn
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Monica Faronato
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Kimberly Wilkins
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Cynthia S. Goldsmith
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Catherine A. Cotter
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Suany Ojeda
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Clinipace, Morrisville, North Carolina, United States of America
| | - Roberto Solari
- National Heart and Lung Institute, Imperial College of Science, Technology & Medicine, London, United Kingdom
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Edward W. Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | | |
Collapse
|
7
|
Structural and large-scale analysis unveil the intertwined paths promoting NMT-catalyzed lysine and glycine myristoylation. J Mol Biol 2022; 434:167843. [PMID: 36181773 DOI: 10.1016/j.jmb.2022.167843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/20/2022]
Abstract
N-myristoyltransferases (NMTs) catalyze protein myristoylation, a lipid modification crucial for cell survival and a range of pathophysiological processes. Originally thought to modify only N-terminal glycine α-amino groups (G-myristoylation), NMTs were recently shown to also modify lysine ε-amino groups (K-myristoylation). However, the clues ruling NMT-dependent K-myristoylation and the full range of targets are currently unknown. Here we combine mass spectrometry, kinetic studies, in silico analysis, and crystallography to identify the specific features driving each modification. We show that direct interactions between the substrate's reactive amino group and the NMT catalytic base promote K-myristoylation but with poor efficiency compared to G-myristoylation, which instead uses a water-mediated interaction. We provide evidence of depletion of proteins with NMT-dependent K-myristoylation motifs in humans, suggesting evolutionary pressure to prevent this modification in favor of G-myristoylation. In turn, we reveal that K-myristoylation may only result from post-translational events. Our studies finally unravel the respective paths towards K-myristoylation or G-myristoylation, which rely on a very subtle tradeoff embracing the chemical landscape around the reactive group.
Collapse
|
8
|
A multi-adenylate cyclase regulator at the flagellar tip controls African trypanosome transmission. Nat Commun 2022; 13:5445. [PMID: 36114198 PMCID: PMC9481589 DOI: 10.1038/s41467-022-33108-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Signaling from ciliary microdomains controls developmental processes in metazoans. Trypanosome transmission requires development and migration in the tsetse vector alimentary tract. Flagellar cAMP signaling has been linked to parasite social motility (SoMo) in vitro, yet uncovering control of directed migration in fly organs is challenging. Here we show that the composition of an adenylate cyclase (AC) complex in the flagellar tip microdomain is essential for tsetse salivary gland (SG) colonization and SoMo. Cyclic AMP response protein 3 (CARP3) binds and regulates multiple AC isoforms. CARP3 tip localization depends on the cytoskeletal protein FLAM8. Re-localization of CARP3 away from the tip microdomain is sufficient to abolish SoMo and fly SG colonization. Since intrinsic development is normal in carp3 and flam8 knock-out parasites, AC complex-mediated tip signaling specifically controls parasite migration and thereby transmission. Participation of several developmentally regulated receptor-type AC isoforms may indicate the complexity of the in vivo signals perceived. Trypanosomes can sense signal molecules and coordinate their movement in response to such signals, a phenomenon termed social motility (SoMo). Here, Bachmaier et al show that cyclic AMP response protein 3 (CARP3) localization to the flagellar tip and its interaction with a number of different adenylate cyclases is essential for migration to tsetse fly salivary glands and for SoMo, therewith linking SoMo and cAMP signaling to trypanosome transmission.
Collapse
|
9
|
Madeo G, Savojardo C, Luigi Martelli P, Casadio R. SVMyr: a web server detecting co- and post-translational myristoylation in proteins. J Mol Biol 2022; 434:167605. [DOI: 10.1016/j.jmb.2022.167605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 12/31/2022]
|
10
|
Shaw S, Knüsel S, Abbühl D, Naguleswaran A, Etzensperger R, Benninger M, Roditi I. Cyclic AMP signalling and glucose metabolism mediate pH taxis by African trypanosomes. Nat Commun 2022; 13:603. [PMID: 35105902 PMCID: PMC8807625 DOI: 10.1038/s41467-022-28293-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/18/2022] [Indexed: 01/20/2023] Open
Abstract
The collective movement of African trypanosomes on semi-solid surfaces, known as social motility, is presumed to be due to migration factors and repellents released by the parasites. Here we show that procyclic (insect midgut) forms acidify their environment as a consequence of glucose metabolism, generating pH gradients by diffusion. Early and late procyclic forms exhibit self-organising properties on agarose plates. While early procyclic forms are repelled by acid and migrate outwards, late procyclic forms remain at the inoculation site. Furthermore, trypanosomes respond to exogenously formed pH gradients, with both early and late procyclic forms being attracted to alkali. pH taxis is mediated by multiple cyclic AMP effectors: deletion of one copy of adenylate cyclase ACP5, or both copies of the cyclic AMP response protein CARP3, abrogates the response to acid, while deletion of phosphodiesterase PDEB1 completely abolishes pH taxis. The ability to sense pH is biologically relevant as trypanosomes experience large changes as they migrate through their tsetse host. Supporting this, a CARP3 null mutant is severely compromised in its ability to establish infections in flies. Based on these findings, we propose that the expanded family of adenylate cyclases in trypanosomes might govern other chemotactic responses in their two hosts. African trypanosomes collectively move in a process called social motility. Here, the authors show that procyclic forms acidify their environment as a consequence of glucose metabolism, generating pH gradients by diffusion that are sensed via cyclic AMP signalling. Parasite mutants defective in cAMP signaling are inhibited in fly infection.
Collapse
Affiliation(s)
- Sebastian Shaw
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sebastian Knüsel
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Daniel Abbühl
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | | | | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
11
|
Giglione C, Meinnel T. Mapping the myristoylome through a complete understanding of protein myristoylation biochemistry. Prog Lipid Res 2021; 85:101139. [PMID: 34793862 DOI: 10.1016/j.plipres.2021.101139] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022]
Abstract
Protein myristoylation is a C14 fatty acid modification found in all living organisms. Myristoylation tags either the N-terminal alpha groups of cysteine or glycine residues through amide bonds or lysine and cysteine side chains directly or indirectly via glycerol thioester and ester linkages. Before transfer to proteins, myristate must be activated into myristoyl coenzyme A in eukaryotes or, in bacteria, to derivatives like phosphatidylethanolamine. Myristate originates through de novo biosynthesis (e.g., plants), from external uptake (e.g., human tissues), or from mixed origins (e.g., unicellular organisms). Myristate usually serves as a molecular anchor, allowing tagged proteins to be targeted to membranes and travel across endomembrane networks in eukaryotes. In this review, we describe and discuss the metabolic origins of protein-bound myristate. We review strategies for in vivo protein labeling that take advantage of click-chemistry with reactive analogs, and we discuss new approaches to the proteome-wide discovery of myristate-containing proteins. The machineries of myristoylation are described, along with how protein targets can be generated directly from translating precursors or from processed proteins. Few myristoylation catalysts are currently described, with only N-myristoyltransferase described to date in eukaryotes. Finally, we describe how viruses and bacteria hijack and exploit myristoylation for their pathogenicity.
Collapse
Affiliation(s)
- Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
12
|
Kallemeijn WW, Lanyon-Hogg T, Panyain N, Goya Grocin A, Ciepla P, Morales-Sanfrutos J, Tate EW. Proteome-wide analysis of protein lipidation using chemical probes: in-gel fluorescence visualization, identification and quantification of N-myristoylation, N- and S-acylation, O-cholesterylation, S-farnesylation and S-geranylgeranylation. Nat Protoc 2021; 16:5083-5122. [PMID: 34707257 DOI: 10.1038/s41596-021-00601-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/05/2021] [Indexed: 02/08/2023]
Abstract
Protein lipidation is one of the most widespread post-translational modifications (PTMs) found in nature, regulating protein function, structure and subcellular localization. Lipid transferases and their substrate proteins are also attracting increasing interest as drug targets because of their dysregulation in many disease states. However, the inherent hydrophobicity and potential dynamic nature of lipid modifications makes them notoriously challenging to detect by many analytical methods. Chemical proteomics provides a powerful approach to identify and quantify these diverse protein modifications by combining bespoke chemical tools for lipidated protein enrichment with quantitative mass spectrometry-based proteomics. Here, we report a robust and proteome-wide approach for the exploration of five major classes of protein lipidation in living cells, through the use of specific chemical probes for each lipid PTM. In-cell labeling of lipidated proteins is achieved by the metabolic incorporation of a lipid probe that mimics the specific natural lipid, concomitantly wielding an alkyne as a bio-orthogonal labeling tag. After incorporation, the chemically tagged proteins can be coupled to multifunctional 'capture reagents' by using click chemistry, allowing in-gel fluorescence visualization or enrichment via affinity handles for quantitative chemical proteomics based on label-free quantification (LFQ) or tandem mass-tag (TMT) approaches. In this protocol, we describe the application of lipid probes for N-myristoylation, N- and S-acylation, O-cholesterylation, S-farnesylation and S-geranylgeranylation in multiple cell lines to illustrate both the workflow and data obtained in these experiments. We provide detailed workflows for method optimization, sample preparation for chemical proteomics and data processing. A properly trained researcher (e.g., technician, graduate student or postdoc) can complete all steps from optimizing metabolic labeling to data processing within 3 weeks. This protocol enables sensitive and quantitative analysis of lipidated proteins at a proteome-wide scale at native expression levels, which is critical to understanding the role of lipid PTMs in health and disease.
Collapse
Affiliation(s)
- Wouter W Kallemeijn
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
- The Francis Crick Institute, London, UK
| | - Thomas Lanyon-Hogg
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Nattawadee Panyain
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
- Global Health Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Andrea Goya Grocin
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
- The Francis Crick Institute, London, UK
| | - Paulina Ciepla
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Julia Morales-Sanfrutos
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
- Proteomics Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
13
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
14
|
Suazo KF, Park KY, Distefano MD. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chem Rev 2021; 121:7178-7248. [PMID: 33821625 PMCID: PMC8820976 DOI: 10.1021/acs.chemrev.0c01108] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein lipid modification involves the attachment of hydrophobic groups to proteins via ester, thioester, amide, or thioether linkages. In this review, the specific click chemical reactions that have been employed to study protein lipid modification and their use for specific labeling applications are first described. This is followed by an introduction to the different types of protein lipid modifications that occur in biology. Next, the roles of click chemistry in elucidating specific biological features including the identification of lipid-modified proteins, studies of their regulation, and their role in diseases are presented. A description of the use of protein-lipid modifying enzymes for specific labeling applications including protein immobilization, fluorescent labeling, nanostructure assembly, and the construction of protein-drug conjugates is presented next. Concluding remarks and future directions are presented in the final section.
Collapse
Affiliation(s)
- Kiall F. Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Keun-Young Park
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
15
|
Losada de la Lastra A, Hassan S, Tate EW. Deconvoluting the biology and druggability of protein lipidation using chemical proteomics. Curr Opin Chem Biol 2021; 60:97-112. [PMID: 33221680 DOI: 10.1016/j.cbpa.2020.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 01/13/2023]
Abstract
Lipids are indispensable cellular building blocks, and their post-translational attachment to proteins makes them important regulators of many biological processes. Dysfunction of protein lipidation is also implicated in many pathological states, yet its systematic analysis presents significant challenges. Thanks to innovations in chemical proteomics, lipidation can now be readily studied by metabolic tagging using functionalized lipid analogs, enabling global profiling of lipidated substrates using mass spectrometry. This has spearheaded the first deconvolution of their full scope in a range of contexts, from cells to pathogens and multicellular organisms. Protein N-myristoylation, S-acylation, and S-prenylation are the most well-studied lipid post-translational modifications because of their extensive contribution to the regulation of diverse cellular processes. In this review, we focus on recent advances in the study of these post-translational modifications, with an emphasis on how novel mass spectrometry methods have elucidated their roles in fundamental biological processes.
Collapse
Affiliation(s)
- Ana Losada de la Lastra
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Sarah Hassan
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK.
| |
Collapse
|
16
|
Pandey M, Huang Y, Lim TK, Lin Q, He CY. Flagellar targeting of an arginine kinase requires a conserved lipidated protein intraflagellar transport (LIFT) pathway in Trypanosoma brucei. J Biol Chem 2020; 295:11326-11336. [PMID: 32587088 DOI: 10.1074/jbc.ra120.014287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
Both intraflagellar transport (IFT) and lipidated protein intraflagellar transport (LIFT) pathways are essential for cilia/flagella biogenesis, motility, and sensory functions. In the LIFT pathway, lipidated cargoes are transported into the cilia through the coordinated actions of cargo carrier proteins such as Unc119 or PDE6δ, as well as small GTPases Arl13b and Arl3 in the cilium. Our previous studies have revealed a single Arl13b ortholog in the evolutionarily divergent Trypanosoma brucei, the causative agent of African sleeping sickness. TbArl13 catalyzes two TbArl3 homologs, TbArl3A and TbArl3C, suggesting the presence of a conserved LIFT pathway in these protozoan parasites. Only a single homolog to the cargo carrier protein Unc119 has been identified in T. brucei genome, but its function in lipidated protein transport has not been characterized. In this study, we exploited the proximity-based biotinylation approach to identify binding partners of TbUnc119. We showed that TbUnc119 binds to a flagellar arginine kinase TbAK3 in a myristoylation-dependent manner and is responsible for its targeting to and enrichment in the flagellum. Interestingly, only TbArl3A, but not TbArl3C interacted with TbUnc119 in a GTP-dependent manner, suggesting functional specialization of Arl3-GTPases in T. brucei These results establish the function of TbUnc119 as a myristoylated cargo carrier and support the presence of a conserved LIFT pathway in T. brucei.
Collapse
Affiliation(s)
- Maneesha Pandey
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yameng Huang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Cynthia Y He
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
17
|
Bell AS, Yu Z, Hutton JA, Wright MH, Brannigan JA, Paape D, Roberts SM, Sutherell CL, Ritzefeld M, Wilkinson AJ, Smith DF, Leatherbarrow RJ, Tate EW. Novel Thienopyrimidine Inhibitors of Leishmania N-Myristoyltransferase with On-Target Activity in Intracellular Amastigotes. J Med Chem 2020; 63:7740-7765. [PMID: 32575985 PMCID: PMC7383931 DOI: 10.1021/acs.jmedchem.0c00570] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
The
leishmaniases, caused by Leishmania species
of protozoan parasites, are neglected tropical diseases with millions
of cases worldwide. Current therapeutic approaches are limited by
toxicity, resistance, and cost. N-Myristoyltransferase
(NMT), an enzyme ubiquitous and essential in all eukaryotes, has been
validated via genetic and pharmacological methods as a promising anti-leishmanial
target. Here we describe a comprehensive structure–activity
relationship (SAR) study of a thienopyrimidine series previously identified
in a high-throughput screen against Leishmania NMT,
across 68 compounds in enzyme- and cell-based assay formats. Using
a chemical tagging target engagement biomarker assay, we identify
the first inhibitor in this series with on-target NMT activity in
leishmania parasites. Furthermore, crystal structure analyses of 12
derivatives in complex with Leishmania major NMT revealed key factors important for future structure-guided optimization
delivering IMP-105 (43), a compound with modest activity
against Leishmania donovani intracellular
amastigotes and excellent selectivity (>660-fold) for Leishmania NMT over human NMTs.
Collapse
Affiliation(s)
- Andrew S Bell
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, U.K. W12 0BZ
| | - Zhiyong Yu
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, U.K. W12 0BZ
| | - Jennie A Hutton
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, U.K. W12 0BZ
| | - Megan H Wright
- School of Chemistry, University of Leeds, Leeds, U.K. LS2 9JT
| | - James A Brannigan
- Structural Biology Laboratory, York Biomedical Research Institute, Department of Chemistry, University of York, York, U.K. YO10 5DD
| | - Daniel Paape
- Centre for Immunology and Infection, York Biomedical Research Institute, Department of Biology, University of York, York, U.K. YO10 5NG
| | - Shirley M Roberts
- Structural Biology Laboratory, York Biomedical Research Institute, Department of Chemistry, University of York, York, U.K. YO10 5DD
| | - Charlotte L Sutherell
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, U.K. W12 0BZ
| | - Markus Ritzefeld
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, U.K. W12 0BZ
| | - Anthony J Wilkinson
- Structural Biology Laboratory, York Biomedical Research Institute, Department of Chemistry, University of York, York, U.K. YO10 5DD
| | - Deborah F Smith
- Centre for Immunology and Infection, York Biomedical Research Institute, Department of Biology, University of York, York, U.K. YO10 5NG
| | - Robin J Leatherbarrow
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, U.K. W12 0BZ
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, U.K. W12 0BZ
| |
Collapse
|
18
|
Kosciuk T, Lin H. N-Myristoyltransferase as a Glycine and Lysine Myristoyltransferase in Cancer, Immunity, and Infections. ACS Chem Biol 2020; 15:1747-1758. [PMID: 32453941 DOI: 10.1021/acschembio.0c00314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein myristoylation, the addition of a 14-carbon saturated acyl group, is an abundant modification implicated in biological events as diverse as development, immunity, oncogenesis, and infections. N-Myristoyltransferase (NMT) is the enzyme that catalyzes this modification. Many elegant studies have established the rules guiding the catalysis including substrate amino acid sequence requirements with the indispensable N-terminal glycine, and a co-translational mode of action. Recent advances in technology such as the development of fatty acid analogs, small molecule inhibitors, and new proteomic strategies, allowed a deeper insight into the NMT activity and function. Here we focus on discussing recent work demonstrating that NMT is also a lysine myristoyltransferase, the enzyme's regulation by a previously unnoticed solvent channel, and the mechanism of NMT regulation by protein-protein interactions. We also summarize recent findings on NMT's role in cancer, immunity, and infections and the advances in pharmacological targeting of myristoylation. Our analyses highlight opportunities for further understanding and discoveries.
Collapse
Affiliation(s)
- Tatsiana Kosciuk
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
19
|
Broncel M, Dominicus C, Vigetti L, Nofal SD, Bartlett EJ, Touquet B, Hunt A, Wallbank BA, Federico S, Matthews S, Young JC, Tate EW, Tardieux I, Treeck M. Profiling of myristoylation in Toxoplasma gondii reveals an N-myristoylated protein important for host cell penetration. eLife 2020; 9:e57861. [PMID: 32618271 PMCID: PMC7373427 DOI: 10.7554/elife.57861] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/27/2020] [Indexed: 12/26/2022] Open
Abstract
N-myristoylation is a ubiquitous class of protein lipidation across eukaryotes and N-myristoyl transferase (NMT) has been proposed as an attractive drug target in several pathogens. Myristoylation often primes for subsequent palmitoylation and stable membrane attachment, however, growing evidence suggests additional regulatory roles for myristoylation on proteins. Here we describe the myristoylated proteome of Toxoplasma gondii using chemoproteomic methods and show that a small-molecule NMT inhibitor developed against related Plasmodium spp. is also functional in Toxoplasma. We identify myristoylation on a transmembrane protein, the microneme protein 7 (MIC7), which enters the secretory pathway in an unconventional fashion with the myristoylated N-terminus facing the lumen of the micronemes. MIC7 and its myristoylation play a crucial role in the initial steps of invasion, likely during the interaction with and penetration of the host cell. Myristoylation of secreted eukaryotic proteins represents a substantial expansion of the functional repertoire of this co-translational modification.
Collapse
Affiliation(s)
- Malgorzata Broncel
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Caia Dominicus
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Luis Vigetti
- Institute for Advanced Biosciences, Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble AlpesGrenobleFrance
| | - Stephanie D Nofal
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Edward J Bartlett
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City CampusLondonUnited Kingdom
| | - Bastien Touquet
- Institute for Advanced Biosciences, Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble AlpesGrenobleFrance
| | - Alex Hunt
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Bethan A Wallbank
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Stefania Federico
- The Peptide Chemistry STP, The Francis Crick InstituteLondonUnited Kingdom
| | - Stephen Matthews
- Department of Life Sciences, Imperial College London, South KensingtonLondonUnited Kingdom
| | - Joanna C Young
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City CampusLondonUnited Kingdom
| | - Isabelle Tardieux
- Institute for Advanced Biosciences, Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble AlpesGrenobleFrance
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
20
|
Parthasarathy A, Kalesh K. Defeating the trypanosomatid trio: proteomics of the protozoan parasites causing neglected tropical diseases. RSC Med Chem 2020; 11:625-645. [PMID: 33479664 PMCID: PMC7549140 DOI: 10.1039/d0md00122h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Mass spectrometry-based proteomics enables accurate measurement of the modulations of proteins on a large scale upon perturbation and facilitates the understanding of the functional roles of proteins in biological systems. It is a particularly relevant methodology for studying Leishmania spp., Trypanosoma cruzi and Trypanosoma brucei, as the gene expression in these parasites is primarily regulated by posttranscriptional mechanisms. Large-scale proteomics studies have revealed a plethora of information regarding modulated proteins and their molecular interactions during various life processes of the protozoans, including stress adaptation, life cycle changes and interactions with the host. Important molecular processes within the parasite that regulate the activity and subcellular localisation of its proteins, including several co- and post-translational modifications, are also accurately captured by modern proteomics mass spectrometry techniques. Finally, in combination with synthetic chemistry, proteomic techniques facilitate unbiased profiling of targets and off-targets of pharmacologically active compounds in the parasites. This provides important data sets for their mechanism of action studies, thereby aiding drug development programmes.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology , Thomas H. Gosnell School of Life Sciences , 85 Lomb Memorial Dr , Rochester , NY 14623 , USA
| | - Karunakaran Kalesh
- Department of Chemistry , Durham University , Lower Mount Joy, South Road , Durham DH1 3LE , UK .
| |
Collapse
|
21
|
Fedoryshchak RO, Ocasio CA, Strutton B, Mattocks J, Corran AJ, Tate EW. Wheat pathogen Zymoseptoria tritici N-myristoyltransferase inhibitors: on-target antifungal activity and an unusual metabolic defense mechanism. RSC Chem Biol 2020; 1:68-78. [PMID: 34458749 PMCID: PMC8341946 DOI: 10.1039/d0cb00020e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
Zymoseptoria tritici is the causative agent of Septoria tritici blotch (STB), which costs billions of dollars annually to major wheat-producing countries in terms of both fungicide use and crop loss. Agricultural pathogenic fungi have acquired resistance to most commercially available fungicide classes, and the rate of discovery and development of new fungicides has stalled, demanding new approaches and insights. Here we investigate a potential mechanism of targeting an important wheat pathogen Z. tritici via inhibition of N-myristoyltransferase (NMT). We characterize Z. tritici NMT biochemically for the first time, profile the in vivo Z. tritici myristoylated proteome and identify and validate the first Z. tritici NMT inhibitors. Proteomic investigation of the downstream effects of NMT inhibition identified an unusual and novel mechanism of defense against chemical toxicity in Z. tritici through the application of comparative bioinformatics to deconvolute function from the previously largely unannotated Z. tritici proteome. Research into novel fungicidal modes-of-action is essential to satisfy an urgent unmet need for novel fungicide targets, and we anticipate that this study will serve as a useful proteomics and bioinformatics resource for researchers studying Z. tritici.
Collapse
Affiliation(s)
- Roman O Fedoryshchak
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub Wood Lane London W12 0BZ UK
- The Francis Crick Institute 1 Midland Rd London NW1 1AT UK
| | - Cory A Ocasio
- The Francis Crick Institute 1 Midland Rd London NW1 1AT UK
| | | | - Jo Mattocks
- Syngenta AG, Jealott's Hill Research Centre Bracknell UK
| | | | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub Wood Lane London W12 0BZ UK
- The Francis Crick Institute 1 Midland Rd London NW1 1AT UK
| |
Collapse
|
22
|
Meinnel T, Dian C, Giglione C. Myristoylation, an Ancient Protein Modification Mirroring Eukaryogenesis and Evolution. Trends Biochem Sci 2020; 45:619-632. [PMID: 32305250 DOI: 10.1016/j.tibs.2020.03.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/02/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022]
Abstract
N-myristoylation (MYR) is a crucial fatty acylation catalyzed by N-myristoyltransferases (NMTs) that is likely to have appeared over 2 billion years ago. Proteome-wide approaches have now delivered an exhaustive list of substrates undergoing MYR across approximately 2% of any proteome, with constituents, several unexpected, associated with different membrane compartments. A set of <10 proteins conserved in eukaryotes probably represents the original set of N-myristoylated targets, marking major changes occurring throughout eukaryogenesis. Recent findings have revealed unexpected mechanisms and reactivity, suggesting competition with other acylations that are likely to influence cellular homeostasis and the steady state of the modification landscape. Here, we review recent advances in NMT catalysis, substrate specificity, and MYR proteomics, and discuss concepts regarding MYR during evolution.
Collapse
Affiliation(s)
- Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Cyril Dian
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
23
|
Siddiqui MA, Singh S, Malhotra P, Chitnis CE. Protein S-Palmitoylation Is Responsive to External Signals and Plays a Regulatory Role in Microneme Secretion in Plasmodium falciparum Merozoites. ACS Infect Dis 2020; 6:379-392. [PMID: 32003970 DOI: 10.1021/acsinfecdis.9b00321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein S-palmitoylation is an important post-translational modification (PTM) in blood stages of the malaria parasite, Plasmodium falciparum. S-palmitoylation refers to reversible covalent modification of cysteine residues of proteins by saturated fatty acids. In vivo, palmitoylation is regulated by concerted activities of DHHC palmitoyl acyl transferases (DHHC PATs) and acyl protein thioesterases (APTs), which are enzymes responsible for protein palmitoylation and depalmitoylation, respectively. Here, we investigate the role of protein palmitoylation in red blood cell (RBC) invasion by P. falciparum merozoites. We demonstrate for the first time that free merozoites require PAT activity for microneme secretion in response to exposure to the physiologically relevant low [K+] environment, characteristic of blood plasma. We have adapted copper catalyzed alkyne azide chemistry (CuAAC) to image palmitoylation in merozoites and found that exposure to low [K+] activates PAT activity in merozoites. Moreover, using acyl biotin exchange chemistry (ABE) and confocal imaging, we demonstrate that a calcium dependent protein kinase, PfCDPK1, an essential regulator of key invasion processes such as motility and microneme secretion, undergoes dynamic palmitoylation and localizes to the merozoite membrane. Treatment of merozoites with the PAT inhibitor, 2-bromopalmitate (2-BP), effectively inhibits microneme secretion and RBC invasion by the parasite, thus opening the possibility of targeting P. falciparum PATs for antimalarial drug discovery to inhibit blood stage growth of malaria parasites.
Collapse
Affiliation(s)
- Mansoor A. Siddiqui
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shailja Singh
- Institut Pasteur, 25-28 Rue du Dr. Roux, Paris 75016, France
- Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Pawan Malhotra
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Chetan E. Chitnis
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
- Institut Pasteur, 25-28 Rue du Dr. Roux, Paris 75016, France
| |
Collapse
|
24
|
Terán D, Doleželová E, Keough DT, Hocková D, Zíková A, Guddat LW. Crystal structures of Trypanosoma brucei hypoxanthine - guanine - xanthine phosphoribosyltransferase in complex with IMP, GMP and XMP. FEBS J 2019; 286:4721-4736. [PMID: 31287615 DOI: 10.1111/febs.14987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/16/2019] [Accepted: 07/06/2019] [Indexed: 11/27/2022]
Abstract
The 6-oxopurine phosphoribosyltransferases (PRTs) are drug targets for the treatment of parasitic diseases. This is due to the fact that parasites are auxotrophic for the 6-oxopurine bases relying on salvage enzymes for the synthesis of their 6-oxopurine nucleoside monophosphates. In Trypanosoma brucei, the parasite that is the aetiological agent for sleeping sickness, there are three 6-oxopurine PRT isoforms. Two are specific for hypoxanthine and guanine, whilst the third, characterized here, uses all three naturally occurring bases with similar efficiency. Here, we have determined crystal structures for TbrHGXPRT in complex with GMP, XMP and IMP to investigate the structural basis for substrate specificity. The results show that Y201 and E208, not commonly observed within the purine binding pocket of 6-oxopurine PRTs, contribute to the versatility of this enzyme. The structures further show that a nearby water can act as an adaptor to facilitate the binding of XMP and GMP. When GMP binds, a water can accept a proton from the 2-amino group but when XMP binds, the equivalent water can donate its proton to the 2-oxo group. However, when IMP is bound, no water molecule is observed at that location. DATABASE: Coordinates and structure factors were submitted to the Protein Data Bank and have accession codes of 6MXB, 6MXC, 6MXD and 6MXG for the TbrHGXPRT.XMP complex, TbrHGXPRT.GMP complex, TbrHGXPRT.IMP complex, and TbrHGPRT.XMP complex, respectively.
Collapse
Affiliation(s)
- David Terán
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Eva Doleželová
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Dianne T Keough
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Dana Hocková
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - Alena Zíková
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Luke W Guddat
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
25
|
Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms. Antioxid Redox Signal 2019; 31:155-210. [PMID: 30499304 DOI: 10.1089/ars.2018.7617] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Redox homeostasis consists of an intricate network of reactions in which reactive molecular species, redox modifications, and redox proteins act in concert to allow both physiological responses and adaptation to stress conditions. Recent Advances: This review highlights established and novel thiol-based regulatory pathways underlying the functional facets and significance of redox biology in photosynthetic organisms. In the last decades, the field of redox regulation has largely expanded and this work is aimed at giving the right credit to the importance of thiol-based regulatory and signaling mechanisms in plants. Critical Issues: This cannot be all-encompassing, but is intended to provide a comprehensive overview on the structural/molecular mechanisms governing the most relevant thiol switching modifications with emphasis on the large genetic and functional diversity of redox controllers (i.e., redoxins). We also summarize the different proteomic-based approaches aimed at investigating the dynamics of redox modifications and the recent evidence that extends the possibility to monitor the cellular redox state in vivo. The physiological relevance of redox transitions is discussed based on reverse genetic studies confirming the importance of redox homeostasis in plant growth, development, and stress responses. Future Directions: In conclusion, we can firmly assume that redox biology has acquired an established significance that virtually infiltrates all aspects of plant physiology.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Christophe H Marchand
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Alex Costa
- 4 Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | | | - Peter Geigenberger
- 6 Department Biologie I, Ludwig-Maximilians-Universität München, LMU Biozentrum, Martinsried, Germany
| | - Stéphane D Lemaire
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
Schlott AC, Mayclin S, Reers AR, Coburn-Flynn O, Bell AS, Green J, Knuepfer E, Charter D, Bonnert R, Campo B, Burrows J, Lyons-Abbott S, Staker BL, Chung CW, Myler PJ, Fidock DA, Tate EW, Holder AA. Structure-Guided Identification of Resistance Breaking Antimalarial N‑Myristoyltransferase Inhibitors. Cell Chem Biol 2019; 26:991-1000.e7. [PMID: 31080074 PMCID: PMC6658617 DOI: 10.1016/j.chembiol.2019.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 01/26/2023]
Abstract
The attachment of myristate to the N-terminal glycine of certain proteins is largely a co-translational modification catalyzed by N-myristoyltransferase (NMT), and involved in protein membrane-localization. Pathogen NMT is a validated therapeutic target in numerous infectious diseases including malaria. In Plasmodium falciparum, NMT substrates are important in essential processes including parasite gliding motility and host cell invasion. Here, we generated parasites resistant to a particular NMT inhibitor series and show that resistance in an in vitro parasite growth assay is mediated by a single amino acid substitution in the NMT substrate-binding pocket. The basis of resistance was validated and analyzed with a structure-guided approach using crystallography, in combination with enzyme activity, stability, and surface plasmon resonance assays, allowing identification of another inhibitor series unaffected by this substitution. We suggest that resistance studies incorporated early in the drug development process help selection of drug combinations to impede rapid evolution of parasite resistance.
Collapse
Affiliation(s)
- Anja C Schlott
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Molecular Sciences Research Hub, Imperial College, White City Campus Wood Lane, London W12 0BZ, UK.
| | - Stephen Mayclin
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98109, USA; UCB Pharma, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Alexandra R Reers
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98109, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, USA
| | - Olivia Coburn-Flynn
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Andrew S Bell
- Molecular Sciences Research Hub, Imperial College, White City Campus Wood Lane, London W12 0BZ, UK
| | - Judith Green
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ellen Knuepfer
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David Charter
- Structural and Biophysical Sciences, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Roger Bonnert
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, 1215 Geneva 15, Switzerland
| | - Brice Campo
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, 1215 Geneva 15, Switzerland
| | - Jeremy Burrows
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, 1215 Geneva 15, Switzerland
| | - Sally Lyons-Abbott
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98109, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, USA
| | - Bart L Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98109, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, USA
| | - Chun-Wa Chung
- Structural and Biophysical Sciences, GlaxoSmithKline, Stevenage, Hertfordshire, UK; Crick-GSK Biomedical LinkLabs, GSK Medicines Research Centre, Stevenage, UK
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98109, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, USA; Department of Biomedical Informatics & Medical Education, University of Washington, Seattle, USA; Department of Global Health, University of Washington, Seattle, USA
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Edward W Tate
- Molecular Sciences Research Hub, Imperial College, White City Campus Wood Lane, London W12 0BZ, UK.
| | | |
Collapse
|
27
|
Kallemeijn WW, Lueg GA, Faronato M, Hadavizadeh K, Goya Grocin A, Song OR, Howell M, Calado DP, Tate EW. Validation and Invalidation of Chemical Probes for the Human N-myristoyltransferases. Cell Chem Biol 2019; 26:892-900.e4. [PMID: 31006618 PMCID: PMC6593224 DOI: 10.1016/j.chembiol.2019.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Accepted: 03/06/2019] [Indexed: 12/15/2022]
Abstract
On-target, cell-active chemical probes are of fundamental importance in chemical and cell biology, whereas poorly characterized probes often lead to invalid conclusions. Human N-myristoyltransferase (NMT) has attracted increasing interest as target in cancer and infectious diseases. Here we report an in-depth comparison of five compounds widely applied as human NMT inhibitors, using a combination of quantitative whole-proteome N-myristoylation profiling, biochemical enzyme assays, cytotoxicity, in-cell protein synthesis, and cell-cycle assays. We find that N-myristoylation is unaffected by 2-hydroxymyristic acid (100 μM), D-NMAPPD (30 μM), or Tris-DBA palladium (10 μM), with the latter compounds causing cytotoxicity through mechanisms unrelated to NMT. In contrast, drug-like inhibitors IMP-366 (DDD85646) and IMP-1088 delivered complete and specific inhibition of N-myristoylation in a range of cell lines at 1 μM and 100 nM, respectively. This study enables the selection of appropriate on-target probes for future studies and suggests the need for reassessment of previous studies that used off-target compounds.
Collapse
Affiliation(s)
- Wouter W Kallemeijn
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK
| | - Gregor A Lueg
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Monica Faronato
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kate Hadavizadeh
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK
| | - Andrea Goya Grocin
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK
| | - Ok-Ryul Song
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Howell
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Dinis P Calado
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
28
|
Alonso AM, Turowski VR, Ruiz DM, Orelo BD, Moresco JJ, Yates JR, Corvi MM. Exploring protein myristoylation in Toxoplasma gondii. Exp Parasitol 2019; 203:8-18. [PMID: 31150653 DOI: 10.1016/j.exppara.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/15/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
Toxoplasma gondii is an important human and veterinary pathogen and the causative agent of toxoplasmosis, a potentially severe disease especially in immunocompromised or congenitally infected humans. Current therapeutic compounds are not well-tolerated, present increasing resistance, limited efficacy and require long periods of treatment. On this context, searching for new therapeutic targets is crucial to drug discovery. In this sense, recent works suggest that N-myristoyltransferase (NMT), the enzyme responsible for protein myristoylation that is essential in some parasites, could be the target of new anti-parasitic compounds. However, up to date there is no information on NMT and the extent of this modification in T. gondii. In this work, we decided to explore T. gondii genome in search of elements related with the N-myristoylation process. By a bioinformatics approach it was possible to identify a putative T. gondii NMT (TgNMT). This enzyme that is homologous to other parasitic NMTs, presents activity in vitro, is expressed in both intra- and extracellular parasites and interacts with predicted TgNMT substrates. Additionally, NMT activity seems to be important for the lytic cycle of Toxoplasma gondii. In parallel, an in silico myristoylome predicts 157 proteins to be affected by this modification. Myristoylated proteins would be affecting several metabolic functions with some of them being critical for the life cycle of this parasite. Together, these data indicate that TgNMT could be an interesting target of intervention for the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Andrés M Alonso
- Laboratorio de Bioquímica y Biología Celular de Parásitos, Instituto Tecnológico de Chascomús (INTECH), CONICET, Universidad Nacional de San Martín. Intendente Marino Km 8.2, B7130, Chascomús, Buenos Aires, Argentina
| | - Valeria R Turowski
- Laboratorio de Bioquímica y Biología Celular de Parásitos, Instituto Tecnológico de Chascomús (INTECH), CONICET, Universidad Nacional de San Martín. Intendente Marino Km 8.2, B7130, Chascomús, Buenos Aires, Argentina
| | - Diego M Ruiz
- Laboratorio de Bioquímica y Biología Celular de Parásitos, Instituto Tecnológico de Chascomús (INTECH), CONICET, Universidad Nacional de San Martín. Intendente Marino Km 8.2, B7130, Chascomús, Buenos Aires, Argentina
| | - Barbara D Orelo
- Department of Chemical Physiology, 10550 North Torrey Pines Road, SR11, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - James J Moresco
- Department of Chemical Physiology, 10550 North Torrey Pines Road, SR11, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - John R Yates
- Department of Chemical Physiology, 10550 North Torrey Pines Road, SR11, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - María M Corvi
- Laboratorio de Bioquímica y Biología Celular de Parásitos, Instituto Tecnológico de Chascomús (INTECH), CONICET, Universidad Nacional de San Martín. Intendente Marino Km 8.2, B7130, Chascomús, Buenos Aires, Argentina.
| |
Collapse
|
29
|
Goya Grocin A, Serwa RA, Morales Sanfrutos J, Ritzefeld M, Tate EW. Whole Proteome Profiling of N-Myristoyltransferase Activity and Inhibition Using Sortase A. Mol Cell Proteomics 2019; 18:115-126. [PMID: 30341083 PMCID: PMC6317481 DOI: 10.1074/mcp.ra118.001043] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/24/2018] [Indexed: 11/30/2022] Open
Abstract
N-myristoylation is the covalent addition of a 14-carbon saturated fatty acid (myristate) to the N-terminal glycine of specific protein substrates by N-myristoyltransferase (NMT) and plays an important role in protein regulation by controlling localization, stability, and interactions. We developed a novel method for whole-proteome profiling of free N-terminal glycines through labeling with S. Aureus sortase A (SrtA) and used it for assessment of target engagement by an NMT inhibitor. Analysis of the SrtA-labeling pattern with an engineered biotinylated depsipeptide SrtA substrate (Biotin-ALPET-Haa, Haa = 2-hydroxyacetamide) enabled whole proteome identification and quantification of de novo generated N-terminal Gly proteins in response to NMT inhibition by nanoLC-MS/MS proteomics, and was confirmed for specific substrates across multiple cell lines by gel-based analyses and ELISA. To achieve optimal signal over background noise we introduce a novel and generally applicable improvement to the biotin/avidin affinity enrichment step by chemically dimethylating commercial NeutrAvidin resin and combining this with two-step LysC on-bead/trypsin off-bead digestion, effectively eliminating avidin-derived tryptic peptides and enhancing identification of enriched peptides. We also report SrtA substrate specificity in whole-cell lysates for the first time, confirming SrtA promiscuity beyond its recognized preference for N-terminal glycine, and its usefulness as a tool for unbiased labeling of N-terminal glycine-containing proteins. Our new methodology is complementary to metabolic tagging strategies, providing the first approach for whole proteome gain-of signal readout for NMT inhibition in complex samples which are not amenable to metabolic tagging.
Collapse
Affiliation(s)
- Andrea Goya Grocin
- From the ‡Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, UK
| | - Remigiusz A Serwa
- From the ‡Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, UK
| | - Julia Morales Sanfrutos
- From the ‡Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, UK
| | - Markus Ritzefeld
- From the ‡Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, UK
| | - Edward W Tate
- From the ‡Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, UK..
| |
Collapse
|
30
|
Kaiser N, Mejuch T, Fedoryshchak R, Janning P, Tate EW, Waldmann H. Photoactivatable Myristic Acid Probes for UNC119-Cargo Interactions. Chembiochem 2018; 20:134-139. [DOI: 10.1002/cbic.201800406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Nadine Kaiser
- Department of Chemical Biology; Max-Planck-Institute of, Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Tom Mejuch
- Department of Chemical Biology; Max-Planck-Institute of, Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Roman Fedoryshchak
- Department of Chemistry; Imperial College London; Exhibition Road London SW7 2AZ UK
| | - Petra Janning
- Department of Chemical Biology; Max-Planck-Institute of, Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Edward W. Tate
- Department of Chemistry; Imperial College London; Exhibition Road London SW7 2AZ UK
| | - Herbert Waldmann
- Department of Chemical Biology; Max-Planck-Institute of, Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| |
Collapse
|
31
|
Abstract
African trypanosomes cause lethal and neglected tropical diseases, known as sleeping sickness in humans and nagana in animals. Current therapies are limited, but fortunately, promising therapies are in advanced clinical and veterinary development, including acoziborole (AN5568 or SCYX-7158) and AN11736, respectively. These benzoxaboroles will likely be key to the World Health Organization's target of disease control by 2030. Their mode of action was previously unknown. We have developed a high-coverage overexpression library and use it here to explore drug mode of action in Trypanosoma brucei Initially, an inhibitor with a known target was used to select for drug resistance and to test massive parallel library screening and genome-wide mapping; this effectively identified the known target and validated the approach. Subsequently, the overexpression screening approach was used to identify the target of the benzoxaboroles, Cleavage and Polyadenylation Specificity Factor 3 (CPSF3, Tb927.4.1340). We validated the CPSF3 endonuclease as the target, using independent overexpression strains. Knockdown provided genetic validation of CPSF3 as essential, and GFP tagging confirmed the expected nuclear localization. Molecular docking and CRISPR-Cas9-based editing demonstrated how acoziborole can specifically block the active site and mRNA processing by parasite, but not host CPSF3. Thus, our findings provide both genetic and chemical validation for CPSF3 as an important drug target in trypanosomes and reveal inhibition of mRNA maturation as the mode of action of the trypanocidal benzoxaboroles. Understanding the mechanism of action of benzoxaborole-based therapies can assist development of improved therapies, as well as the prediction and monitoring of resistance, if or when it arises.
Collapse
|
32
|
Structural and genomic decoding of human and plant myristoylomes reveals a definitive recognition pattern. Nat Chem Biol 2018; 14:671-679. [PMID: 29892081 DOI: 10.1038/s41589-018-0077-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/09/2018] [Indexed: 01/08/2023]
Abstract
An organism's entire protein modification repertoire has yet to be comprehensively mapped. N-myristoylation (MYR) is a crucial eukaryotic N-terminal protein modification. Here we mapped complete Homo sapiens and Arabidopsis thaliana myristoylomes. The crystal structures of human modifier NMT1 complexed with reactive and nonreactive target-mimicking peptide ligands revealed unexpected binding clefts and a modifier recognition pattern. This information allowed integrated mapping of myristoylomes using peptide macroarrays, dedicated prediction algorithms, and in vivo mass spectrometry. Global MYR profiling at the genomic scale identified over a thousand novel, heterogeneous targets in both organisms. Surprisingly, MYR involved a non-negligible set of overlapping targets with N-acetylation, and the sequence signature marks for a third proximal acylation-S-palmitoylation-were genomically imprinted, allowing recognition of sequences exhibiting both acylations. Together, the data extend the N-end rule concept for Gly-starting proteins to subcellular compartmentalization and reveal the main neighbors influencing protein modification profiles and consequent cell fate.
Collapse
|
33
|
Aldrich CC, Calderón F. 2 nd SCI/RSC Symposium on Medicinal Chemistry for Global Health: A Unique Opportunity for the Field. ACS Infect Dis 2018; 4:424-428. [PMID: 29649878 DOI: 10.1021/acsinfecdis.8b00022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Courtney C. Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, 8-174 Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, Minneosta 55455, United States
| | - Félix Calderón
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| |
Collapse
|
34
|
Schlott AC, Holder AA, Tate EW. N-Myristoylation as a Drug Target in Malaria: Exploring the Role of N-Myristoyltransferase Substrates in the Inhibitor Mode of Action. ACS Infect Dis 2018; 4:449-457. [PMID: 29363940 DOI: 10.1021/acsinfecdis.7b00203] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Malaria continues to be a significant cause of death and morbidity worldwide, and there is a need for new antimalarial drugs with novel targets. We have focused as a potential target for drug development on N-myristoyl transferase (NMT), an enzyme that acylates a wide range of substrate proteins. The NMT substrates in Plasmodium falciparum include some proteins that are common to processes in eukaryotes such as secretory transport and others that are unique to apicomplexan parasites. Myristoylation facilitates a protein interaction with membranes that may be strengthened by further lipidation, and the inhibition of NMT results in incorrect protein localization and the consequent disruption of function. The diverse roles of NMT substrates mean that NMT inhibition has a pleiotropic and severe impact on parasite development, growth, and multiplication. To study the mode of action underlying NMT inhibition, it is important to consider the function of proteins upstream and downstream of NMT. In this work, we therefore present our current perspective on the different functions of known NMT substrates as well as compare the inhibition of cotranslational myristoylation to the inhibition of known targets upstream of NMT.
Collapse
Affiliation(s)
- Anja C. Schlott
- Malaria Parasitology, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
- Department of Chemistry, Imperial College London, Imperial College Road, SW7 2AZ London, United Kingdom
| | - Anthony A. Holder
- Malaria Parasitology, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, Imperial College Road, SW7 2AZ London, United Kingdom
| |
Collapse
|
35
|
Sobocińska J, Roszczenko-Jasińska P, Ciesielska A, Kwiatkowska K. Protein Palmitoylation and Its Role in Bacterial and Viral Infections. Front Immunol 2018; 8:2003. [PMID: 29403483 PMCID: PMC5780409 DOI: 10.3389/fimmu.2017.02003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/26/2017] [Indexed: 12/11/2022] Open
Abstract
S-palmitoylation is a reversible, enzymatic posttranslational modification of proteins in which palmitoyl chain is attached to a cysteine residue via a thioester linkage. S-palmitoylation determines the functioning of proteins by affecting their association with membranes, compartmentalization in membrane domains, trafficking, and stability. In this review, we focus on S-palmitoylation of proteins, which are crucial for the interactions of pathogenic bacteria and viruses with the host. We discuss the role of palmitoylated proteins in the invasion of host cells by bacteria and viruses, and those involved in the host responses to the infection. We highlight recent data on protein S-palmitoylation in pathogens and their hosts obtained owing to the development of methods based on click chemistry and acyl-biotin exchange allowing proteomic analysis of protein lipidation. The role of the palmitoyl moiety present in bacterial lipopolysaccharide and lipoproteins, contributing to infectivity and affecting recognition of bacteria by innate immune receptors, is also discussed.
Collapse
Affiliation(s)
- Justyna Sobocińska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Paula Roszczenko-Jasińska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Anna Ciesielska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
36
|
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 2018; 118:919-988. [PMID: 29292991 DOI: 10.1021/acs.chemrev.6b00750] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.
Collapse
Affiliation(s)
- Hong Jiang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiao Chen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Pornpun Aramsangtienchai
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Zhen Tong
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
37
|
Peng T, Hang HC. Chemical Proteomic Profiling of Protein Fatty-Acylation in Microbial Pathogens. Curr Top Microbiol Immunol 2018; 420:93-110. [PMID: 30128826 DOI: 10.1007/82_2018_126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protein fatty-acylation describes the covalent modification of protein with fatty acids during or after translation. Chemical proteomic profiling methods have provided new opportunities to explore protein fatty-acylation in microbial pathogens. Recent studies suggest that protein fatty-acylation is essential to survival and pathogenesis of eukaryotic pathogens such as parasites and fungi. Moreover, fatty-acylation in host cells can be exploited or manipulated by pathogenic bacteria. Herein, we first review the prevalent classes of fatty-acylation in microbial pathogens and the chemical proteomic profiling methods for their global analysis. We then summarize recent fatty-acylation profiling studies performed in eukaryotic pathogens and during bacterial infections, highlighting how they contribute to functional characterization of fatty-acylation under these contexts.
Collapse
Affiliation(s)
- Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
38
|
Lanyon-Hogg T, Faronato M, Serwa RA, Tate EW. Dynamic Protein Acylation: New Substrates, Mechanisms, and Drug Targets. Trends Biochem Sci 2017; 42:566-581. [PMID: 28602500 DOI: 10.1016/j.tibs.2017.04.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 01/04/2023]
Abstract
Post-translational attachment of lipids to proteins is found in all organisms, and is important for many biological processes. Acylation with myristic and palmitic acids are among the most common lipid modifications, and understanding reversible protein palmitoylation dynamics has become a particularly important goal. Linking acyltransferase enzymes to disease states can be challenging due to a paucity of robust models, compounded by functional redundancy between many palmitoyl transferases; however, in cases such as Wnt or Hedgehog signalling, small molecule inhibitors have been identified, with some progressing to clinical trials. In this review, we present recent developments in our understanding of protein acylation in human health and disease through use of chemical tools, global profiling of acylated proteomes, and functional studies of specific protein targets.
Collapse
Affiliation(s)
- Thomas Lanyon-Hogg
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Monica Faronato
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Remigiusz A Serwa
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Edward W Tate
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
39
|
Brown RWB, Sharma AI, Engman DM. Dynamic protein S-palmitoylation mediates parasite life cycle progression and diverse mechanisms of virulence. Crit Rev Biochem Mol Biol 2017; 52:145-162. [PMID: 28228066 PMCID: PMC5560270 DOI: 10.1080/10409238.2017.1287161] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eukaryotic parasites possess complex life cycles and utilize an assortment of molecular mechanisms to overcome physical barriers, suppress and/or bypass the host immune response, including invading host cells where they can replicate in a protected intracellular niche. Protein S-palmitoylation is a dynamic post-translational modification in which the fatty acid palmitate is covalently linked to cysteine residues on proteins by the enzyme palmitoyl acyltransferase (PAT) and can be removed by lysosomal palmitoyl-protein thioesterase (PPT) or cytosolic acyl-protein thioesterase (APT). In addition to anchoring proteins to intracellular membranes, functions of dynamic palmitoylation include - targeting proteins to specific intracellular compartments via trafficking pathways, regulating the cycling of proteins between membranes, modulating protein function and regulating protein stability. Recent studies in the eukaryotic parasites - Plasmodium falciparum, Toxoplasma gondii, Trypanosoma brucei, Cryptococcus neoformans and Giardia lamblia - have identified large families of PATs and palmitoylated proteins. Many palmitoylated proteins are important for diverse aspects of pathogenesis, including differentiation into infective life cycle stages, biogenesis and tethering of secretory organelles, assembling the machinery powering motility and targeting virulence factors to the plasma membrane. This review aims to summarize our current knowledge of palmitoylation in eukaryotic parasites, highlighting five exemplary mechanisms of parasite virulence dependent on palmitoylation.
Collapse
Affiliation(s)
- Robert W. B. Brown
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Aabha I. Sharma
- Departments of Pathology and Microbiology-Biology, Northwestern University, Chicago, IL, United States
| | - David M. Engman
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Departments of Pathology and Microbiology-Biology, Northwestern University, Chicago, IL, United States
| |
Collapse
|
40
|
New developments in probing and targeting protein acylation in malaria, leishmaniasis and African sleeping sickness. Parasitology 2017; 145:157-174. [PMID: 28270257 DOI: 10.1017/s0031182017000282] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Infections by protozoan parasites, such as Plasmodium falciparum or Leishmania donovani, have a significant health, social and economic impact and threaten billions of people living in tropical and sub-tropical regions of developing countries worldwide. The increasing range of parasite strains resistant to frontline therapeutics makes the identification of novel drug targets and the development of corresponding inhibitors vital. Post-translational modifications (PTMs) are important modulators of biology and inhibition of protein lipidation has emerged as a promising therapeutic strategy for treatment of parasitic diseases. In this review we summarize the latest insights into protein lipidation in protozoan parasites. We discuss how recent chemical proteomic approaches have delivered the first global overviews of protein lipidation in these organisms, contributing to our understanding of the role of this PTM in critical metabolic and cellular functions. Additionally, we highlight the development of new small molecule inhibitors to target parasite acyl transferases.
Collapse
|
41
|
Thinon E, Morales-Sanfrutos J, Mann DJ, Tate EW. N-Myristoyltransferase Inhibition Induces ER-Stress, Cell Cycle Arrest, and Apoptosis in Cancer Cells. ACS Chem Biol 2016; 11:2165-76. [PMID: 27267252 PMCID: PMC5077176 DOI: 10.1021/acschembio.6b00371] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/24/2016] [Indexed: 12/16/2022]
Abstract
N-Myristoyltransferase (NMT) covalently attaches a C14 fatty acid to the N-terminal glycine of proteins and has been proposed as a therapeutic target in cancer. We have recently shown that selective NMT inhibition leads to dose-responsive loss of N-myristoylation on more than 100 protein targets in cells, and cytotoxicity in cancer cells. N-myristoylation lies upstream of multiple pro-proliferative and oncogenic pathways, but to date the complex substrate specificity of NMT has limited determination of which diseases are most likely to respond to a selective NMT inhibitor. We describe here the phenotype of NMT inhibition in HeLa cells and show that cells die through apoptosis following or concurrent with accumulation in the G1 phase. We used quantitative proteomics to map protein expression changes for more than 2700 proteins in response to treatment with an NMT inhibitor in HeLa cells and observed down-regulation of proteins involved in cell cycle regulation and up-regulation of proteins involved in the endoplasmic reticulum stress and unfolded protein response, with similar results in breast (MCF-7, MDA-MB-231) and colon (HCT116) cancer cell lines. This study describes the cellular response to NMT inhibition at the proteome level and provides a starting point for selective targeting of specific diseases with NMT inhibitors, potentially in combination with other targeted agents.
Collapse
Affiliation(s)
- Emmanuelle Thinon
- Department
of Chemistry, Imperial College London, Exhibition Road, London SW72AZ, United Kingdom
- Department
of Life Sciences, Imperial College London, Exhibition Road, London SW72AZ, United Kingdom
| | - Julia Morales-Sanfrutos
- Department
of Chemistry, Imperial College London, Exhibition Road, London SW72AZ, United Kingdom
| | - David J. Mann
- Department
of Life Sciences, Imperial College London, Exhibition Road, London SW72AZ, United Kingdom
- Institute
of Chemical Biology, Department of Chemistry, Imperial College London, Exhibition Road, London SW72AZ, United Kingdom
| | - Edward W. Tate
- Department
of Chemistry, Imperial College London, Exhibition Road, London SW72AZ, United Kingdom
- Institute
of Chemical Biology, Department of Chemistry, Imperial College London, Exhibition Road, London SW72AZ, United Kingdom
| |
Collapse
|
42
|
Roberts AJ, Fairlamb AH. The N-myristoylome of Trypanosoma cruzi. Sci Rep 2016; 6:31078. [PMID: 27492267 PMCID: PMC4974623 DOI: 10.1038/srep31078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/12/2016] [Indexed: 01/04/2023] Open
Abstract
Protein N-myristoylation is catalysed by N-myristoyltransferase (NMT), an essential and druggable target in Trypanosoma cruzi, the causative agent of Chagas' disease. Here we have employed whole cell labelling with azidomyristic acid and click chemistry to identify N-myristoylated proteins in different life cycle stages of the parasite. Only minor differences in fluorescent-labelling were observed between the dividing forms (the insect epimastigote and mammalian amastigote stages) and the non-dividing trypomastigote stage. Using a combination of label-free and stable isotope labelling of cells in culture (SILAC) based proteomic strategies in the presence and absence of the NMT inhibitor DDD85646, we identified 56 proteins enriched in at least two out of the three experimental approaches. Of these, 6 were likely to be false positives, with the remaining 50 commencing with amino acids MG at the N-terminus in one or more of the T. cruzi genomes. Most of these are proteins of unknown function (32), with the remainder (18) implicated in a diverse range of critical cellular and metabolic functions such as intracellular transport, cell signalling and protein turnover. In summary, we have established that 0.43-0.46% of the proteome is N-myristoylated in T. cruzi approaching that of other eukaryotic organisms (0.5-1.7%).
Collapse
Affiliation(s)
- Adam J. Roberts
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Alan H. Fairlamb
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|