1
|
Mayoka G, Cheuka PM. Stepping Up Medicinal Chemistry Capabilities in Sub-Saharan Africa: Perspectives from Early Career African Drug Discovery Researchers. J Med Chem 2025; 68:9840-9847. [PMID: 40353814 DOI: 10.1021/acs.jmedchem.5c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Despite Africa's progress in basic and clinical sciences, gaps persist in its translational capacities, especially medicinal chemistry, a cornerstone of early stage drug discovery. Drawing on experiences as early career researchers and alumni of Africa's premier holistic drug discovery and development center (H3D), this perspective highlights key successes, challenges, and opportunities in Africa. Major barriers to drug discovery in Africa include limited hit-to-lead and lead optimization programs, insufficient Africa-tailored funding, and educational curricula misaligned with real-world drug discovery. We advocate scaling successful models, integrating drug discovery concepts into educational curricula, and forming strategic partnerships with leading African and international institutions. Africa's progress in drug discovery requires innovative funding mechanisms and resource-sharing frameworks adapted to its unique challenges. Targeted investments, collaborative networks, and reciprocal knowledge exchange are essential for Africa to transition from a consumer of global medical innovations to a leading contributor, addressing local healthcare needs and advancing global health equity.
Collapse
Affiliation(s)
- Godfrey Mayoka
- Helmholtz Institute for Pharmaceutical Research, Helmholtz Centre for Infection Research, 66123 Saarbrucken, Germany
- School of Pharmacy, Jomo Kenyatta University of Agriculture and Technology, 62000-00200 Nairobi, Kenya
| | - Peter Mubanga Cheuka
- Department of Pure and Applied Chemistry, School of Natural and Applied Sciences, University of Zambia, 32379 Lusaka, Zambia
| |
Collapse
|
2
|
Dziwornu GA, Attram HD, Haeberli C, Masike K, Njoroge M, Keiser J. Benzimidazole analogues active against adult Schistosoma mansoni: SAR analyses, In vivo efficacy in mice, and preliminary mechanistic studies as potential inhibitors of hemozoin formation. Eur J Med Chem 2025; 284:117186. [PMID: 39731790 DOI: 10.1016/j.ejmech.2024.117186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
For over three decades, praziquantel (PZQ) has been the mainstay chemotherapy for prevention and treatment of schistosomiasis. The excessive use of PZQ, coupled with the lack of advanced drug candidates in the current anti-schistosomiasis drug development pipeline, emphasizes the genuine need for new drugs. In the current work, we investigated the antischistosomal potential of a new series of compounds derived from the privileged benzimidazole scaffold, which exhibited low micromolar IC50 potency in the range of 1.0-2.7 μM against Schistosomamansoni adult worms, in vitro. However, representative compounds showed low in vivo activity. One compound (15) reduced worm burden by 51.9 %, although the reduction was not statistically significant. Furthermore, by invoking inhibition of hemozoin formation, an immutable drug target in Schistosoma adult worms, as a likely contributing mode of action, we observed that the most potent analogues were equally potent inhibitors of β-hematin (synthetic hemozoin) formation in a cell-free assay.
Collapse
Affiliation(s)
- Godwin A Dziwornu
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa; Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa.
| | | | - Cécile Haeberli
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland; University of Basel, P.O. Box CH-4003, Basel, Switzerland
| | - Keabetswe Masike
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, University of Cape Town, Rondebosch, 7701, South Africa
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, University of Cape Town, Rondebosch, 7701, South Africa
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland; University of Basel, P.O. Box CH-4003, Basel, Switzerland.
| |
Collapse
|
3
|
Rawat M, Padalino G, Adika E, Okombo J, Yeo T, Brancale A, Fidock DA, Hoffmann KF, Lee MCS. Quinoxaline-based anti-schistosomal compounds have potent anti-plasmodial activity. PLoS Pathog 2025; 21:e1012216. [PMID: 39899599 PMCID: PMC11809919 DOI: 10.1371/journal.ppat.1012216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 02/10/2025] [Accepted: 01/14/2025] [Indexed: 02/05/2025] Open
Abstract
The human pathogens Plasmodium and Schistosoma are each responsible for over 200 million infections annually, especially in low- and middle-income countries. There is a pressing need for new drug targets for these diseases, driven by emergence of drug-resistance in Plasmodium and an overall dearth of drug targets against Schistosoma. Here, we explored the opportunity for pathogen-hopping by evaluating a series of quinoxaline-based anti-schistosomal compounds for their activity against P. falciparum. We identified compounds with low nanomolar potency against 3D7 and multidrug-resistant strains. In vitro resistance selections using wildtype and mutator P. falciparum lines revealed a low propensity for resistance. Only one of the series, compound 22, yielded resistance mutations, including point mutations in a non-essential putative hydrolase pfqrp1, as well as copy number amplification of a phospholipid-translocating ATPase, pfatp2, a potential target. Notably, independently generated CRISPR-edited mutants in pfqrp1 also showed resistance to compound 22 and a related analogue. Moreover, previous lines with pfatp2 copy number variations were similarly less susceptible to challenge with the new compounds. Finally, we examined whether the predicted hydrolase activity of PfQRP1 underlies its mechanism of resistance, showing that both mutation of the putative catalytic triad and a more severe loss of function mutation elicited resistance. Collectively, we describe a compound series with potent activity against two important pathogens and their potential target in P. falciparum.
Collapse
Affiliation(s)
- Mukul Rawat
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Gilda Padalino
- Department of Life Sciences (DLS), Aberystwyth University, Aberystwyth, United Kingdom
- Swansea University Medical School, Swansea, United Kingdom
| | - Edem Adika
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Andrea Brancale
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Karl F. Hoffmann
- Department of Life Sciences (DLS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Marcus C. S. Lee
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
4
|
Dos Santos Nascimento IJ, Albino SL, da Silva Menezes KJ, de Azevedo Teotônio Cavalcanti M, de Oliveira MS, Mali SN, de Moura RO. Targeting SmCB1: Perspectives and Insights to Design Antischistosomal Drugs. Curr Med Chem 2024; 31:2264-2284. [PMID: 37921174 DOI: 10.2174/0109298673255826231011114249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 11/04/2023]
Abstract
Neglected tropical diseases (NTDs) are prevalent in tropical and subtropical countries, and schistosomiasis is among the most relevant diseases worldwide. In addition, one of the two biggest problems in developing drugs against this disease is related to drug resistance, which promotes the demand to develop new drug candidates for this purpose. Thus, one of the drug targets most explored, Schistosoma mansoni Cathepsin B1 (SmCB1 or Sm31), provides new opportunities in drug development due to its essential functions for the parasite's survival. In this way, here, the latest developments in drug design studies targeting SmCB1 were approached, focusing on the most promising analogs of nitrile, vinyl sulphones, and peptidomimetics. Thus, it was shown that despite being a disease known since ancient times, it remains prevalent throughout the world, with high mortality rates. The therapeutic arsenal of antischistosomal drugs (ASD) consists only of praziquantel, which is widely used for this purpose and has several advantages, such as efficacy and safety. However, it has limitations, such as the impossibility of acting on the immature worm and exploring new targets to overcome these limitations. SmCB1 shows its potential as a cysteine protease with a catalytic triad consisting of Cys100, His270, and Asn290. Thus, design studies of new inhibitors focus on their catalytic mechanism for designing new analogs. In fact, nitrile and sulfonamide analogs show the most significant potential in drug development, showing that these chemical groups can be better exploited in drug discovery against schistosomiasis. We hope this manuscript guides the authors in searching for promising new antischistosomal drugs.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Pharmacy Department, Cesmac University Center, Maceió, 57051-160, Brazil
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| | - Sonaly Lima Albino
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
| | - Karla Joane da Silva Menezes
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| | - Misael de Azevedo Teotônio Cavalcanti
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| | - Mozaniel Santana de Oliveira
- Coordination of Botany-Laboratory Adolpho Ducke, Avenida Perimetral, Museu Paraense Emílio Goeldi, 1901, Belém, 66077-530, PA Brazil
| | - Suraj N Mali
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga East, Mumbai, 400019, India
| | - Ricardo Olimpio de Moura
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
5
|
Probst A, Biendl S, Keiser J. Improving translational power in antischistosomal drug discovery. ADVANCES IN PARASITOLOGY 2022; 117:47-73. [PMID: 35878949 DOI: 10.1016/bs.apar.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Schistosomiasis is a poverty-associated tropical disease caused by blood dwelling trematodes that threaten approximately 10% of the world population. Praziquantel, the sole drug currently available for treatment, is insufficient to eliminate the disease and the clinical drug development pipeline is empty. Here, we review the characteristics of the patent Schistosoma mansoni mouse model used for in vivo antischistosomal drug discovery, highlighting differences in the experimental set-up across research groups and their potential influence on experimental results. We explore the pharmacokinetic/pharmacodynamic relationship of selected drug candidates, showcasing opportunities to improve the drug profile to accelerate the transition from the early drug discovery phase to new clinical candidates.
Collapse
Affiliation(s)
- Alexandra Probst
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Stefan Biendl
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, Basel, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Yang K, Chen ZX, Zhou YJ, Chen Q, Yu SW, Luo SH, Wang ZY. Simple inorganic base promoted polycyclic construction using mucohalic acid as a C 3 synthon: synthesis and AIE probe application of benzo[4,5]imidazo[1,2- a]pyridines. Org Chem Front 2022. [DOI: 10.1039/d1qo01753e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Using mucohalic acid as C3 synthon via a transition metal-free multicomponent reaction, an eco-friendly protocol to synthesize C1-functionalized benzo[4,5]imidazo[1,2-a]pyridines which can be applied as fluorescence probe for picric acid is described.
Collapse
Affiliation(s)
- Kai Yang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, P. R. China
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Zhi-Xi Chen
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Yong-Jun Zhou
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, P. R. China
| | - Qi Chen
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, P. R. China
| | - Shi-Wei Yu
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, P. R. China
| | - Shi-He Luo
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, P. R. China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, P. R. China
| |
Collapse
|
7
|
Yang K, Luo SH, Chen SH, Cao XY, Zhou YJ, Lin YL, Huo YP, Wang ZY. Simple inorganic base promoted C-N and C-C formation: synthesis of benzo[4,5]imidazo[1,2- a]pyridines as functional AIEgens used for detecting picric acid. Org Biomol Chem 2021; 19:8133-8139. [PMID: 34545907 DOI: 10.1039/d1ob01424b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-free catalyzed intermolecular tandem Michael addition/cyclization has been developed for the synthesis of benzo[4,5]imidazo[1,2-a]pyridines from α-bromocinnamaldehyde and 2-substituted benzimidazoles. The reaction promoted by a simple inorganic base displays moderate to good yields and good functional group tolerance. The optical properties of some typical products have been investigated. We found that, due to the presence of the benzene ring at the C1-position of benzo[4,5]imidazo[1,2-a]pyridines which restricts intramolecular motion, as a new type of aggregation-induced emission (AIE) luminogen (AIEgen), they show very good solid-state fluorescence with quantum yields up to 88.80%. Importantly, the AIE performance of compound 3b can be useful to detect the nitroaromatic explosive picric acid (PA) with a detection limit and quenching constant of 42.5 nM and 7.27 × 104 M-M, respectively.
Collapse
Affiliation(s)
- Kai Yang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China. .,College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Shi-He Luo
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China.
| | - Si-Hong Chen
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China.
| | - Xi-Ying Cao
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China.
| | - Yong-Jun Zhou
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China.
| | - Yan-Lan Lin
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China.
| | - Yan-Ping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China.
| |
Collapse
|
8
|
Probst A, Chisanga K, Dziwornu GA, Haeberli C, Keiser J, Chibale K. Expanding the Activity Profile of Pyrido[1,2- a]benzimidazoles: Synthesis and Evaluation of Novel N1-1-Phenylethanamine Derivatives against Schistosoma mansoni. ACS Infect Dis 2021; 7:1032-1043. [PMID: 32786285 DOI: 10.1021/acsinfecdis.0c00278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Praziquantel is the only widely available drug to treat schistosomiasis. With very few candidates currently in the drug development pipeline, there is an urgent need to discover and develop novel antischistosomal drugs. In this regard, the pyrido[1,2-a]benzimidazole (PBI) scaffold has emerged as a promising chemotype in hit-to-lead efforts. Here, we report a novel series of antischistosomal PBIs with potent in vitro activity (IC50 values of 0.08-1.43 μM) against Schistosoma mansoni newly transformed schistosomula and adult worms. Moreover, the current PBIs demonstrated good hepatic microsomal stability (>70% of drug remaining after 30 min) and were nontoxic to the Chinese hamster ovarian and human liver HepG2 cells, though toxicity (selectivity index, SI < 10) against the rat L6 myoblast cell line was observed. The compounds showed a small therapeutic window but were efficacious in vivo, exhibiting moderate to high worm burden reductions of 35.8-89.6% in S. mansoni-infected mice.
Collapse
Affiliation(s)
- Alexandra Probst
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, P.O. Box CH-4003, Basel, Switzerland
| | - Kelly Chisanga
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | | | - Cécile Haeberli
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, P.O. Box CH-4003, Basel, Switzerland
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, P.O. Box CH-4003, Basel, Switzerland
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery Unit, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
9
|
Dziwornu GA, Attram HD, Gachuhi S, Chibale K. Chemotherapy for human schistosomiasis: how far have we come? What's new? Where do we go from here? RSC Med Chem 2020; 11:455-490. [PMID: 33479649 PMCID: PMC7593896 DOI: 10.1039/d0md00062k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/22/2020] [Indexed: 01/11/2023] Open
Abstract
Globally, schistosomiasis threatens more than 700 million lives, mostly children, in poor localities of tropical and sub-tropical areas with morbidity due to acute and chronic pathological manifestations of the disease. After a century since the first antimonial-based drugs were introduced to treat the disease, anti-schistosomiasis drug development is again at a bottleneck with only one drug, praziquantel, available for treatment purposes. This review focuses on promising chemotypes as potential starting points in a drug discovery effort to meet the urgent need for new schistosomicides.
Collapse
Affiliation(s)
- Godwin Akpeko Dziwornu
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
| | - Henrietta Dede Attram
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
| | - Samuel Gachuhi
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
| | - Kelly Chibale
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
- Drug Discovery and Development Centre (H3D) , University of Cape Town , Rondebosch 7701 , South Africa
- Institute of Infectious Disease and Molecular Medicine , University of Cape Town , Rondebosch 7701 , South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit , University of Cape Town , Rondebosch 7701 , South Africa
| |
Collapse
|
10
|
Mekky AEM, Sanad SMH, Ahmed AAM. Microwave Assisted Three Component One‐pot Synthesis of Bis(aminoazolo[1,5‐
a
]pyrimidines) and Bis(aminoazino[1,2‐
a
]benzimidazoles) Bearing Thiazole Moiety. ChemistrySelect 2019. [DOI: 10.1002/slct.201902828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ahmed E. M. Mekky
- Chemistry DepartmentFaculty of ScienceCairo University Giza 12613 Egypt
| | | | - Ahmed A. M. Ahmed
- Chemistry DepartmentFaculty of ScienceCairo University Giza 12613 Egypt
- Preparatory Year DeanshipJouf University Sakaka, KSA
| |
Collapse
|
11
|
Caffrey CR, El‐Sakkary N, Mäder P, Krieg R, Becker K, Schlitzer M, Drewry DH, Vennerstrom JL, Grevelding CG. Drug Discovery and Development for Schistosomiasis. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/9783527808656.ch8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Okombo J, Brunschwig C, Singh K, Dziwornu GA, Barnard L, Njoroge M, Wittlin S, Chibale K. Antimalarial Pyrido[1,2- a]benzimidazole Derivatives with Mannich Base Side Chains: Synthesis, Pharmacological Evaluation, and Reactive Metabolite Trapping Studies. ACS Infect Dis 2019; 5:372-384. [PMID: 30608648 DOI: 10.1021/acsinfecdis.8b00279] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel series of pyrido[1,2- a]benzimidazoles bearing Mannich base side chains and their metabolites were synthesized and evaluated for in vitro antiplasmodium activity, microsomal metabolic stability, reactive metabolite (RM) formation, and in vivo antimalarial efficacy in a mouse model. Oral administration of one of the derivatives at 4 × 50 mg/kg reduced parasitemia by 95% in Plasmodium berghei-infected mice, with a mean survival period of 16 days post-treatment. The in vivo efficacy of these derivatives is likely a consequence of their active metabolites, two of which showed potent in vitro antiplasmodium activity against chloroquine-sensitive and multidrug-resistant Plasmodium falciparum ( P. falciparum) strains. Rapid metabolism was observed for all the analogues with <40% of parent compound remaining after 30 min of incubation in liver microsomes. RM trapping studies detected glutathione adducts only in derivatives bearing 4-aminophenol moiety, with fragmentation signatures showing that this conjugation occurred on the phenyl ring of the Mannich base side chain. As with amodiaquine (AQ), interchanging the positions of the 4-hydroxyl and Mannich base side group or substituting the 4-hydroxyl with fluorine appeared to block bioactivation of the AQ-like derivatives though at the expense of antiplasmodium activity, which was significantly lowered.
Collapse
Affiliation(s)
- John Okombo
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Christel Brunschwig
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Kawaljit Singh
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | | | - Linley Barnard
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4002, Switzerland
- University of Basel, Basel 4003, Switzerland
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
13
|
Mayoka G, Keiser J, Häberli C, Chibale K. Structure-Activity Relationship and in Vitro Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) Studies of N-aryl 3-Trifluoromethyl Pyrido[1,2- a]benzimidazoles That Are Efficacious in a Mouse Model of Schistosomiasis. ACS Infect Dis 2019; 5:418-429. [PMID: 30580519 DOI: 10.1021/acsinfecdis.8b00313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have previously reported on the antischistosomal activity of pyrido[1,2- a]benzimidazole (PBI) derivatives. As a follow-up, we designed and prosecuted further structure-activity relationship (SAR) studies that incorporate N-aryl substitutions on the PBI scaffold. Investigations into the in vitro antischistosomal activity against newly transformed schistosomula (NTS) and adult worms revealed several leads with promising potency. Active compounds with a good cytotoxicity profile were tested in vivo whereby 6 and 44 induced noteworthy reduction (62-69%) in the worm load in the Schistosoma mansoni mouse model. Pharmacokinetic analysis on 44 pointed to slow absorption, low volume of distribution, and low plasma clearance indicating the potential of these compounds to achieve a long duration of action. Overall, our work demonstrates that PBI chemotype is a promising scaffold in the discovery of new antischistosomal leads.
Collapse
Affiliation(s)
- Godfrey Mayoka
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, P.O. Box CH-4003, Basel, Switzerland
| | - Cécile Häberli
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, P.O. Box CH-4003, Basel, Switzerland
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery Unit, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
14
|
Saha SJ, Siddiqui AA, Pramanik S, Saha D, De R, Mazumder S, Debsharma S, Nag S, Banerjee C, Bandyopadhyay U. Hydrazonophenol, a Food Vacuole-Targeted and Ferriprotoporphyrin IX-Interacting Chemotype Prevents Drug-Resistant Malaria. ACS Infect Dis 2019; 5:63-73. [PMID: 30472841 DOI: 10.1021/acsinfecdis.8b00178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The rapid emergence of resistance against frontline antimalarial drugs essentially warrants the identification of new-generation antimalarials. Here, we describe the synthesis of ( E)-2-isopropyl-5-methyl-4-((2-(pyridin-4-yl)hydrazono)methyl)phenol (18), which binds ferriprotoporphyrin-IX (FeIII-PPIX) ( Kd = 33 nM) and offers antimalarial activity against chloroquine-resistant and sensitive strains of Plasmodium falciparum in vitro. Structure-function analysis reveals that compound 18 binds FeIII-PPIX through the -C═N-NH- moiety and 2-pyridyl substitution at the hydrazine counterpart plays a critical role in antimalarial efficacy. Live cell confocal imaging using a fluorophore-tagged compound confirms its accumulation inside the acidic food vacuole (FV) of P. falciparum. Furthermore, this compound concentration-dependently elevates the pH in FV, implicating a plausible interference with FeIII-PPIX crystallization (hemozoin formation) by a dual function: increasing the pH and binding free FeIII-PPIX. Different off-target bioassays reduce the possibility of the promiscuous nature of compound 18. Compound 18 also exhibits potent in vivo antimalarial activity against chloroquine-resistant P. yoelii and P. berghei ANKA (causing cerebral malaria) in mice with negligible toxicity.
Collapse
Affiliation(s)
- Shubhra Jyoti Saha
- Division of Infectious Diseases and Immunology, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Rudranil De
- Division of Infectious Diseases and Immunology, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
15
|
Gemma S, Federico S, Brogi S, Brindisi M, Butini S, Campiani G. Dealing with schistosomiasis: Current drug discovery strategies. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2019. [DOI: 10.1016/bs.armc.2019.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Mayoka G, Njoroge M, Okombo J, Gibhard L, Sanches-Vaz M, Fontinha D, Birkholtz LM, Reader J, van der Watt M, Coetzer TL, Lauterbach S, Churchyard A, Bezuidenhout B, Egan TJ, Yeates C, Wittlin S, Prudêncio M, Chibale K. Structure–Activity Relationship Studies and Plasmodium Life Cycle Profiling Identifies Pan-Active N-Aryl-3-trifluoromethyl Pyrido[1,2-a]benzimidazoles Which Are Efficacious in an in Vivo Mouse Model of Malaria. J Med Chem 2018; 62:1022-1035. [DOI: 10.1021/acs.jmedchem.8b01769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Godfrey Mayoka
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - John Okombo
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Liezl Gibhard
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Margarida Sanches-Vaz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Mariëtte van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Theresa L. Coetzer
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Sonja Lauterbach
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Alisje Churchyard
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Belinda Bezuidenhout
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Clive Yeates
- Inpharma
Consultancy, 6 Dudley Hill Close, Welwyn, Hertfordshire AL60QQ, U.K
| | - Sergio Wittlin
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council, Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|