1
|
Wang H, Xu Q, Zhao W, Chan BKW, Chen K, Xie M, Yang X, Ni H, Chan EWC, Yang G, Chen S. Simultaneous functional disruption of the iron acquisition system and type VI secretion system results in complete suppression of virulence in Acinetobacter baumannii. Microbiol Res 2025; 295:128105. [PMID: 40023109 DOI: 10.1016/j.micres.2025.128105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
Acinetobacter baumannii (Ab) is one of the most significant bacterial pathogens inducing hospital-acquired infections worldwide, with a high mortality rate. The continuous emergence of multidrug-resistant (MDR) phenotypes presents a significant challenge in combating Ab infections with antimicrobial drugs. In this study, we found that the type VI secretion system and the iron transportation system synergistically enhance siderophore production and further contribute to the virulence of Ab. The double knockout mutant strain, ΔhcpΔbasE, exhibited further reductions in growth rate, siderophore production under iron-deficient conditions, biofilm formation, serum resistance, cell adhesion and invasion, and cytotoxicity compared to the single knockout strains, knockout of T6SS, Δhcp or iron transportation system, ΔbasE. In vitro experiments demonstrated that these two systems work synergistically to enhance virulence, with their combined effect exceeding the additive contributions of each individual system. Consistently, the ΔhcpΔbasE strain failed to cause mortality in the mouse model, even at very high inoculum levels. Further studies revealed that, compared to ATCC17978, ΔhcpΔbasE strain infection resulted in lower levels of extracellular hepcidin and intracellular iron in host cells, which correlate well with the significantly reduced ability to produce siderophores in the double knockout strain. Due to impaired iron acquisition, ΔhcpΔbasE strain became more susceptible to macrophage phagocytosis and exhibited lower survival rates in the host, leading to an inability to trigger a cytokine storm and subsequent host death. The findings of this study provide insights into the Ab pathogenesis and contribute to the development of intervention measures to control clinical Ab infections and mortality.
Collapse
Affiliation(s)
- Han Wang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Qi Xu
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Wenxing Zhao
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Bill Kwan Wai Chan
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kaichao Chen
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Miaomiao Xie
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xuemei Yang
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hongyuhang Ni
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Edward Wai Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Shenzhen Key Lab for Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
2
|
Ahmed SF, Gulick AM. The structural basis of substrate selectivity of the acinetobactin biosynthetic adenylation domain, BasE. J Biol Chem 2025; 301:108413. [PMID: 40096888 PMCID: PMC12005286 DOI: 10.1016/j.jbc.2025.108413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/01/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025] Open
Abstract
Siderophores are small molecule natural products that are often produced by enzymes called nonribosomal peptide synthetases that many pathogenic bacteria produce to adapt to low iron conditions. Nonribosomal peptide synthetase bioengineering could lead to the production of siderophore analogs with the potential to interrupt this unique bacterial iron uptake system, endowing the molecules with antimicrobial properties. Acinetobacter baumannii produces the catecholate siderophore acinetobactin to scavenge iron, a nutrient essential for several metabolic processes. Previous studies have reported synthetic analogs of acinetobactin that disrupt iron acquisition by A. baumannii, resulting in inhibition of bacterial growth. To foster a long-term goal of using a chemoenzymatic approach to produce additional analogs, we have targeted the adenylation domain BasE for the incorporation of alternate substrates. Here, we report a structure-guided approach to investigate the substrate selectivity of BasE for non-native aryl substrates. Using targeted mutagenesis in the active site of BasE, we generated mutants that catalyze the activation of alternate substrates with catalytic efficiencies comparable to the WT enzyme with its natural substrate 2,3-dihydroxybenzoic acid. We further solved structures of these mutants bound to the non-native substrates that illustrate an expanded binding pocket that support the improved promiscuity of BasE. Motivated to develop an approach to produce analogs of acinetobactin, including molecules that could block iron uptake or be readily conjugated to antibiotic cargo, our work aims to develop a structure-guided approach for using catecholate siderophore pathways to incorporate alternate substrates.
Collapse
Affiliation(s)
- Syed Fardin Ahmed
- Department of Structural Biology, University at Buffalo, Buffalo, New York, United States
| | - Andrew M Gulick
- Department of Structural Biology, University at Buffalo, Buffalo, New York, United States.
| |
Collapse
|
3
|
Jiao M, He W, Ouyang Z, Yu Q, Zhang J, Qin Q, Wang R, Guo X, Liu R, He X, Hwang PM, Zheng F, Wen Y. Molybdate uptake interplay with ROS tolerance modulates bacterial pathogenesis. SCIENCE ADVANCES 2025; 11:eadq9686. [PMID: 39813328 PMCID: PMC11734730 DOI: 10.1126/sciadv.adq9686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
The rare metal element molybdenum functions as a cofactor in molybdoenzymes that are essential to life in almost all living things. Molybdate can be captured by the periplasmic substrate-binding protein ModA of ModABC transport system in bacteria. We demonstrate that ModA plays crucial roles in growth, multiple metabolic pathways, and ROS tolerance in Acinetobacter baumannii. Crystal structures of molybdate-coordinated A. baumannii ModA show a noncanonical disulfide bond with a conformational change between reduced and oxidized states. Disulfide bond formation reduced binding affinity to molybdate by two orders of magnitude and contributes to its substrate preference. ModA-mediated molybdate binding was important for A. baumannii infection in a murine pneumonia model. Together, our study sheds light on the structural and functional diversity of molybdate uptake and highlights a potential target for antibacterial development.
Collapse
Affiliation(s)
- Min Jiao
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Wenbo He
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Zhenlin Ouyang
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Qinyue Yu
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jiaxin Zhang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Qian Qin
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Ruochen Wang
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiaolong Guo
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Ruihan Liu
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiaoyu He
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Peter M. Hwang
- Departments of Medicine and Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yurong Wen
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
4
|
Song X, Wang H, Gao Y, Xu K, Sun Z, Zhao C, Yao G, Xu H. Design, synthesis, and evaluation of novel isoxazoline derivatives containing 2-phenyloxazoline moieties as potential insecticides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106109. [PMID: 39277414 DOI: 10.1016/j.pestbp.2024.106109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
Isoxazoline insecticides have shown broad-spectrum insecticidal activity against a variety of insect pests. However, the high toxicity of isoxazoline compounds towards honeybees restricts their application in crop protection. To mitigate this issue, a series of isoxazoline derivatives containing 2-phenyloxazoline were designed and synthesized. Bioassays revealed that several compounds exhibited promising insecticidal activities against Plutella xylostella, with G28 showing particularly excellent insecticidal activity, reflected by an LC50 value of 0.675 mg/L, which is comparable to that of fluxametamide (LC50 = 0.593 mg/L). Furthermore, G28 also exhibited effective insecticidal activity against Solenopsis invicta. Importantly, bee toxicity experiments indicated that G28 had significantly lower acute oral toxicity (LD50 = 2.866 μg/adult) compared to fluxametamide (LD50 = 1.083 μg/adult) and fluralaner (LD50 = 0.022 μg/adult), positioning it as a promising candidate with reduced toxicity to bees. Theoretical simulation further elucidated the reasons for the selective differences in the ability of isoxazoline to achieve higher insecticidal activity while maintaining lower bee toxicity. This research suggests that isoxazoline compounds containing 2-phenyloxazoline group hold potential as new insecticide candidates and offers insights into the development of novel isoxazoline insecticides with both high efficacy and environmental safety.
Collapse
Affiliation(s)
- Xiangmin Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Haojing Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Yongchao Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Kaijie Xu
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Zheng Sun
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; Guangdong Institute of Tobacco Science, Shaoguan, Guangdong 512000, People's Republic of China
| | - Chen Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China.
| | - Guangkai Yao
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China.
| | - Hanhong Xu
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China.
| |
Collapse
|
5
|
Kircheva N, Dobrev S, Nikolova V, Yocheva L, Angelova S, Dudev T. Implementation of Three Gallium-Based Complexes in the "Trojan Horse" Antibacterial Strategy against A. baumannii: A DFT Approach. Inorg Chem 2024; 63:15409-15420. [PMID: 39116415 DOI: 10.1021/acs.inorgchem.4c02411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Microorganisms of the ESKAPE group pose an enormous threat to human well-being, thus requiring a multidisciplinary approach for discovering novel drugs that are not only effective but utilize an innovative mechanism of action in order to decrease fast developing resistance. A promising but still hardly explored implementation in the "Trojan horse" antibacterial strategy has been recognized in gallium, an iron mimicry species with no known function but exerting a bacteriostatic/bactericidal effect against some representatives of the group. The study herewith focuses on the bacterium A. baumannii and its siderophore acinetobactin in its two isomeric forms depending on the acidity of the medium. By applying the powerful tools of the DFT approach, we aim to delineate those physicochemical characteristics that are of great importance for potentiating gallium's ability to compete with the native ferric cation for binding acinetobactin such as pH, solvent exposure (dielectric constant of the environment), different metal/siderophore ratios, and complex composition. Hence, the provided results not only furnish some explanation of the positive effect of three Ga3+-based anti-infectives in terms of metal cation competition but also shed light on reported in vitro and in vivo observations at a molecular level in regard to gallium's antibacterial effect against A. baumannii.
Collapse
Affiliation(s)
- Nikoleta Kircheva
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Valya Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski", 1164 Sofia, Bulgaria
| | - Lyubima Yocheva
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski", 1164 Sofia, Bulgaria
| | - Silvia Angelova
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski Blvd, 1756 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski", 1164 Sofia, Bulgaria
| |
Collapse
|
6
|
Sengupta S, Pabbaraja S, Mehta G. Natural products from the human microbiome: an emergent frontier in organic synthesis and drug discovery. Org Biomol Chem 2024; 22:4006-4030. [PMID: 38669195 DOI: 10.1039/d4ob00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Often referred to as the "second genome", the human microbiome is at the epicenter of complex inter-habitat biochemical networks like the "gut-brain axis", which has emerged as a significant determinant of cognition, overall health and well-being, as well as resistance to antibiotics and susceptibility to diseases. As part of a broader understanding of the nexus between the human microbiome, diseases and microbial interactions, whether encoded secondary metabolites (natural products) play crucial signalling roles has been the subject of intense scrutiny in the recent past. A major focus of these activities involves harvesting the genomic potential of the human microbiome via bioinformatics guided genome mining and culturomics. Through these efforts, an impressive number of structurally intriguing antibiotics, with enhanced chemical diversity vis-à-vis conventional antibiotics have been isolated from human commensal bacteria, thereby generating considerable interest in their total synthesis and expanding their therapeutic space for drug discovery. These developments augur well for the discovery of new drugs and antibiotics, particularly in the context of challenges posed by mycobacterial resistance and emerging new diseases. The current landscape of various synthetic campaigns and drug discovery initiatives on antibacterial natural products from the human microbiome is captured in this review with an intent to stimulate further activities in this interdisciplinary arena among the new generation.
Collapse
Affiliation(s)
- Saumitra Sengupta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| |
Collapse
|
7
|
Kong W, Li N, Lai J, Sun S, Li S. Antifungal Function Oriented Scaffold Hopping for the Discovery of Oxazolyl-oxazoline as a Novel Model against Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18260-18269. [PMID: 37756692 DOI: 10.1021/acs.jafc.3c04725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Discovery of novel structural models is extremely important in agrochemical innovation. Scaffold hopping was conducted, and 16 kinds of novel models were synthesized and biologically evaluated. Oxazolyl-oxazoline 25 showed a promising in vitro potential against Fusarium graminearum with EC50 value of 18.25 μM, which was 2.4 times more potent than that of carbendazim (EC50 = 43.06 μM). The antifungal structure-activity relationship (SAR) revealed that compound 25am had the most promising antifungal activity against F. graminearum, with an EC50 value of 13.46 μM, which was 3.2 more potent than that of carbendazim. Different from carbendazim, the candidate 25am could form five hydrogen bonds with the amino acid residues in β-tubulin in the molecular docking and could effectively inhibit the carbendazim-resistant F. graminearum strain. Scanning electron microscopy (SEM) revealed that compound 25am induced the mycelia of F. graminearum slight collapse. This work suggests that compound 25am should be prioritized for further evaluation for new antifungal agents.
Collapse
Affiliation(s)
- Wenlong Kong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Nannan Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jixing Lai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengxin Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengkun Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
8
|
Büttner H, Hörl J, Krabbe J, Hertweck C. Discovery and Biosynthesis of Anthrochelin, a Growth-Promoting Metallophore of the Human Pathogen Luteibacter anthropi. Chembiochem 2023; 24:e202300322. [PMID: 37191164 DOI: 10.1002/cbic.202300322] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/17/2023]
Abstract
Various human pathogens have emerged from environmental strains by adapting to higher growth temperatures and the ability to produce virulence factors. A remarkable example of a pathoadapted bacterium is found in the genus Luteibacter, which typically comprises harmless soil microbes, yet Luteibacter anthropi was isolated from the blood of a diseased child. Up until now, nothing has been known about the specialized metabolism of this pathogen. By comparative genome analyses we found that L. anthropi has a markedly higher biosynthetic potential than other bacteria of this genus and uniquely bears an NRPS gene locus tentatively coding for the biosynthesis of a metallophore. By metabolic profiling, stable isotope labeling, and NMR investigation of a gallium complex, we identified a new family of salicylate-derived nonribosomal peptides named anthrochelins A-D. Surprisingly, anthrochelins feature a C-terminal homocysteine tag, which might be introduced during peptide termination. Mutational analyses provided insight into the anthrochelin assembly and revealed the unexpected involvement of a cytochrome P450 monooxygenase in oxazole formation. Notably, this heterocycle plays a key role in the binding of metals, especially copper(II). Bioassays showed that anthrochelin significantly promotes the growth of L. anthropi in the presence of low and high copper concentrations, which occur during infections.
Collapse
Affiliation(s)
- Hannah Büttner
- Leibniz Institute for Natural Product Research and Infection, Biology, HKI, Dept. of Biomolecular Chemistry, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Johannes Hörl
- Leibniz Institute for Natural Product Research and Infection, Biology, HKI, Dept. of Biomolecular Chemistry, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Jana Krabbe
- Leibniz Institute for Natural Product Research and Infection, Biology, HKI, Dept. of Biomolecular Chemistry, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection, Biology, HKI, Dept. of Biomolecular Chemistry, Beutenbergstrasse 11a, 07745, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
9
|
Vind K, Brunati C, Simone M, Sosio M, Donadio S, Iorio M. Megalochelin, a Tridecapeptide Siderophore from a Talented Streptomycete. ACS Chem Biol 2023; 18:861-874. [PMID: 36920304 PMCID: PMC10127220 DOI: 10.1021/acschembio.2c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
Streptomycetes are bacteria known for their extraordinary biosynthetic capabilities. Herein, we describe the genome and metabolome of a particularly talented strain, Streptomyces ID71268. Its 8.4-Mbp genome harbors 32 bioinformatically predicted biosynthetic gene clusters (BGCs), out of which 10 are expressed under a single experimental condition. In addition to five families of known metabolites with previously assigned BGCs (nigericin, azalomycin F, ectoine, SF2766, and piericidin), we were able to predict BGCs for three additional metabolites: streptochlorin, serpetene, and marinomycin. The strain also produced two families of presumably novel metabolites, one of which was associated with growth inhibitory activity against the human opportunistic pathogen Acinetobacter baumannii in an iron-dependent manner. Bioassay-guided fractionation, followed by extensive liquid chromatography-mass spectrometry (LC-MS) and NMR analyses, established that the molecule responsible for the observed antibacterial activity is an unusual tridecapeptide siderophore with a ring-and-tail structure: the heptapeptide ring is formed through a C-C bond between a 2,3-dihydroxybenzoate (DHB) cap on Gly1 and the imidazole moiety of His7, while the hexapeptide tail is sufficient for binding iron. This molecule, named megalochelin, is the largest known siderophore. The megalochelin BGC encodes a 13-module nonribosomal peptide synthetase for the synthesis of the tridecapeptide, and a copper-dependent oxidase, likely responsible for the DHB-imidazole cross-link, whereas the genes for synthesis of the DHB starter unit are apparently specified in trans by a different BGC. Our results suggest that prolific producers of specialized metabolites may conceal hidden treasures within a background of known compounds.
Collapse
Affiliation(s)
- Kristiina Vind
- NAICONS
Srl, 20139 Milan, Italy
- Host-Microbe
Interactomics Group, Wageningen University, 6708 WD Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
10
|
Arteannuin-B and (3-Chlorophenyl)-2-Spiroisoxazoline Derivative Exhibit Anti-Inflammatory Effects in LPS-Activated RAW 264.7 Macrophages and BALB/c Mice-Induced Proinflammatory Responses via Downregulation of NF-κB/P38 MAPK Signaling. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228068. [PMID: 36432169 PMCID: PMC9699497 DOI: 10.3390/molecules27228068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Host inflammatory responses are key to protection against injury; however, persistent inflammation is detrimental and contributes to morbidity and mortality. Herein, we demonstrated the anti-inflammatory role of Arteannuin-B (1) and its new spirocyclic-2-isoxazoline derivative JR-9 and their side effects in acute inflammatory condition in vivo using LPS-induced cytokines assay, carrageenan-induced paw edema, acetic acid-induced writhing and tail immersion. The results show that the spirocyclic-2-isoxazoline derivative is a potent anti-inflammatory agent with minimal cell toxicity as compared to Arteannuin-B. In addition, the efficacies of these compounds were also validated by flow cytometric, computational, and histopathological analysis. Our results show that the anti-inflammatory response of JR-9 significantly reduces the ability of mouse macrophages to produce NO, TNF-α, and IL-6 following LPS stimulation. Therefore, JR-9 is a prospective candidate for the development of anti-inflammatory drugs and its molecular mechanism is likely related to the regulation of NF-κB and MAPK signaling pathway.
Collapse
|
11
|
Yang J, Wencewicz TA. In Vitro Reconstitution of Fimsbactin Biosynthesis from Acinetobacter baumannii. ACS Chem Biol 2022; 17:2923-2935. [PMID: 36122366 DOI: 10.1021/acschembio.2c00573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Siderophores produced via nonribosomal peptide synthetase (NRPS) pathways serve as critical virulence factors for many pathogenic bacteria. Improved knowledge of siderophore biosynthesis guides the development of inhibitors, vaccines, and other therapeutic strategies. Fimsbactin A is a mixed ligand siderophore derived from human pathogenic Acinetobacter baumannii that contains phenolate-oxazoline, catechol, and hydroxamate metal chelating groups branching from a central l-Ser tetrahedral unit via amide and ester linkages. Fimsbactin A is derived from two molecules of l-Ser, two molecules of 2,3-dihydroxybenzoic acid (DHB), and one molecule of l-Orn and is a product of the fbs biosynthetic operon. Here, we report the complete in vitro reconstitution of fimsbactin A biosynthesis in a cell-free system using purified enzymes. We demonstrate the conversion of l-Orn to N1-acetyl-N1-hydroxy-putrescine (ahPutr) via ordered action of FbsJ (decarboxylase), FbsI (flavin N-monooxygenase), and FbsK (N-acetyltransferase). We achieve conversion of l-Ser, DHB, and l-Orn to fimsbactin A using FbsIJK in combination with the NRPS modules FbsEFGH. We also demonstrate chemoenzymatic conversion of synthetic ahPutr to fimsbactin A using FbsEFGH and establish the substrate selectivity for the NRPS adenylation domains in FbsH (DHB) and FbsF (l-Ser). We assign a role for the type II thioesterase FbsM in producing the shunt metabolite 2-(2,3-dihydroxyphenyl)-4,5-dihydrooxazole-4-carboxylic acid (DHB-oxa) via cleavage of the corresponding thioester intermediate that is tethered to NRPS peptidyl carrier domains during biosynthetic assembly. We propose a mechanism for branching NRPS-derived peptides via amide and ester linkages via the dynamic equilibration of N-DHB-Ser and O-DHB-Ser thioester intermediates via hydrolysis of DHB-oxa thioester intermediates. We also propose a genetic signature for NRPS "branching" in the presence of a terminating C-T-C motif (FbsG).
Collapse
Affiliation(s)
- Jinping Yang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
12
|
Srikanth D, Vinayak Joshi S, Ghouse Shaik M, Pawar G, Bujji S, Kanchupalli V, Chopra S, Nanduri S. A Comprehensive Review on Potential Therapeutic Inhibitors of Nosocomial Acinetobacter baumannii Superbugs. Bioorg Chem 2022; 124:105849. [DOI: 10.1016/j.bioorg.2022.105849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/20/2022]
|
13
|
Kamińska K, Mular A, Olshvang E, Nolte NM, Kozłowski H, Wojaczyńska E, Gumienna-Kontecka E. The diversity and utility of arylthiazoline and aryloxazoline siderophores: challenges of total synthesis. RSC Adv 2022; 12:25284-25322. [PMID: 36199325 PMCID: PMC9450019 DOI: 10.1039/d2ra03841b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Siderophores are unique ferric ion chelators produced and secreted by some organisms like bacteria, fungi and plants under iron deficiency conditions. These molecules possess immense affinity and specificity for Fe3+ and other metal ions, which attracts great interest due to the numerous possibilities of application, including antibiotics delivery to resistant bacteria strains. Total synthesis of siderophores is a must since the compounds are present in natural sources at extremely small concentrations. These molecules are extremely diverse in terms of molecular structure and physical and chemical properties. This review is focused on achievements and developments in the total synthesis strategies of naturally occurring siderophores bearing arylthiazoline and aryloxazoline units. A review presents advances in total synthesis of thiazoline and oxazoline-bearing siderophores, unique ferric ion chelators found in some bacteria, fungi and plants.![]()
Collapse
Affiliation(s)
- Karolina Kamińska
- Faculty of Chemistry, University of Wrocław, Fryderyka Joliot-Curie 14, 50-383 Wrocław, Poland
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Andrzej Mular
- Faculty of Chemistry, University of Wrocław, Fryderyka Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Evgenia Olshvang
- Inorganic Chemistry I-Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitaetsstrasse, 44801 Bochum, Germany
| | - Nils Metzler Nolte
- Inorganic Chemistry I-Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitaetsstrasse, 44801 Bochum, Germany
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wrocław, Fryderyka Joliot-Curie 14, 50-383 Wrocław, Poland
- Department of Health Sciences, University of Opole, Katowicka 68, 45-060 Opole, Poland
| | - Elżbieta Wojaczyńska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | |
Collapse
|
14
|
Abstract
The human pathogen Acinetobacter baumannii produces and utilizes acinetobactin for iron assimilation. Although two isomeric structures of acinetobactin, one featuring an oxazoline (Oxa) and the other with an isoxazolidinone (Isox) at the core, have been identified, their differential roles as virulence factors for successful infection have yet to be established. This study provides direct evidence that Oxa supplies iron more efficiently than Isox, primarily owing to its specific recognition by the cognate outer membrane receptor, BauA. The other components in the acinetobactin uptake machinery appear not to discriminate these isomers. Interestingly, Oxa was found to form a stable iron complex that is resistant to release of the chelated iron upon competition by Isox, despite their comparable apparent affinities to Fe(III). In addition, both Oxa and Isox were found to be competent iron chelators successfully scavenging iron from host metal sequestering proteins responsible for nutritional immunity. These observations collectively led us to propose a new model for acinetobactin-based iron assimilation at infection sites. Namely, Oxa is the principal siderophore mediating the core Fe(III) supply chain for A. baumannii, whereas Isox plays a minor role in the iron delivery and, alternatively, functions as an auxiliary iron collector that channels the iron pool toward Oxa. The unique siderophore utilization mechanism proposed here represents an intriguing strategy for pathogen adaptation under the various nutritional stresses encountered at infection sites.
Collapse
|
15
|
Conde-Pérez K, Vázquez-Ucha JC, Álvarez-Fraga L, Ageitos L, Rumbo-Feal S, Martínez-Guitián M, Trigo-Tasende N, Rodríguez J, Bou G, Jiménez C, Beceiro A, Poza M. In-Depth Analysis of the Role of the Acinetobactin Cluster in the Virulence of Acinetobacter baumannii. Front Microbiol 2021; 12:752070. [PMID: 34675911 PMCID: PMC8524058 DOI: 10.3389/fmicb.2021.752070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is a multidrug-resistant pathogen that represents a serious threat to global health. A. baumannii possesses a wide range of virulence factors that contribute to the bacterial pathogenicity. Among them, the siderophore acinetobactin is one of the most important, being essential for the development of the infection. In this study we performed an in-depth analysis of the acinetobactin cluster in the strain A. baumannii ATCC 17978. For this purpose, nineteen individual isogenic mutant strains were generated, and further phenotypical analysis were performed. Individual mutants lacking the biosynthetic genes entA, basG, basC, basD, and basB showed a significant loss in virulence, due to the disruption in the acinetobactin production. Similarly, the gene bauA, coding for the acinetobactin receptor, was also found to be crucial for the bacterial pathogenesis. In addition, the analysis of the ΔbasJ/ΔfbsB double mutant strain demonstrated the high level of genetic redundancy between siderophores where the role of specific genes of the acinetobactin cluster can be fulfilled by their fimsbactin redundant genes. Overall, this study highlights the essential role of entA, basG, basC, basD, basB and bauA in the pathogenicity of A. baumannii and provides potential therapeutic targets for the design of new antivirulence agents against this microorganism.
Collapse
Affiliation(s)
- Kelly Conde-Pérez
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,Microbiome and Health, Faculty of Science, University of A Coruña, A Coruña, Spain
| | - Juan C Vázquez-Ucha
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Laura Álvarez-Fraga
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Lucía Ageitos
- Centro de Investigaciones Científicas Avanzadas (CICA) y Departamento de Química, Facultad de Ciencias, Agrupación Estratégica CICA-INIBIC, Universidad de A Coruña, A Coruña, Spain
| | - Soraya Rumbo-Feal
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,Microbiome and Health, Faculty of Science, University of A Coruña, A Coruña, Spain
| | - Marta Martínez-Guitián
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Noelia Trigo-Tasende
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Jaime Rodríguez
- Centro de Investigaciones Científicas Avanzadas (CICA) y Departamento de Química, Facultad de Ciencias, Agrupación Estratégica CICA-INIBIC, Universidad de A Coruña, A Coruña, Spain
| | - Germán Bou
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Carlos Jiménez
- Centro de Investigaciones Científicas Avanzadas (CICA) y Departamento de Química, Facultad de Ciencias, Agrupación Estratégica CICA-INIBIC, Universidad de A Coruña, A Coruña, Spain
| | - Alejandro Beceiro
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Margarita Poza
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,Microbiome and Health, Faculty of Science, University of A Coruña, A Coruña, Spain
| |
Collapse
|
16
|
Ur Rasool J, Sawhney G, Shaikh M, Nalli Y, Madishetti S, Ahmed Z, Ali A. Site selective synthesis and anti-inflammatory evaluation of Spiro-isoxazoline stitched adducts of arteannuin B. Bioorg Chem 2021; 117:105408. [PMID: 34655840 DOI: 10.1016/j.bioorg.2021.105408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
A library of new spiroisoxazoline analogues of arteannuin B was synthesized through 1, 3-dipolar cycloaddition in stereoselective fashion and consequently screened for anti-inflammatory activity in RAW 264.7 macrophage cells. Three potent analogues (8i, 8 m, and 8n) were found to attenuate the LPS induced release of cytokines IL-6 and TNF-α more potently than the parent molecule. Also, the inhibition of LPS induced nitric oxide production in these cells show moderate to high efficacy. None of the three potent molecules have altered the viability of RAW 264.7 cells following 48 h incubation suggesting that the inhibition of cytokines and nitric oxide production exhibited in the cells was not due to toxicity. In addition, these compounds exhibit an IC50 range of 0.17 µM-1.57 µM and 0.09 µM-0.35 µM for the inhibition of IL-6 release and nitric oxide production respectively. The results disclose potent inhibition of pro-inflammatory mediators which are encouraging and warrant further investigations to develop new therapeutic agents for inflammatory diseases.
Collapse
Affiliation(s)
- Javeed Ur Rasool
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific & Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| | - Gifty Sawhney
- Academy of Scientific & Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India; Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, J&K 180001, India
| | - Majeed Shaikh
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Yedukondalu Nalli
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sreedhar Madishetti
- Academy of Scientific & Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India; Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, J&K 180001, India
| | - Zabeer Ahmed
- Academy of Scientific & Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India; Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, J&K 180001, India
| | - Asif Ali
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific & Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India; CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India.
| |
Collapse
|
17
|
Bohac TJ, Fang L, Banas VS, Giblin DE, Wencewicz TA. Synthetic Mimics of Native Siderophores Disrupt Iron Trafficking in Acinetobacter baumannii. ACS Infect Dis 2021; 7:2138-2151. [PMID: 34110766 DOI: 10.1021/acsinfecdis.1c00119] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Many pathogenic bacteria biosynthesize and excrete small molecule metallophores, known as siderophores, that are used to extract ferric iron from host sources to satisfy nutritional need. Native siderophores are often structurally complex multidentate chelators that selectively form high-affinity octahedral ferric iron complexes with defined chirality recognizable by cognate protein receptors displayed on the bacterial cell surface. Simplified achiral analogues can serve as synthetically tractable siderophore mimics with potential utility as chemical probes and therapeutic agents to better understand and treat bacterial infections, respectively. Here, we demonstrate that synthetic spermidine-derived mixed ligand bis-catecholate monohydroxamate siderophores (compounds 1-3) are versatile structural and biomimetic analogues of two native siderophores, acinetobactin and fimsbactin, produced by Acinetobacter baumannii, a multidrug-resistant Gram-negative human pathogen. The metal-free and ferric iron complexes of the synthetic siderophores are growth-promoting agents of A. baumannii, while the Ga(III)-complexes are potent growth inhibitors of A. baumannii with MIC values <1 μM. The synthetic siderophores compete with native siderophores for uptake in A. baumannii and maintain comparable apparent binding affinities for ferric iron (KFe) and the siderophore-binding protein BauB (Kd). Our findings provide new insight to guide the structural fine-tuning of these compounds as siderophore-based therapeutics targeting pathogenic strains of A. baumannii.
Collapse
Affiliation(s)
- Tabbetha J. Bohac
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Luting Fang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Victoria S. Banas
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Daryl E. Giblin
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Timothy A. Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
18
|
Valentino H, Korasick DA, Bohac TJ, Shapiro JA, Wencewicz TA, Tanner JJ, Sobrado P. Structural and Biochemical Characterization of the Flavin-Dependent Siderophore-Interacting Protein from Acinetobacter baumannii. ACS OMEGA 2021; 6:18537-18547. [PMID: 34308084 PMCID: PMC8296543 DOI: 10.1021/acsomega.1c03047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/23/2021] [Indexed: 05/09/2023]
Abstract
Acinetobacter baumannii is an opportunistic pathogen with a high mortality rate due to multi-drug-resistant strains. The synthesis and uptake of the iron-chelating siderophores acinetobactin (Acb) and preacinetobactin (pre-Acb) have been shown to be essential for virulence. Here, we report the kinetic and structural characterization of BauF, a flavin-dependent siderophore-interacting protein (SIP) required for the reduction of Fe(III) bound to Acb/pre-Acb and release of Fe(II). Stopped-flow spectrophotometric studies of the reductive half-reaction show that BauF forms a stable neutral flavin semiquinone intermediate. Reduction with NAD(P)H is very slow (k obs, 0.001 s-1) and commensurate with the rate of reduction by photobleaching, suggesting that NAD(P)H are not the physiological partners of BauF. The reduced BauF was oxidized by Acb-Fe (k obs, 0.02 s-1) and oxazole pre-Acb-Fe (ox-pre-Acb-Fe) (k obs, 0.08 s-1), a rigid analogue of pre-Acb, at a rate 3-11 times faster than that with molecular oxygen alone. The structure of FAD-bound BauF was solved at 2.85 Å and was found to share a similarity to Shewanella SIPs. The biochemical and structural data presented here validate the role of BauF in A. baumannii iron assimilation and provide information important for drug design.
Collapse
Affiliation(s)
- Hannah Valentino
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - David A. Korasick
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Tabbetha J. Bohac
- Department
of Chemistry, Washington University in Saint
Louis, St. Louis, Missouri 63130, United States
| | - Justin A. Shapiro
- Department
of Chemistry, Washington University in Saint
Louis, St. Louis, Missouri 63130, United States
| | - Timothy A. Wencewicz
- Department
of Chemistry, Washington University in Saint
Louis, St. Louis, Missouri 63130, United States
| | - John J. Tanner
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Pablo Sobrado
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
19
|
Sheldon JR, Skaar EP. Acinetobacter baumannii can use multiple siderophores for iron acquisition, but only acinetobactin is required for virulence. PLoS Pathog 2020; 16:e1008995. [PMID: 33075115 PMCID: PMC7595644 DOI: 10.1371/journal.ppat.1008995] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/29/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022] Open
Abstract
Acinetobacter baumannii is an emerging pathogen that poses a global health threat due to a lack of therapeutic options for treating drug-resistant strains. In addition to acquiring resistance to last-resort antibiotics, the success of A. baumannii is partially due to its ability to effectively compete with the host for essential metals. Iron is fundamental in shaping host-pathogen interactions, where the host restricts availability of this nutrient in an effort to curtail bacterial proliferation. To circumvent restriction, pathogens possess numerous mechanisms to obtain iron, including through the use of iron-scavenging siderophores. A. baumannii elaborates up to ten distinct siderophores, encoded from three different loci: acinetobactin and pre-acinetobactin (collectively, acinetobactin), baumannoferrins A and B, and fimsbactins A-F. The expression of multiple siderophores is common amongst bacterial pathogens and often linked to virulence, yet the collective contribution of these siderophores to A. baumannii survival and pathogenesis has not been investigated. Here we begin dissecting functional redundancy in the siderophore-based iron acquisition pathways of A. baumannii. Excess iron inhibits overall siderophore production by the bacterium, and the siderophore-associated loci are uniformly upregulated during iron restriction in vitro and in vivo. Further, disrupting all of the siderophore biosynthetic pathways is necessary to drastically reduce total siderophore production by A. baumannii, together suggesting a high degree of functional redundancy between the metabolites. By contrast, inactivation of acinetobactin biosynthesis alone impairs growth on human serum, transferrin, and lactoferrin, and severely attenuates survival of A. baumannii in a murine bacteremia model. These results suggest that whilst A. baumannii synthesizes multiple iron chelators, acinetobactin is critical to supporting growth of the pathogen on host iron sources. Given the acinetobactin locus is highly conserved and required for virulence of A. baumannii, designing therapeutics targeting the biosynthesis and/or transport of this siderophore may represent an effective means of combating this pathogen.
Collapse
Affiliation(s)
- Jessica R. Sheldon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
20
|
Song WY, Kim HJ. Current biochemical understanding regarding the metabolism of acinetobactin, the major siderophore of the human pathogen Acinetobacter baumannii, and outlook for discovery of novel anti-infectious agents based thereon. Nat Prod Rep 2019; 37:477-487. [PMID: 31661538 DOI: 10.1039/c9np00046a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Covering: 1994 to 2019Owing to the rapid increase in nosocomial infections by antibiotic-resistant Acinetobacter baumannii and the paucity of effective treatment options for such infections, interest in the virulence factors involved in its successful dissemination and propagation in the human host have escalated in recent years. Acinetobacin, a siderophore of A. baumannii, is responsible for iron acquisition under nutritional depravation and has been shown to be one of the key virulence factors for this bacterium. In this Highlight, recent findings regarding various chemical and biological aspects of acinetobactin metabolism closely related to the fitness of A. baumannii at the infection sites have been described. In addition, several notable efforts for identifying novel anti-infectious agents based thereon have been discussed.
Collapse
Affiliation(s)
- Woon Young Song
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | | |
Collapse
|
21
|
Bohac TJ, Fang L, Giblin DE, Wencewicz TA. Fimsbactin and Acinetobactin Compete for the Periplasmic Siderophore Binding Protein BauB in Pathogenic Acinetobacter baumannii. ACS Chem Biol 2019; 14:674-687. [PMID: 30785725 DOI: 10.1021/acschembio.8b01051] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Environmental and pathogenic microbes produce siderophores as small iron-binding molecules to scavenge iron from natural environments. It is common for microbes to produce multiple siderophores to gain a competitive edge in mixed microbial environments. Strains of human pathogenic Acinetobacter baumannii produce up to three siderophores: acinetobactin, baumannoferrin, and fimsbactin. Production of acinetobactin and baumannoferrin is highly conserved among clinical isolates while fimsbactin production appears to be less common. Fimsbactin is structurally related to acinetobactin through the presence of catecholate and phenolate oxazoline metal-binding motifs, and both are derived from nonribosomal peptide assembly lines with similar catalytic domain orientations and identities. Here we report on the chemical, biochemical, and microbiological investigation of fimsbactin and acinetobactin alone and in combination. We show that fimsbactin forms a 1:1 complex with iron(III) that is thermodynamically more stable than the 2:1 acinetobactin ferric complex. Alone, both acinetobactin and fimsbactin stimulate A. baumannii growth, but in combination the two siderophores appear to compete and collectively inhibit bacterial growth. We show that fimsbactin directly competes with acinetobactin for binding the periplasmic siderophore-binding protein BauB suggesting a possible biochemical mechanism for the phenomenon where the buildup of apo-siderophores in the periplasm leads to iron starvation. We propose an updated model for siderophore utilization and competition in A. baumannii that frames the molecular, biochemical, and cellular interplay of multiple iron acquisition systems in a multidrug resistant Gram-negative human pathogen.
Collapse
Affiliation(s)
- Tabbetha J. Bohac
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Luting Fang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Daryl E. Giblin
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Timothy A. Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
22
|
Dubovtsev AY, Dar'in DV, Kukushkin VY. Three‐Component [2+2+1] Gold(I)‐Catalyzed Oxidative Generation of Fully Substituted 1,3‐Oxazoles Involving Internal Alkynes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900097] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alexey Yu. Dubovtsev
- Saint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| | - Dmitry V. Dar'in
- Saint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| | - Vadim Yu. Kukushkin
- Saint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| |
Collapse
|
23
|
Moynié L, Serra I, Scorciapino MA, Oueis E, Page MG, Ceccarelli M, Naismith JH. Preacinetobactin not acinetobactin is essential for iron uptake by the BauA transporter of the pathogen Acinetobacter baumannii. eLife 2018; 7:42270. [PMID: 30558715 PMCID: PMC6300358 DOI: 10.7554/elife.42270] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/02/2018] [Indexed: 01/05/2023] Open
Abstract
New strategies are urgently required to develop antibiotics. The siderophore uptake system has attracted considerable attention, but rational design of siderophore antibiotic conjugates requires knowledge of recognition by the cognate outer-membrane transporter. Acinetobacter baumannii is a serious pathogen, which utilizes (pre)acinetobactin to scavenge iron from the host. We report the structure of the (pre)acinetobactin transporter BauA bound to the siderophore, identifying the structural determinants of recognition. Detailed biophysical analysis confirms that BauA recognises preacinetobactin. We show that acinetobactin is not recognised by the protein, thus preacinetobactin is essential for iron uptake. The structure shows and NMR confirms that under physiological conditions, a molecule of acinetobactin will bind to two free coordination sites on the iron preacinetobactin complex. The ability to recognise a heterotrimeric iron-preacinetobactin-acinetobactin complex may rationalize contradictory reports in the literature. These results open new avenues for the design of novel antibiotic conjugates (trojan horse) antibiotics.
Collapse
Affiliation(s)
- Lucile Moynié
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, Oxford, England.,Research Complex at Harwell, Rutherford Laboratory, Didcot, England
| | - Ilaria Serra
- Department of Physics, University of Cagliari, Cagliari, Italy.,Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy
| | - Mariano A Scorciapino
- Department of Physics, University of Cagliari, Cagliari, Italy.,Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy
| | - Emilia Oueis
- Biomedical Sciences Research Complex, The University of St Andrews, Scotland, United Kingdom
| | - Malcolm Gp Page
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | | | - James H Naismith
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, Oxford, England.,Research Complex at Harwell, Rutherford Laboratory, Didcot, England.,The Rosalind Franklin Institute, Didcot, England
| |
Collapse
|
24
|
Bailey DC, Bohac TJ, Shapiro JA, Giblin DE, Wencewicz TA, Gulick AM. Crystal Structure of the Siderophore Binding Protein BauB Bound to an Unusual 2:1 Complex Between Acinetobactin and Ferric Iron. Biochemistry 2018; 57:6653-6661. [PMID: 30406986 DOI: 10.1021/acs.biochem.8b00986] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The critical role that iron plays in many biochemical processes has led to an elaborate battle between bacterial pathogens and their hosts to acquire and withhold this critical nutrient. Exploitation of iron nutritional immunity is being increasingly appreciated as a potential antivirulence therapeutic strategy, especially against problematic multidrug resistant Gram-negative pathogens such as Acinetobacter baumannii. To facilitate iron uptake and promote growth, A. baumannii produces a nonribosomally synthesized peptide siderophore called acinetobactin. Acinetobactin is unusual in that it is first biosynthesized in an oxazoline form called preacinetobactin that spontaneously isomerizes to the final isoxazolidinone acinetobactin. Interestingly, both isomers can bind iron and both support growth of A. baumannii. To address how the two isomers chelate their ferric cargo and how the complexes are used by A. baumannii, structural studies were carried out with the ferric acinetobactin complex and its periplasmic siderophore binding protein BauB. Herein, we present the crystal structure of BauB bound to a bis-tridentate (Fe3+L2) siderophore complex. Additionally, we present binding studies that show multiple variants of acinetobactin bind BauB with no apparent change in affinity. These results are consistent with the structural model that depicts few direct polar interactions between BauB and the acinetobactin backbone. This structural and functional characterization of acinetobactin and its requisite binding protein BauB provides insight that could be exploited to target this critical iron acquisition system and provide a novel approach to treat infections caused by this important multidrug resistant pathogen.
Collapse
Affiliation(s)
- Daniel C Bailey
- Department of Structural Biology , Jacobs School of Medicine & Biomedical Sciences at the University at Buffalo , 955 Main Street , Buffalo , New York 14203 , United States
| | - Tabbetha J Bohac
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive , St. Louis , Missouri 63130 , United States
| | - Justin A Shapiro
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive , St. Louis , Missouri 63130 , United States
| | - Daryl E Giblin
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive , St. Louis , Missouri 63130 , United States
| | - Timothy A Wencewicz
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive , St. Louis , Missouri 63130 , United States
| | - Andrew M Gulick
- Department of Structural Biology , Jacobs School of Medicine & Biomedical Sciences at the University at Buffalo , 955 Main Street , Buffalo , New York 14203 , United States
| |
Collapse
|
25
|
Lee H, Song WY, Kim M, Lee MW, Kim S, Park YS, Kwak K, Oh MH, Kim HJ. Synthesis and Characterization of Anguibactin To Reveal Its Competence To Function as a Thermally Stable Surrogate Siderophore for a Gram-Negative Pathogen, Acinetobacter baumannii. Org Lett 2018; 20:6476-6479. [DOI: 10.1021/acs.orglett.8b02789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haeun Lee
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Woon Young Song
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Minju Kim
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Republic of Korea
| | - Min Wook Lee
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Soojeung Kim
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ye Song Park
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyungwon Kwak
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Republic of Korea
| | - Man Hwan Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Hak Joong Kim
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
26
|
Shapiro JA, Morrison KR, Chodisetty SS, Musaev DG, Wuest WM. Biologically Inspired Total Synthesis of Ulbactin F, an Iron-Binding Natural Product. Org Lett 2018; 20:5922-5926. [PMID: 30199265 PMCID: PMC6456333 DOI: 10.1021/acs.orglett.8b02599] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Natural products from environmental microbiomes provide exquisite templates for elucidating biological activity in the search for new drugs. A recently discovered marine Brevibacillus sp. metabolite, ulbactin F, was found to inhibit tumor cell migration and invasion at IC50 < 3 μM. Herein, we disclose the first total synthesis of ulbactin F and epi-ulbactin F, which was modeled after the biosynthetic pathway. The scaffold bears structural similarity to siderophores of human pathogens but contains a novel tricyclic ring system derived from cysteine. We have found that ulbactin F forms low-affinity metal complexes, with a preference for Fe3+ and Cu2+, which may hint both at its environmental role and its antimetastatic mechanism of action.
Collapse
Affiliation(s)
- Justin A. Shapiro
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Kelly R. Morrison
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Shreya S. Chodisetty
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Djamaladdin G. Musaev
- Cherry L. Emerson Centre for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - William M. Wuest
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Emory Antibiotic Resistance Center, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
27
|
Bailey DC, Buckley BP, Chernov MV, Gulick AM. Development of a High-Throughput Biochemical Assay to Screen for Inhibitors of Aerobactin Synthetase IucA. SLAS DISCOVERY 2018; 23:1070-1082. [PMID: 29991301 DOI: 10.1177/2472555218787140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Acquiring sufficient quantities of iron to support survival is often a critical limitation for pathogenic bacteria. To meet this demand, bacteria have evolved unique strategies to scavenge iron and circumvent the nutritional immunity exerted by their hosts. One common strategy, which is often a key virulence factor for bacterial pathogens, involves the synthesis, secretion, and reuptake of iron chelators known as siderophores. In vitro and in vivo studies have demonstrated that the siderophore aerobactin is critical for virulence in the hypervirulent pathotype of Klebsiella pneumoniae (hvKP). Given the high rate of multidrug resistance in K. pneumoniae, and in light of the ever-increasing demand for novel Gram-negative therapeutic targets, we identified aerobactin production as a promising antivirulence target in hvKP. Herein, we describe the development of a high-throughput biochemical assay for identifying inhibitors of the aerobactin synthetase IucA. The assay was employed to screen ~110,000 compounds across several commercially available small-molecule libraries. IucA inhibitors with activity at micromolar concentrations were identified in our screening campaigns and confirmed using secondary orthogonal assays. However, the most potent compounds also exhibited some properties commonly observed with promiscuous/nonspecific inhibitors, including incubation time and target enzyme concentration dependence, as well as the potential to antagonize unrelated enzymes.
Collapse
Affiliation(s)
- Daniel C Bailey
- 1 Department of Structural Biology, Jacobs School of Medicine & Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.,2 The Hauptman-Woodward Medical Research Institute, Buffalo, NY, USA
| | - Brian P Buckley
- 3 Small Molecule Screening Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mikhail V Chernov
- 3 Small Molecule Screening Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Andrew M Gulick
- 1 Department of Structural Biology, Jacobs School of Medicine & Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.,2 The Hauptman-Woodward Medical Research Institute, Buffalo, NY, USA
| |
Collapse
|
28
|
Robinson AE, Heffernan JR, Henderson JP. The iron hand of uropathogenic Escherichia coli: the role of transition metal control in virulence. Future Microbiol 2018; 13:745-756. [PMID: 29870278 DOI: 10.2217/fmb-2017-0295] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The role of iron as a critical nutrient in pathogenic bacteria is widely regarded as having driven selection for iron acquisition systems among uropathogenic Escherichia coli (UPEC) isolates. Carriage of multiple transition metal acquisition systems in UPEC suggests that the human urinary tract manipulates metal-ion availability in many ways to resist infection. For siderophore systems in particular, recent studies have identified new roles for siderophore copper binding as well as production of siderophore-like inhibitors of iron uptake by other, competing bacterial species. Among these is a process of nutritional passivation of metal ions, in which uropathogens access these vital nutrients while simultaneously protecting themselves from their toxic potential. Here, we review these new findings within the current understanding of UPEC transition metal acquisition.
Collapse
Affiliation(s)
- Anne E Robinson
- Division of Infectious Diseases, Department of Medicine, Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James R Heffernan
- Division of Infectious Diseases, Department of Medicine, Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey P Henderson
- Division of Infectious Diseases, Department of Medicine, Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|