1
|
Parkin LA, Maceren JP, Palande A, Previti ML, Seeliger JC. Metabolic tagging reveals surface-associated lipoproteins in mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631728. [PMID: 39829771 PMCID: PMC11741404 DOI: 10.1101/2025.01.07.631728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Mycobacteria such as the causative agent of tuberculosis, Mycobacterium tuberculosis, encode over 100 bioinformatically predicted lipoproteins. Despite the importance of these post-translationally modified proteins for mycobacterial survival, many remain experimentally unconfirmed. Here we characterized metabolic incorporation of diverse fatty acid analogues as a facile method of adding chemical groups that enable downstream applications such as detection, crosslinking and enrichment, of not only lipid-modified proteins, but also their protein interactors. Having shown that incorporation is an active process dependent on the lipoprotein biosynthesis pathway, we discovered that lipid-modified proteins are also located at the mycobacterial cell surface. These data counter the commonly held assumption that mycobacteria do not move lipoproteins across the cell envelope and thus have implications for uncovering a novel transport pathway and the roles of lipoproteins at the interface with the host environment. Our findings and the tools we developed will enable the further study of pathways related to lipoprotein function and metabolism in mycobacteria and other bacteria in which lipoproteins remain poorly understood.
Collapse
Affiliation(s)
- Lia A. Parkin
- Department of Microbiology and Immunology, Stony Brook, NY 11794, U.S.A
| | | | - Aseem Palande
- Department of Pharmacological Sciences Stony Brook University, Stony Brook, NY 11794, U.S.A
| | - Mary L. Previti
- Department of Pharmacological Sciences Stony Brook University, Stony Brook, NY 11794, U.S.A
| | - Jessica C. Seeliger
- Department of Pharmacological Sciences Stony Brook University, Stony Brook, NY 11794, U.S.A
| |
Collapse
|
2
|
Jones BS, Hu DD, Nicholson KR, Cronin RM, Weaver SD, Champion MM, Champion PA. The loss of the PDIM/PGL virulence lipids causes differential secretion of ESX-1 substrates in Mycobacterium marinum. mSphere 2024; 9:e0000524. [PMID: 38661343 PMCID: PMC11237470 DOI: 10.1128/msphere.00005-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
The mycobacterial cell envelope is a major virulence determinant in pathogenic mycobacteria. Specific outer lipids play roles in pathogenesis, modulating the immune system and promoting the secretion of virulence factors. ESX-1 (ESAT-6 system-1) is a conserved protein secretion system required for mycobacterial pathogenesis. Previous studies revealed that mycobacterial strains lacking the outer lipid PDIM have impaired ESX-1 function during laboratory growth and infection. The mechanisms underlying changes in ESX-1 function are unknown. We used a proteo-genetic approach to measure phthiocerol dimycocerosate (PDIM)- and phenolic glycolipid (PGL)-dependent protein secretion in M. marinum, a non-tubercular mycobacterial pathogen that causes tuberculosis-like disease in ectothermic animals. Importantly, M. marinum is a well-established model for mycobacterial pathogenesis. Our findings showed that M. marinum strains without PDIM and PGL showed specific, significant reductions in protein secretion compared to the WT and complemented strains. We recently established a hierarchy for the secretion of ESX-1 substrates in four (I-IV) groups. Loss of PDIM differentially impacted secretion of Group III and IV ESX-1 substrates, which are likely the effectors of pathogenesis. Our data suggest that the altered secretion of specific ESX-1 substrates is responsible for the observed ESX-1-related effects in PDIM-deficient strains.IMPORTANCEMycobacterium tuberculosis, the cause of human tuberculosis, killed an estimated 1.3 million people in 2022. Non-tubercular mycobacterial species cause acute and chronic human infections. Understanding how these bacteria cause disease is critical. Lipids in the cell envelope are essential for mycobacteria to interact with the host and promote disease. Strains lacking outer lipids are attenuated for infection, but the reasons are unclear. Our research aims to identify a mechanism for attenuation of mycobacterial strains without the PDIM and PGL outer lipids in M. marinum. These findings will enhance our understanding of the importance of lipids in pathogenesis and how these lipids contribute to other established virulence mechanisms.
Collapse
Affiliation(s)
- Bradley S. Jones
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Daniel D. Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Kathleen R. Nicholson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rachel M. Cronin
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Simon D. Weaver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Matthew M. Champion
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
3
|
Sharma D, Gautam S, Srivastava N, Khan AM, Bisht D. Comparative Proteomic Analysis of Capsule Proteins in Aminoglycoside-Resistant and Sensitive Mycobacterium tuberculosis Clinical Isolates: Unraveling Potential Drug Targets. Int J Mycobacteriol 2024; 13:197-205. [PMID: 38916392 DOI: 10.4103/ijmy.ijmy_47_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Tuberculosis (TB), a global infectious threat, has seen a concerning rise in aminoglycoside-resistant Mycobacterium tuberculosis (M.tb) strains. The potential role of capsule proteins remains largely unexplored. This layer acts as the primary barrier for tubercle bacilli, attempting to infiltrate host cells and subsequent disease development. METHODS The study aims to bridge this gap by investigating the differentially expressed capsule proteins in aminoglycoside-resistant M.tb clinical isolates compared with drug-sensitive isolates employing two-dimensional gel electrophoresis, mass spectrometry, and bioinformatic approaches. RESULTS We identified eight proteins that exhibited significant upregulation in aminoglycoside-resistant isolates. Protein Rv3029c and Rv2110c were associated with intermediary metabolism and respiration; Rv2462c with cell wall and cell processes; Rv3804c with lipid metabolism; Rv2416c and Rv2623 with virulence and detoxification/adaptation; Rv0020c with regulatory functions; and Rv0639 with information pathways. Notably, the Group-based Prediction System for Prokaryotic Ubiquitin-like Protein (GPS-PUP) algorithm identified potential pupylation sites within all proteins except Rv3804c. Interactome analysis using the STRING 12.0 database revealed potential interactive partners for these proteins, suggesting their involvement in aminoglycoside resistance. Molecular docking studies revealed suitable binding between amikacin and kanamycin drugs with Rv2462c, Rv3804c, and Rv2623 proteins. CONCLUSION As a result, our findings illustrate the multifaceted nature of aminoglycoside resistance in M.tb and the importance of understanding how capsule proteins play a role in counteracting drug efficacy. Identifying the role of these proteins in drug resistance is crucial for developing more effective treatments and diagnostics for TB.
Collapse
Affiliation(s)
- Devesh Sharma
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
- School of Studies in Biochemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Sakshi Gautam
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Nalini Srivastava
- School of Studies in Biochemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Abdul Mabood Khan
- Division of Clinical Trails and Implementation Research, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Deepa Bisht
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| |
Collapse
|
4
|
Bigi MM, Forrellad MA, García JS, Blanco FC, Vázquez CL, Bigi F. An update on Mycobacterium tuberculosis lipoproteins. Future Microbiol 2023; 18:1381-1398. [PMID: 37962486 DOI: 10.2217/fmb-2023-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/29/2023] [Indexed: 11/15/2023] Open
Abstract
Almost 3% of the proteins of Mycobacterium tuberculosis (M. tuberculosis), the main causative agent of human tuberculosis, are lipoproteins. These lipoproteins are characteristic of the mycobacterial cell envelope and participate in many mechanisms involved in the pathogenesis of M. tuberculosis. In this review, the authors provide an updated analysis of M. tuberculosis lipoproteins and categorize them according to their demonstrated or predicted functions, including transport of compounds to and from the cytoplasm, biosynthesis of the mycobacterial cell envelope, defense and resistance mechanisms, enzymatic activities and signaling pathways. In addition, this updated analysis revealed that at least 40% of M. tuberculosis lipoproteins are glycosylated.
Collapse
Affiliation(s)
- María M Bigi
- Instituto de Investigaciones Biomédicas, CONICET, Universidad de Buenos Aires, Paraguay 2155 (C1121ABG), Buenos Aires, Argentina
| | - Marina A Forrellad
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Julia S García
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Federico C Blanco
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Cristina L Vázquez
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Fabiana Bigi
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| |
Collapse
|
5
|
Remm S, De Vecchis D, Schöppe J, Hutter CAJ, Gonda I, Hohl M, Newstead S, Schäfer LV, Seeger MA. Structural basis for triacylglyceride extraction from mycobacterial inner membrane by MFS transporter Rv1410. Nat Commun 2023; 14:6449. [PMID: 37833269 PMCID: PMC10576003 DOI: 10.1038/s41467-023-42073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Mycobacterium tuberculosis is protected from antibiotic therapy by a multi-layered hydrophobic cell envelope. Major facilitator superfamily (MFS) transporter Rv1410 and the periplasmic lipoprotein LprG are involved in transport of triacylglycerides (TAGs) that seal the mycomembrane. Here, we report a 2.7 Å structure of a mycobacterial Rv1410 homologue, which adopts an outward-facing conformation and exhibits unusual transmembrane helix 11 and 12 extensions that protrude ~20 Å into the periplasm. A small, very hydrophobic cavity suitable for lipid transport is constricted by a functionally important ion-lock likely involved in proton coupling. Combining mutational analyses and MD simulations, we propose that TAGs are extracted from the core of the inner membrane into the central cavity via lateral clefts present in the inward-facing conformation. The functional role of the periplasmic helix extensions is to channel the extracted TAG into the lipid binding pocket of LprG.
Collapse
Affiliation(s)
- Sille Remm
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Dario De Vecchis
- Center for Theoretical Chemistry, Ruhr University Bochum, Bochum, Germany
| | - Jendrik Schöppe
- Institute of Biochemistry, University of Zurich, Zürich, Switzerland
- Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark
| | - Cedric A J Hutter
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
- Linkster Therapeutics, Zürich, Switzerland
| | - Imre Gonda
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Michael Hohl
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Lars V Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, Bochum, Germany.
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland.
- National Center for Mycobacteria, Zurich, Switzerland.
| |
Collapse
|
6
|
Finin P, Khan RMN, Oh S, Boshoff HIM, Barry CE. Chemical approaches to unraveling the biology of mycobacteria. Cell Chem Biol 2023; 30:420-435. [PMID: 37207631 PMCID: PMC10201459 DOI: 10.1016/j.chembiol.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023]
Abstract
Mycobacterium tuberculosis (Mtb), perhaps more than any other organism, is intrinsically appealing to chemical biologists. Not only does the cell envelope feature one of the most complex heteropolymers found in nature1 but many of the interactions between Mtb and its primary host (we humans) rely on lipid and not protein mediators.2,3 Many of the complex lipids, glycolipids, and carbohydrates biosynthesized by the bacterium still have unknown functions, and the complexity of the pathological processes by which tuberculosis (TB) disease progress offers many opportunities for these molecules to influence the human response. Because of the importance of TB in global public health, chemical biologists have applied a wide-ranging array of techniques to better understand the disease and improve interventions.
Collapse
Affiliation(s)
- Peter Finin
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - R M Naseer Khan
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA.
| |
Collapse
|
7
|
Sparks IL, Derbyshire KM, Jacobs WR, Morita YS. Mycobacterium smegmatis: The Vanguard of Mycobacterial Research. J Bacteriol 2023; 205:e0033722. [PMID: 36598232 PMCID: PMC9879119 DOI: 10.1128/jb.00337-22] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The genus Mycobacterium contains several slow-growing human pathogens, including Mycobacterium tuberculosis, Mycobacterium leprae, and Mycobacterium avium. Mycobacterium smegmatis is a nonpathogenic and fast growing species within this genus. In 1990, a mutant of M. smegmatis, designated mc2155, that could be transformed with episomal plasmids was isolated, elevating M. smegmatis to model status as the ideal surrogate for mycobacterial research. Classical bacterial models, such as Escherichia coli, were inadequate for mycobacteria research because they have low genetic conservation, different physiology, and lack the novel envelope structure that distinguishes the Mycobacterium genus. By contrast, M. smegmatis encodes thousands of conserved mycobacterial gene orthologs and has the same cell architecture and physiology. Dissection and characterization of conserved genes, structures, and processes in genetically tractable M. smegmatis mc2155 have since provided previously unattainable insights on these same features in its slow-growing relatives. Notably, tuberculosis (TB) drugs, including the first-line drugs isoniazid and ethambutol, are active against M. smegmatis, but not against E. coli, allowing the identification of their physiological targets. Furthermore, Bedaquiline, the first new TB drug in 40 years, was discovered through an M. smegmatis screen. M. smegmatis has become a model bacterium, not only for M. tuberculosis, but for all other Mycobacterium species and related genera. With a repertoire of bioinformatic and physical resources, including the recently established Mycobacterial Systems Resource, M. smegmatis will continue to accelerate mycobacterial research and advance the field of microbiology.
Collapse
Affiliation(s)
- Ian L. Sparks
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Keith M. Derbyshire
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yasu S. Morita
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
8
|
Ahamed M, Jaisinghani N, Li M, Winkeler I, Silva S, Previti ML, Seeliger JC. Optimized APEX2 peroxidase-mediated proximity labeling in fast- and slow-growing mycobacteria. Methods Enzymol 2021; 664:267-289. [PMID: 35331378 PMCID: PMC11628366 DOI: 10.1016/bs.mie.2021.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proximity labeling is a technology for tagging proteins and other biomolecules in living cells. These methods use enzymes that generate reactive species whose properties afford high spatial resolution for the localization of proteins to subcellular compartments and the identification of endogenous interaction partners. Here we present the adaptation of the engineered peroxidase APEX2 to proximity labeling in mycobacteria, including the human pathogen Mycobacterium tuberculosis. APEX2 is uniquely suited for general use in bacteria because unlike other proximity labeling enzymes, it does not depend on metabolites like ATP that are found in the cytoplasm, but are absent from the bacterial periplasm. Importantly, we found that in slow-growing mycobacteria like M. tuberculosis, codon usage optimization is required for APEX2 export into the periplasm via fusion to an N-terminal secretion signal. APEX2 expressed from codon-optimized genes affords robust, compartment-specific protein labeling in the cytoplasm and the periplasm of both fast- and slow-growing species. Here we detail these updated constructs and provide an optimized protocol for APEX2-mediated protein labeling in mycobacteria. We expect this approach to be broadly useful for determining the localization of specific proteins, cataloging subcellular proteomes, and identifying interaction partners of 'bait' proteins expressed as fusions to APEX2.
Collapse
Affiliation(s)
- Mukshud Ahamed
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Neetika Jaisinghani
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Michael Li
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Ian Winkeler
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Shalika Silva
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Mary L Previti
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Jessica C Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
9
|
Johnson KL, Qi Z, Yan Z, Wen X, Nguyen TC, Zaleta-Rivera K, Chen CJ, Fan X, Sriram K, Wan X, Chen ZB, Zhong S. Revealing protein-protein interactions at the transcriptome scale by sequencing. Mol Cell 2021; 81:4091-4103.e9. [PMID: 34348091 PMCID: PMC8500946 DOI: 10.1016/j.molcel.2021.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/12/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
We describe PROPER-seq (protein-protein interaction sequencing) to map protein-protein interactions (PPIs) en masse. PROPER-seq first converts transcriptomes of input cells into RNA-barcoded protein libraries, in which all interacting protein pairs are captured through nucleotide barcode ligation, recorded as chimeric DNA sequences, and decoded at once by sequencing and mapping. We applied PROPER-seq to human embryonic kidney cells, T lymphocytes, and endothelial cells and identified 210,518 human PPIs (collected in the PROPER v.1.0 database). Among these, 1,365 and 2,480 PPIs are supported by published co-immunoprecipitation (coIP) and affinity purification-mass spectrometry (AP-MS) data, 17,638 PPIs are predicted by the prePPI algorithm without previous experimental validation, and 100 PPIs overlap human synthetic lethal gene pairs. In addition, four previously uncharacterized interaction partners with poly(ADP-ribose) polymerase 1 (PARP1) (a critical protein in DNA repair) known as XPO1, MATR3, IPO5, and LEO1 are validated in vivo. PROPER-seq presents a time-effective technology to map PPIs at the transcriptome scale, and PROPER v.1.0 provides a rich resource for studying PPIs.
Collapse
Affiliation(s)
- Kara L Johnson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhijie Qi
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhangming Yan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xingzhao Wen
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tri C Nguyen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kathia Zaleta-Rivera
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chien-Ju Chen
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaochen Fan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kiran Sriram
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xueyi Wan
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Sheng Zhong
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Burton NR, Kim P, Backus KM. Photoaffinity labelling strategies for mapping the small molecule-protein interactome. Org Biomol Chem 2021; 19:7792-7809. [PMID: 34549230 PMCID: PMC8489259 DOI: 10.1039/d1ob01353j] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nearly all FDA approved drugs and bioactive small molecules exert their effects by binding to and modulating proteins. Consequently, understanding how small molecules interact with proteins at an molecular level is a central challenge of modern chemical biology and drug development. Complementary to structure-guided approaches, chemoproteomics has emerged as a method capable of high-throughput identification of proteins covalently bound by small molecules. To profile noncovalent interactions, established chemoproteomic workflows typically incorporate photoreactive moieties into small molecule probes, which enable trapping of small molecule-protein interactions (SMPIs). This strategy, termed photoaffinity labelling (PAL), has been utilized to profile an array of small molecule interactions, including for drugs, lipids, metabolites, and cofactors. Herein we describe the discovery of photocrosslinking chemistries, including a comparison of the strengths and limitations of implementation of each chemotype in chemoproteomic workflows. In addition, we highlight key examples where photoaffinity labelling has enabled target deconvolution and interaction site mapping.
Collapse
Affiliation(s)
- Nikolas R Burton
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA.
| | - Phillip Kim
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Keriann M Backus
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
11
|
Cai X, Liu L, Qiu C, Wen C, He Y, Cui Y, Li S, Zhang X, Zhang L, Tian C, Bi L, Zhou ZH, Gong W. Identification and architecture of a putative secretion tube across mycobacterial outer envelope. SCIENCE ADVANCES 2021; 7:7/34/eabg5656. [PMID: 34417177 PMCID: PMC8378821 DOI: 10.1126/sciadv.abg5656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Tuberculosis-causing mycobacteria have thick cell-wall and capsule layers that are formed from complex structures. Protein secretion across these barriers depends on a specialized protein secretion system, but none has been reported. We show that Mycobacterium tuberculosis Rv3705c and its homologous MSMEG_6251 in Mycobacterium smegmatis are tube-forming proteins in the mycobacterial envelope (TiME). Crystallographic and cryo-EM structures of these two proteins show that both proteins form rotationally symmetric rings. Two layers of TiME rings pack together in a tail-to-tail manner into a ring-shaped complex, which, in turn, stacks together to form tubes. M. smegmatis TiME was detected mainly in the cell wall and capsule. Knocking out the TiME gene markedly decreased the amount of secreted protein in the M. smegmatis culture medium, and expression of this gene in knocked-out strain partially restored the level of secreted protein. Our structure and functional data thus suggest that TiME forms a protein transport tube across the mycobacterial outer envelope.
Collapse
Affiliation(s)
- Xiaoying Cai
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Chunhong Qiu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Chongzheng Wen
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Yao He
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Yanxiang Cui
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Siyu Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuan Zhang
- Institute of Health Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Longhua Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Changlin Tian
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Lijun Bi
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Weimin Gong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
12
|
Jackson M, Stevens CM, Zhang L, Zgurskaya HI, Niederweis M. Transporters Involved in the Biogenesis and Functionalization of the Mycobacterial Cell Envelope. Chem Rev 2021; 121:5124-5157. [PMID: 33170669 PMCID: PMC8107195 DOI: 10.1021/acs.chemrev.0c00869] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The biology of mycobacteria is dominated by a complex cell envelope of unique composition and structure and of exceptionally low permeability. This cell envelope is the basis of many of the pathogenic features of mycobacteria and the site of susceptibility and resistance to many antibiotics and host defense mechanisms. This review is focused on the transporters that assemble and functionalize this complex structure. It highlights both the progress and the limits of our understanding of how (lipo)polysaccharides, (glyco)lipids, and other bacterial secretion products are translocated across the different layers of the cell envelope to their final extra-cytoplasmic location. It further describes some of the unique strategies evolved by mycobacteria to import nutrients and other products through this highly impermeable barrier.
Collapse
Affiliation(s)
- Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Casey M. Stevens
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| | - Helen I. Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| |
Collapse
|
13
|
Ignacio BJ, Bakkum T, Bonger KM, Martin NI, van Kasteren SI. Metabolic labeling probes for interrogation of the host-pathogen interaction. Org Biomol Chem 2021; 19:2856-2870. [PMID: 33725048 DOI: 10.1039/d0ob02517h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacterial infections are still one of the leading causes of death worldwide; despite the near-ubiquitous availability of antibiotics. With antibiotic resistance on the rise, there is an urgent need for novel classes of antibiotic drugs. One particularly troublesome class of bacteria are those that have evolved highly efficacious mechanisms for surviving inside the host. These contribute to their virulence by immune evasion, and make them harder to treat with antibiotics due to their residence inside intracellular membrane-limited compartments. This has sparked the development of new chemical reporter molecules and bioorthogonal probes that can be metabolically incorporated into bacteria to provide insights into their activity status. In this review, we provide an overview of several classes of metabolic labeling probes capable of targeting either the peptidoglycan cell wall, the mycomembrane of mycobacteria and corynebacteria, or specific bacterial proteins. In addition, we highlight several important insights that have been made using these metabolic labeling probes.
Collapse
Affiliation(s)
- Bob J Ignacio
- Institute for Molecules and Materials, Radbout Universiteit, Nijmegen, Gelderland, Netherlands
| | | | | | | | | |
Collapse
|
14
|
Abstract
The mycomembrane layer of the mycobacterial cell envelope is a barrier to environmental, immune, and antibiotic insults. There is considerable evidence of mycomembrane plasticity during infection and in response to host-mimicking stresses. The mycomembrane layer of the mycobacterial cell envelope is a barrier to environmental, immune, and antibiotic insults. There is considerable evidence of mycomembrane plasticity during infection and in response to host-mimicking stresses. Since mycobacteria are resource and energy limited under these conditions, it is likely that remodeling has distinct requirements from those of the well-characterized biosynthetic program that operates during unrestricted growth. Unexpectedly, we found that mycomembrane remodeling in nutrient-starved, nonreplicating mycobacteria includes synthesis in addition to turnover. Mycomembrane synthesis under these conditions occurs along the cell periphery, in contrast to the polar assembly of actively growing cells, and both liberates and relies on the nonmammalian disaccharide trehalose. In the absence of trehalose recycling, de novo trehalose synthesis fuels mycomembrane remodeling. However, mycobacteria experience ATP depletion, enhanced respiration, and redox stress, hallmarks of futile cycling and the collateral dysfunction elicited by some bactericidal antibiotics. Inefficient energy metabolism compromises the survival of trehalose recycling mutants in macrophages. Our data suggest that trehalose recycling alleviates the energetic burden of mycomembrane remodeling under stress. Cell envelope recycling pathways are emerging targets for sensitizing resource-limited bacterial pathogens to host and antibiotic pressure.
Collapse
|
15
|
Kumar G, Narayan R, Kapoor S. Chemical Tools for Illumination of Tuberculosis Biology, Virulence Mechanisms, and Diagnosis. J Med Chem 2020; 63:15308-15332. [PMID: 33307693 DOI: 10.1021/acs.jmedchem.0c01337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases and begs the scientific community to up the ante for research and exploration of completely novel therapeutic avenues. Chemical biology-inspired design of tunable chemical tools has aided in clinical diagnosis, facilitated discovery of therapeutics, and begun to enable investigation of virulence mechanisms at the host-pathogen interface of Mycobacterium tuberculosis. This Perspective highlights chemical tools specific to mycobacterial proteins and the cell lipid envelope that have furnished rapid and selective diagnostic strategies and provided unprecedented insights into the function of the mycobacterial proteome and lipidome. We discuss chemical tools that have enabled elucidating otherwise intractable biological processes by leveraging the unique lipid and metabolite repertoire of mycobacterial species. Some of these probes represent exciting starting points with the potential to illuminate poorly understood aspects of mycobacterial pathogenesis, particularly the host membrane-pathogen interactions.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Ponda 403 401, Goa, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India.,Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India
| |
Collapse
|
16
|
Nguyen MT, Matsuo M, Niemann S, Herrmann M, Götz F. Lipoproteins in Gram-Positive Bacteria: Abundance, Function, Fitness. Front Microbiol 2020; 11:582582. [PMID: 33042100 PMCID: PMC7530257 DOI: 10.3389/fmicb.2020.582582] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
When one thinks of the Gram+ cell wall, the peptidoglycan (PG) scaffold in particular comes to mind. However, the cell wall also consists of many other components, for example those that are covalently linked to the PG: the wall teichoic acid and the cell wall proteins tethered by the sortase. In addition, there are completely different molecules that are anchored in the cytoplasmic membrane and span the cell wall. These are lipoteichoic acids and bacterial lipoproteins (Lpp). The latter are in the focus of this review. Lpp are present in almost all bacteria. They fulfill a wealth of different tasks. They represent the window to the outside world by recognizing nutrients and incorporating them into the bacterial cell via special transport systems. Furthermore, they perform very diverse and special tasks such as acting as chaperonin, as cyclomodulin, contributing to invasion of host cells or uptake of plasmids via conjugation. All these functions are taken over by the protein part. Nevertheless, the lipid part of the Lpp plays an as important role as the protein part. It is the released lipoproteins and derived lipopeptides that massively modulate our immune system and ultimately play an important role in immune tolerance or non-tolerance. All these varied activities of the Lpp are considered in this review article.
Collapse
Affiliation(s)
- Minh-Thu Nguyen
- Section of Medical and Geographical Infectiology, Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Miki Matsuo
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Silke Niemann
- Section of Medical and Geographical Infectiology, Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Mathias Herrmann
- Section of Medical and Geographical Infectiology, Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Friedrich Götz
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Microbial Genetics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Bai L, Parkin LA, Zhang H, Shum R, Previti ML, Seeliger JC. Dimethylaminophenyl Hydrazides as Inhibitors of the Lipid Transport Protein LprG in Mycobacteria. ACS Infect Dis 2020; 6:637-648. [PMID: 32053347 PMCID: PMC7436943 DOI: 10.1021/acsinfecdis.9b00497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Assembly of the bacterial cell wall requires not only the biosynthesis of cell wall components but also the transport of these metabolites to the cell exterior for assembly into polymers and membranes required for bacterial viability and virulence. LprG is a cell wall protein that is required for the virulence of Mycobacterium tuberculosis and is associated with lipid transport to the outer lipid layer or mycomembrane. Motivated by available cocrystal structures of LprG with lipids, we searched for potential inhibitors of LprG by performing a computational docking screen of ∼250 000 commercially available small molecules. We identified several structurally related dimethylaminophenyl hydrazides that bind to LprG with moderate micromolar affinity and inhibit mycobacterial growth in a LprG-dependent manner. We found that mutation of F123 within the binding cavity of LprG conferred resistance to one of the most potent compounds. These findings provide evidence that the large hydrophobic substrate-binding pocket of LprG can be realistically and specifically targeted by small-molecule inhibitors.
Collapse
Affiliation(s)
- Lu Bai
- Department of Chemistry, Stony Brook University, 100
Nicolls Road, Stony Brook, NY 11794
| | - Lia A. Parkin
- Department of Microbiology and Immunology, Stony Brook
University, 100 Nicolls Road, Stony Brook, NY 11794
| | - Hong Zhang
- Department of Chemistry, Stony Brook University, 100
Nicolls Road, Stony Brook, NY 11794
| | - Rebecca Shum
- Department of Biochemistry and Cell Biology, Stony Brook
University, 100 Nicolls Road, Stony Brook, NY 11794
| | - Mary L. Previti
- Department of Pharmacological Sciences, Stony Brook
University, 100 Nicolls Road, Stony Brook, NY 11794
| | - Jessica C. Seeliger
- Department of Pharmacological Sciences, Stony Brook
University, 100 Nicolls Road, Stony Brook, NY 11794
| |
Collapse
|
18
|
Melly GC, Stokas H, Dunaj JL, Hsu FF, Rajavel M, Su CC, Yu EW, Purdy GE. Structural and functional evidence that lipoprotein LpqN supports cell envelope biogenesis in Mycobacterium tuberculosis. J Biol Chem 2019; 294:15711-15723. [PMID: 31471317 PMCID: PMC6816100 DOI: 10.1074/jbc.ra119.008781] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/27/2019] [Indexed: 01/07/2023] Open
Abstract
The mycobacterial cell envelope is crucial to host-pathogen interactions as a barrier against antibiotics and the host immune response. In addition, cell envelope lipids are mycobacterial virulence factors. Cell envelope lipid biosynthesis is the target of a number of frontline tuberculosis treatments and has been the focus of much research. However, the transport mechanisms by which these lipids reach the mycomembrane remain poorly understood. Many envelope lipids are exported from the cytoplasm to the periplasmic space via the mycobacterial membrane protein large (MmpL) family of proteins. In other bacteria, lipoproteins can contribute to outer membrane biogenesis through direct binding of substrates and/or protein-protein associations with extracytoplasmic biosynthetic enzymes. In this report, we investigate whether the lipoprotein LpqN plays a similar role in mycobacteria. Using a genetic two-hybrid approach, we demonstrate that LpqN interacts with periplasmic loop domains of the MmpL3 and MmpL11 transporters that export mycolic acid-containing cell envelope lipids. We observe that LpqN also interacts with secreted cell envelope biosynthetic enzymes such as Ag85A via pulldown assays. The X-ray crystal structures of LpqN and LpqN bound to dodecyl-trehalose suggest that LpqN directly binds trehalose monomycolate, the MmpL3 and Ag85A substrate. Finally, we observe altered lipid profiles of the ΔlpqN mutant during biofilm maturation, pointing toward a possible physiological role for the protein. The results of this study suggest that LpqN may act as a membrane fusion protein, connecting MmpL transporters with periplasmic proteins, and provide general insight into the role of lipoproteins in Mycobacterium tuberculosis cell envelope biogenesis.
Collapse
Affiliation(s)
- Geoff C. Melly
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97239
| | - Haley Stokas
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97239
| | - Jennifer L. Dunaj
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97239
| | - Fong Fu Hsu
- Department of Internal Medicine, Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | - Chih-Chia Su
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Georgiana E. Purdy
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97239, To whom correspondence should be addressed. Tel.:
503-346-0767; E-mail:
| |
Collapse
|
19
|
Veyron-Churlet R, Locht C. In Vivo Methods to Study Protein-Protein Interactions as Key Players in Mycobacterium Tuberculosis Virulence. Pathogens 2019; 8:pathogens8040173. [PMID: 31581602 PMCID: PMC6963305 DOI: 10.3390/pathogens8040173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Studies on protein–protein interactions (PPI) can be helpful for the annotation of unknown protein functions and for the understanding of cellular processes, such as specific virulence mechanisms developed by bacterial pathogens. In that context, several methods have been extensively used in recent years for the characterization of Mycobacterium tuberculosis PPI to further decipher tuberculosis (TB) pathogenesis. This review aims at compiling the most striking results based on in vivo methods (yeast and bacterial two-hybrid systems, protein complementation assays) for the specific study of PPI in mycobacteria. Moreover, newly developed methods, such as in-cell native mass resonance and proximity-dependent biotinylation identification, will have a deep impact on future mycobacterial research, as they are able to perform dynamic (transient interactions) and integrative (multiprotein complexes) analyses.
Collapse
Affiliation(s)
- Romain Veyron-Churlet
- Institut Pasteur de Lille, CHU Lille, CNRS, Inserm, Université de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| | - Camille Locht
- Institut Pasteur de Lille, CHU Lille, CNRS, Inserm, Université de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
20
|
Fiolek TJ, Banahene N, Kavunja HW, Holmes NJ, Rylski AK, Pohane AA, Siegrist MS, Swarts BM. Engineering the Mycomembrane of Live Mycobacteria with an Expanded Set of Trehalose Monomycolate Analogues. Chembiochem 2019; 20:1282-1291. [PMID: 30589191 PMCID: PMC6614877 DOI: 10.1002/cbic.201800687] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Indexed: 01/20/2023]
Abstract
Mycobacteria and related organisms in the Corynebacterineae suborder are characterized by a distinctive outer membrane referred to as the mycomembrane. Biosynthesis of the mycomembrane occurs through an essential process called mycoloylation, which involves antigen 85 (Ag85)-catalyzed transfer of mycolic acids from the mycoloyl donor trehalose monomycolate (TMM) to acceptor carbohydrates and, in some organisms, proteins. We recently described an alkyne-modified TMM analogue (O-AlkTMM-C7) which, in conjunction with click chemistry, acted as a chemical reporter for mycoloylation in intact cells and allowed metabolic labeling of mycoloylated components of the mycomembrane. Here, we describe the synthesis and evaluation of a toolbox of TMM-based reporters bearing alkyne, azide, trans-cyclooctene, and fluorescent tags. These compounds gave further insight into the substrate tolerance of mycoloyltransferases (e.g., Ag85s) in a cellular context and they provide significantly expanded experimental versatility by allowing one- or two-step cell labeling, live cell labeling, and rapid cell labeling via tetrazine ligation. Such capabilities will facilitate research on mycomembrane composition, biosynthesis, and dynamics. Moreover, because TMM is exclusively metabolized by Corynebacterineae, the described probes may be valuable for the specific detection and cell-surface engineering of Mycobacterium tuberculosis and related pathogens. We also performed experiments to establish the dependence of probe incorporation on mycoloyltransferase activity, results from which suggested that cellular labeling is a function not only of metabolic incorporation (and likely removal) pathway(s), but also accessibility across the envelope. Thus, whole-cell labeling experiments with TMM reporters should be carefully designed and interpreted when envelope permeability may be compromised. On the other hand, this property of TMM reporters can potentially be exploited as a convenient way to probe changes in envelope integrity and permeability, facilitating drug development studies.
Collapse
Affiliation(s)
- Taylor J Fiolek
- Department of Chemistry and Biochemistry, Central Michigan University, 1200 S. Franklin St., Mount Pleasant, MI, 48859, USA
| | - Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, 1200 S. Franklin St., Mount Pleasant, MI, 48859, USA
| | - Herbert W Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, 1200 S. Franklin St., Mount Pleasant, MI, 48859, USA
| | - Nathan J Holmes
- Department of Chemistry and Biochemistry, Central Michigan University, 1200 S. Franklin St., Mount Pleasant, MI, 48859, USA
| | - Adrian K Rylski
- Department of Chemistry and Biochemistry, Central Michigan University, 1200 S. Franklin St., Mount Pleasant, MI, 48859, USA
| | - Amol Arunrao Pohane
- Department of Microbiology, University of Massachusetts, 639 N. Pleasant Street, Amherst, MA, 01003, USA
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, 639 N. Pleasant Street, Amherst, MA, 01003, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, 1200 S. Franklin St., Mount Pleasant, MI, 48859, USA
| |
Collapse
|
21
|
Hohl M, Remm S, Eskandarian HA, Dal Molin M, Arnold FM, Hürlimann LM, Krügel A, Fantner GE, Sander P, Seeger MA. Increased drug permeability of a stiffened mycobacterial outer membrane in cells lacking MFS transporter Rv1410 and lipoprotein LprG. Mol Microbiol 2019; 111:1263-1282. [PMID: 30742339 PMCID: PMC6519032 DOI: 10.1111/mmi.14220] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2019] [Indexed: 12/18/2022]
Abstract
The major facilitator superfamily transporter Rv1410 and the lipoprotein LprG (Rv1411) are encoded by a conserved two-gene operon and contribute to virulence in Mycobacterium tuberculosis. Rv1410 was originally postulated to function as a drug efflux pump, but recent studies suggested that Rv1410 and LprG work in concert to insert triacylglycerides and lipoarabinomannans into the outer membrane. Here, we conducted microscopic analyses of Mycobacterium smegmatis lacking the operon and observed a cell separation defect, while surface rigidity measured by atomic force microscopy was found to be increased. Whereas Rv1410 expressed in Lactococcus lactis did not confer drug resistance, deletion of the operon in Mycobacterium abscessus and M. smegmatis resulted in increased susceptibility toward vancomycin, novobiocin and rifampicin. A homology model of Rv1410 revealed a periplasmic loop as well as a highly conserved aspartate, which were found to be essential for the operon's function. Interestingly, influx of the fluorescent dyes BCECF-AM and calcein-AM in de-energized M. smegmatis cells was faster in the deletion mutant. Our results unambiguously show that elevated drug susceptibility in the deletion mutant is caused by increased drug influx through a defective mycobacterial cell envelope and not by drug efflux mediated by Rv1410.
Collapse
Affiliation(s)
- Michael Hohl
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Sille Remm
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Haig A Eskandarian
- Global Health Institute, École polytechnique fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Michael Dal Molin
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Fabian M Arnold
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Lea M Hürlimann
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Andri Krügel
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Georg E Fantner
- Interfaculty Institute for Bioengineering, École polytechnique fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland.,National Center for Mycobacteria, Zurich, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
22
|
Abstract
Actinobacteria is a group of diverse bacteria. Most species in this class of bacteria are filamentous aerobes found in soil, including the genus Streptomyces perhaps best known for their fascinating capabilities of producing antibiotics. These bacteria typically have a Gram-positive cell envelope, comprised of a plasma membrane and a thick peptidoglycan layer. However, there is a notable exception of the Corynebacteriales order, which has evolved a unique type of outer membrane likely as a consequence of convergent evolution. In this chapter, we will focus on the unique cell envelope of this order. This cell envelope features the peptidoglycan layer that is covalently modified by an additional layer of arabinogalactan . Furthermore, the arabinogalactan layer provides the platform for the covalent attachment of mycolic acids , some of the longest natural fatty acids that can contain ~100 carbon atoms per molecule. Mycolic acids are thought to be the main component of the outer membrane, which is composed of many additional lipids including trehalose dimycolate, also known as the cord factor. Importantly, a subset of bacteria in the Corynebacteriales order are pathogens of human and domestic animals, including Mycobacterium tuberculosis. The surface coat of these pathogens are the first point of contact with the host immune system, and we now know a number of host receptors specific to molecular patterns exposed on the pathogen's surface, highlighting the importance of understanding how the cell envelope of Actinobacteria is structured and constructed. This chapter describes the main structural and biosynthetic features of major components found in the actinobacterial cell envelopes and highlights the key differences between them.
Collapse
Affiliation(s)
- Kathryn C Rahlwes
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA
| | - Ian L Sparks
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
23
|
Abstract
Control and manipulation of bacterial populations requires an understanding of the factors that govern growth, division, and antibiotic action. Fluorescent and chemically reactive small molecule probes of cell envelope components can visualize these processes and advance our knowledge of cell envelope biosynthesis (e.g., peptidoglycan production). Still, fundamental gaps remain in our understanding of the spatial and temporal dynamics of cell envelope assembly. Previously described reporters require steps that limit their use to static imaging. Probes that can be used for real-time imaging would advance our understanding of cell envelope construction. To this end, we synthesized a fluorogenic probe that enables continuous live cell imaging in mycobacteria and related genera. This probe reports on the mycolyltransferases that assemble the mycolic acid membrane. This peptidoglycan-anchored bilayer-like assembly functions to protect these cells from antibiotics and host defenses. Our probe, quencher-trehalose-fluorophore (QTF), is an analog of the natural mycolyltransferase substrate. Mycolyltransferases process QTF by diverting their normal transesterification activity to hydrolysis, a process that unleashes fluorescence. QTF enables high contrast continuous imaging and the visualization of mycolyltransferase activity in cells. QTF revealed that mycolyltransferase activity is augmented before cell division and localized to the septa and cell poles, especially at the old pole. This observed localization suggests that mycolyltransferases are components of extracellular cell envelope assemblies, in analogy to the intracellular divisomes and polar elongation complexes. We anticipate QTF can be exploited to detect and monitor mycobacteria in physiologically relevant environments.
Collapse
|
24
|
Kolbe K, Veleti SK, Johnson EE, Cho YW, Oh S, Barry CE. Role of Chemical Biology in Tuberculosis Drug Discovery and Diagnosis. ACS Infect Dis 2018; 4:458-466. [PMID: 29364647 DOI: 10.1021/acsinfecdis.7b00242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The use of chemical techniques to study biological systems (often referred to currently as chemical biology) has become a powerful tool for both drug discovery and the development of novel diagnostic strategies. In tuberculosis, such tools have been applied to identifying drug targets from hit compounds, matching high-throughput screening hits against large numbers of isolated protein targets and identifying classes of enzymes with important functions. Metabolites unique to mycobacteria have provided important starting points for the development of innovative tools. For example, the unique biology of trehalose has provided both novel diagnostic strategies as well as probes of in vivo biological processes that are difficult to study any other way. Other mycobacterial metabolites are potentially valuable starting points and have the potential to illuminate new aspects of mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Katharina Kolbe
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Sri Kumar Veleti
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Emma E. Johnson
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Young-Woo Cho
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| |
Collapse
|