1
|
Li J, Yang S, Wu Y, Wang R, Liu Y, Liu J, Ye Z, Tang R, Whiteway M, Lv Q, Yan L. Alternative Oxidase: From Molecule and Function to Future Inhibitors. ACS OMEGA 2024; 9:12478-12499. [PMID: 38524433 PMCID: PMC10955580 DOI: 10.1021/acsomega.3c09339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/26/2024]
Abstract
In the respiratory chain of the majority of aerobic organisms, the enzyme alternative oxidase (AOX) functions as the terminal oxidase and has important roles in maintaining metabolic and signaling homeostasis in mitochondria. AOX endows the respiratory system with flexibility in the coupling among the carbon metabolism pathway, electron transport chain (ETC) activity, and ATP turnover. AOX allows electrons to bypass the main cytochrome pathway to restrict the generation of reactive oxygen species (ROS). The inhibition of AOX leads to oxidative damage and contributes to the loss of adaptability and viability in some pathogenic organisms. Although AOXs have recently been identified in several organisms, crystal structures and major functions still need to be explored. Recent work on the trypanosome alternative oxidase has provided a crystal structure of an AOX protein, which contributes to the structure-activity relationship of the inhibitors of AOX. Here, we review the current knowledge on the development, structure, and properties of AOXs, as well as their roles and mechanisms in plants, animals, algae, protists, fungi, and bacteria, with a special emphasis on the development of AOX inhibitors, which will improve the understanding of respiratory regulation in many organisms and provide references for subsequent studies of AOX-targeted inhibitors.
Collapse
Affiliation(s)
- Jiye Li
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shiyun Yang
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yujie Wu
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Ruina Wang
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yu Liu
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jiacun Liu
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Zi Ye
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Renjie Tang
- Beijing
South Medical District of Chinese PLA General Hospital, Beijing 100072, China
| | - Malcolm Whiteway
- Department
of Biology, Concordia University, Montreal, H4B 1R6 Quebec, Canada
| | - Quanzhen Lv
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
- Basic
Medicine Innovation Center for Fungal Infectious Diseases, (Naval Medical University), Ministry of Education, Shanghai 200433, China
- Key
Laboratory of Biosafety Defense (Naval Medical University), Ministry
of Education, Shanghai 200433, China
- Shanghai
Key Laboratory of Medical Biodefense, Shanghai 200433, China
| | - Lan Yan
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
- Basic
Medicine Innovation Center for Fungal Infectious Diseases, (Naval Medical University), Ministry of Education, Shanghai 200433, China
- Key
Laboratory of Biosafety Defense (Naval Medical University), Ministry
of Education, Shanghai 200433, China
- Shanghai
Key Laboratory of Medical Biodefense, Shanghai 200433, China
| |
Collapse
|
2
|
Gao H, Zhou L, Zhang P, Wang Y, Qian X, Liu Y, Wu G. Filamentous Fungi-Derived Orsellinic Acid-Sesquiterpene Meroterpenoids: Fungal Sources, Chemical Structures, Bioactivities, and Biosynthesis. PLANTA MEDICA 2023; 89:1110-1124. [PMID: 37225133 DOI: 10.1055/a-2099-4932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fungi-derived polyketide-terpenoid hybrids are important meroterpenoid natural products that possess diverse structure scaffolds with a broad spectrum of bioactivities. Herein, we focus on an ever-increasing group of meroterpenoids, orsellinic acid-sesquiterpene hybrids comprised of biosynthetic start unit orsellinic acid coupling to a farnesyl group or/and its modified cyclic products. The review entails the search of China National Knowledge Infrastructure (CNKI), Web of Science, Science Direct, Google Scholar, and PubMed databases up to June 2022. The key terms include "orsellinic acid", "sesquiterpene", "ascochlorin", "ascofuranone", and "Ascochyta viciae", which are combined with the structures of "ascochlorin" and "ascofuranone" drawn by the Reaxys and Scifinder databases. In our search, these orsellinic acid-sesquiterpene hybrids are mainly produced by filamentous fungi. Ascochlorin was the first compound reported in 1968 and isolated from filamentous fungus Ascochyta viciae (synonym: Acremonium egyptiacum; Acremonium sclerotigenum); to date, 71 molecules are discovered from various filamentous fungi inhabiting in a variety of ecological niches. As typical representatives of the hybrid molecules, the biosynthetic pathway of ascofuranone and ascochlorin are discussed. The group of meroterpenoid hybrids exhibits a broad arrange of bioactivities, as highlighted by targeting hDHODH (human dihydroorotate dehydrogenase) inhibition, antitrypanosomal, and antimicrobial activities. This review summarizes the findings related to the structures, fungal sources, bioactivities, and their biosynthesis from 1968 to June 2022.
Collapse
Affiliation(s)
- Hua Gao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Luning Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Peng Zhang
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States
| | - Ying Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Xuan Qian
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yujia Liu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Guangwei Wu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
3
|
El-Khoury R, Rak M, Bénit P, Jacobs HT, Rustin P. Cyanide resistant respiration and the alternative oxidase pathway: A journey from plants to mammals. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148567. [PMID: 35500614 DOI: 10.1016/j.bbabio.2022.148567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 12/19/2022]
Abstract
In a large number of organisms covering all phyla, the mitochondrial respiratory chain harbors, in addition to the conventional elements, auxiliary proteins that confer adaptive metabolic plasticity. The alternative oxidase (AOX) represents one of the most studied auxiliary proteins, initially identified in plants. In contrast to the standard respiratory chain, the AOX mediates a thermogenic cyanide-resistant respiration; a phenomenon that has been of great interest for over 2 centuries in that energy is not conserved when electrons flow through it. Here we summarize centuries of studies starting from the early observations of thermogenicity in plants and the identification of cyanide resistant respiration, to the fascinating discovery of the AOX and its current applications in animals under normal and pathological conditions.
Collapse
Affiliation(s)
- Riyad El-Khoury
- American University of Beirut Medical Center, Pathology and Laboratory Medicine Department, Cairo Street, Hamra, Beirut, Lebanon
| | - Malgorzata Rak
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Paule Bénit
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Howard T Jacobs
- Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland; Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Pierre Rustin
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France.
| |
Collapse
|
4
|
Cisneros D, Cueto-Díaz EJ, Medina-Gil T, Chevillard R, Bernal-Fraile T, López-Sastre R, Aldfer MM, Ungogo MA, Elati HAA, Arai N, Otani M, Matsushiro S, Kojima C, Ebiloma GU, Shiba T, de Koning HP, Dardonville C. Imidazoline- and Benzamidine-Based Trypanosome Alternative Oxidase Inhibitors: Synthesis and Structure-Activity Relationship Studies. ACS Med Chem Lett 2022; 13:312-318. [PMID: 35178188 PMCID: PMC8842630 DOI: 10.1021/acsmedchemlett.1c00717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 01/03/2023] Open
Abstract
![]()
The trypanosome alternative
oxidase (TAO), a mitochondrial enzyme
involved in the respiration of the bloodstream form trypomastigotes
of Trypanosoma brucei, is a validated
drug target against African trypanosomes. Earlier series of TAO inhibitors
having a 2,4-dihydroxy-6-methylbenzoic acid scaffold (“head”)
and a triphenylphosphonium or quinolin-1-ium cation as a mitochondrion-targeting
group (“tail”) were shown to be nanomolar inhibitors
in enzymatic and cellular assays. We investigated here the effect
of different mitochondrion-targeting cations and other scaffold modifications
on the in vitro activity of this class of inhibitors. Low micromolar
range activities were obtained, and the structure–activity
relationship studies showed that modulation of the tail region with
polar substituents is generally detrimental to the enzymatic and cellular
activity of TAO inhibitors.
Collapse
Affiliation(s)
- David Cisneros
- Instituto de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | | | - Tania Medina-Gil
- Instituto de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Rebecca Chevillard
- Instituto de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Teresa Bernal-Fraile
- Instituto de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Ramón López-Sastre
- Instituto de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Mustafa M. Aldfer
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Marzuq A. Ungogo
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Hamza A. A. Elati
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Natsumi Arai
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Momoka Otani
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Shun Matsushiro
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Chiaki Kojima
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Godwin U. Ebiloma
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom
| | - Tomoo Shiba
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Harry P. de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | | |
Collapse
|
5
|
Xu F, Copsey AC, Young L, Barsottini MRO, Albury MS, Moore AL. Comparison of the Kinetic Parameters of Alternative Oxidases From Trypanosoma brucei and Arabidopsis thaliana-A Tale of Two Cavities. FRONTIERS IN PLANT SCIENCE 2021; 12:744218. [PMID: 34745175 PMCID: PMC8569227 DOI: 10.3389/fpls.2021.744218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 05/27/2023]
Abstract
The alternative oxidase (AOX) is widespread in plants, fungi, and some protozoa. While the general structure of the AOX remains consistent, its overall activity, sources of kinetic activation and their sensitivity to inhibitors varies between species. In this study, the recombinant Trypanosoma brucei AOX (rTAO) and Arabidopsis thaliana AOX1A (rAtAOX1A) were expressed in the Escherichia coli ΔhemA mutant FN102, and the kinetic parameters of purified AOXs were compared. Results showed that rTAO possessed the highest V max and K m for quinol-1, while much lower V max and K m were observed in the rAtAOX1A. The catalytic efficiency (k cat/K m) of rTAO was higher than that of rAtAOX1A. The rTAO also displayed a higher oxygen affinity compared to rAtAOX1A. It should be noted that rAtAOX1a was sensitive to α-keto acids while rTAO was not. Nevertheless, only pyruvate and glyoxylate can fully activate Arabidopsis AOX. In addition, rTAO and rAtAOX1A showed different sensitivity to AOX inhibitors, with ascofuranone (AF) being the best inhibitor against rTAO, while colletochlorin B (CB) appeared to be the most effective inhibitor against rAtAOX1A. Octylgallate (OG) and salicylhydroxamic acid (SHAM) are less effective than the other inhibitors against protist and plant AOX. A Caver analysis indicated that the rTAO and rAtAOX1A differ with respect to the mixture of polar residues lining the hydrophobic cavity, which may account for the observed difference in kinetic and inhibitor sensitivities. The data obtained in this study are not only beneficial for our understanding of the variation in the kinetics of AOX within protozoa and plants but also contribute to the guidance for the future development of phytopathogenic fungicides.
Collapse
|
6
|
Rosell-Hidalgo A, Young L, Moore AL, Ghafourian T. QSAR and molecular docking for the search of AOX inhibitors: a rational drug discovery approach. J Comput Aided Mol Des 2020; 35:245-260. [PMID: 33289903 PMCID: PMC7904559 DOI: 10.1007/s10822-020-00360-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 11/12/2020] [Indexed: 11/24/2022]
Abstract
The alternative oxidase (AOX) is a monotopic diiron carboxylate protein that catalyses the oxidation of ubiquinol and the reduction of oxygen to water. Although a number of AOX inhibitors have been discovered, little is still known about the ligand–protein interaction and essential chemical characteristics of compounds required for a potent inhibition. Furthermore, owing to the rapidly growing resistance to existing inhibitors, new compounds with improved potency and pharmacokinetic properties are urgently required. In this study we used two computational approaches, ligand–protein docking and Quantitative Structure–Activity Relationships (QSAR) to investigate binding of AOX inhibitors to the enzyme and the molecular characteristics required for inhibition. Docking studies followed by protein–ligand interaction fingerprint (PLIF) analysis using the AOX enzyme and the mutated analogues revealed the importance of the residues Leu 122, Arg 118 and Thr 219 within the hydrophobic cavity. QSAR analysis, using stepwise regression analysis with experimentally obtained IC50 values as the response variable, resulted in a multiple regression model with a good prediction accuracy. The model highlighted the importance of the presence of hydrogen bonding acceptor groups on specific positions of the aromatic ring of ascofuranone derivatives, acidity of the compounds, and a large linker group on the compounds on the inhibitory effect of AOX.
Collapse
Affiliation(s)
- Alicia Rosell-Hidalgo
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Luke Young
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Anthony L Moore
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Taravat Ghafourian
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK. .,School of Life Sciences, Faculty of Creative Arts, Technologies and Science, University of Bedfordshire, Luton, Bedfordshire, LU1 3JU, UK.
| |
Collapse
|
7
|
Barsottini MRO, Copsey A, Young L, Baroni RM, Cordeiro AT, Pereira GAG, Moore AL. Biochemical characterization and inhibition of the alternative oxidase enzyme from the fungal phytopathogen Moniliophthora perniciosa. Commun Biol 2020; 3:263. [PMID: 32451394 PMCID: PMC7248098 DOI: 10.1038/s42003-020-0981-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/30/2020] [Indexed: 01/27/2023] Open
Abstract
Moniliophthora perniciosa is a fungal pathogen and causal agent of the witches' broom disease of cocoa, a threat to the chocolate industry and to the economic and social security in cocoa-planting countries. The membrane-bound enzyme alternative oxidase (MpAOX) is crucial for pathogen survival; however a lack of information on the biochemical properties of MpAOX hinders the development of novel fungicides. In this study, we purified and characterised recombinant MpAOX in dose-response assays with activators and inhibitors, followed by a kinetic characterization both in an aqueous environment and in physiologically-relevant proteoliposomes. We present structure-activity relationships of AOX inhibitors such as colletochlorin B and analogues which, aided by an MpAOX structural model, indicates key residues for protein-inhibitor interaction. We also discuss the importance of the correct hydrophobic environment for MpAOX enzymatic activity. We envisage that such results will guide the future development of AOX-targeting antifungal agents against M. perniciosa, an important outcome for the chocolate industry.
Collapse
Affiliation(s)
- Mario R O Barsottini
- Genomics and bioEnergy Laboratory, Institute of Biology, University of Campinas, Campinas, Brazil.,Biochemistry & Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Alice Copsey
- Biochemistry & Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Luke Young
- Biochemistry & Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Renata M Baroni
- Genomics and bioEnergy Laboratory, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Artur T Cordeiro
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Gonçalo A G Pereira
- Genomics and bioEnergy Laboratory, Institute of Biology, University of Campinas, Campinas, Brazil.
| | - Anthony L Moore
- Biochemistry & Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
8
|
Wu J, Mu R, Sun M, Zhao N, Pan M, Li H, Dong Y, Sun Z, Bai J, Hu M, Nathan CF, Javid B, Liu G. Derivatives of Natural Product Agrimophol as Disruptors of Intrabacterial pH Homeostasis in Mycobacterium tuberculosis. ACS Infect Dis 2019; 5:1087-1104. [PMID: 31016962 DOI: 10.1021/acsinfecdis.8b00325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This article reports the rational medicinal chemistry of a natural product, agrimophol (1), as a new disruptor of intrabacterial pH (pHIB) homeostasis in Mycobacterium tuberculosis (Mtb). Through the systematic investigation of the structure-activity relationship of 1, scaffold-hopping of the diphenylmethane scaffold, pharmacophore displacement strategies, and studies of the structure-metabolism relationship, a new derivative 5a was achieved. Compound 5a showed 100-fold increased potency in the ability to reduce pHIB to pH 6.0 and similarly improved mycobactericidal activity compared with 1 against both Mycobacterium bovis-BCG and Mtb. Compound 5a possessed improved metabolic stability in human liver microsomes and hepatocytes, lower cytotoxicity, higher selectivity index, and similar pKa value to natural 1. This study introduces a novel scaffold to an old drug, resulting in improved mycobactericidal activity through decreasing pHIB, and may contribute to the critical search for new agents to overcome drug resistance and persistence in the treatment of tuberculosis.
Collapse
Affiliation(s)
- Jie Wu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Renhuan Building, Rm 311, Haidian District, Beijing 100084, P. R. China
| | - Ran Mu
- School of Pharmaceutical Sciences, Tsinghua University, Renhuan Building, Rm 311, Haidian District, Beijing 100084, P. R. China
| | - Mingna Sun
- School of Pharmaceutical Sciences, Tsinghua University, Renhuan Building, Rm 311, Haidian District, Beijing 100084, P. R. China
| | - Nan Zhao
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Miaomiao Pan
- Centre for Global Health and Infectious Diseases, Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine, Beijing 100084, China
| | - Hongshuang Li
- School of Pharmaceutical Sciences, Tsinghua University, Renhuan Building, Rm 311, Haidian District, Beijing 100084, P. R. China
| | - Yi Dong
- School of Pharmaceutical Sciences, Tsinghua University, Renhuan Building, Rm 311, Haidian District, Beijing 100084, P. R. China
| | - Zhaogang Sun
- National Tuberculosis Clinical Laboratory, Beijing Chest Hospital, Capital Medical University and Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis & Thoracic Tumor Research Institute, 9 Beiguan Street, Tongzhou District, Beijing 101149, China
| | - Jie Bai
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Minwan Hu
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Carl F. Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Babak Javid
- Centre for Global Health and Infectious Diseases, Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine, Beijing 100084, China
| | - Gang Liu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Renhuan Building, Rm 311, Haidian District, Beijing 100084, P. R. China
- School of Pharmaceutical Sciences, Tsinghua University, Renhuan Building, Rm 311, Haidian District, Beijing 100084, P. R. China
| |
Collapse
|
9
|
Nakanishi M, Hino M, Yoshimura M, Amakura Y, Nomoto H. Identification of sinensetin and nobiletin as major antitrypanosomal factors in a citrus cultivar. Exp Parasitol 2019; 200:24-29. [PMID: 30898543 DOI: 10.1016/j.exppara.2019.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/28/2018] [Accepted: 03/17/2019] [Indexed: 01/06/2023]
Abstract
Cases of human African trypanosomiasis caused by infection with a protozoan parasite, Trypanosoma brucei, are decreasing due to enhanced surveillance and control. However, effective and safe treatments for this disease are still needed. In this study, we investigated the antitrypanosomal activity of citrus fruit peel. When 19 citrus cultivars were examined for activity against T. brucei in vitro, significant activities were observed in four closely related cultivars and a distantly related one. Among these five cultivars, "Setoka" was selected for identification of its active components due to exhibiting the highest activity. Solvent extraction and gel filtration followed by preparative thin-layer chromatography succeeded in isolating two compounds exhibiting IC50s of 4.8 and 2.4 μg/mL, respectively. The spectral data of these two compounds were well consistent with those of sinensetin and nobiletin belonging to the class of polymethoxyflavones. Authentic compounds also showed similar IC50s. These results indicate that the two polymethoxyflavones are the major active components involved in the inhibition of T. brucei proliferation and are abundant in Setoka cultivar peel compared with the levels in the other cultivars. Setoka peel and the naturally occurring polymethoxyflavones might serve as dietary components imparting resistance to T. brucei.
Collapse
Affiliation(s)
- Masayuki Nakanishi
- Laboratory of Biochemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, 790-8578, Japan.
| | - Mami Hino
- Laboratory of Biochemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, 790-8578, Japan
| | - Morio Yoshimura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, 790-8578, Japan
| | - Yoshiaki Amakura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, 790-8578, Japan
| | - Hiroshi Nomoto
- Laboratory of Biochemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, 790-8578, Japan
| |
Collapse
|
10
|
Ebiloma GU, Balogun EO, Cueto-Díaz EJ, de Koning HP, Dardonville C. Alternative oxidase inhibitors: Mitochondrion-targeting as a strategy for new drugs against pathogenic parasites and fungi. Med Res Rev 2019; 39:1553-1602. [PMID: 30693533 DOI: 10.1002/med.21560] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/07/2018] [Accepted: 12/08/2018] [Indexed: 12/11/2022]
Abstract
The alternative oxidase (AOX) is a ubiquitous terminal oxidase of plants and many fungi, catalyzing the four-electron reduction of oxygen to water alongside the cytochrome-based electron transfer chain. Unlike the classical electron transfer chain, however, the activity of AOX does not generate adenosine triphosphate but has functions such as thermogenesis and stress response. As it lacks a mammalian counterpart, it has been investigated intensely in pathogenic fungi. However, it is in African trypanosomes, which lack cytochrome-based respiration in their infective stages, that trypanosome alternative oxidase (TAO) plays the central and essential role in their energy metabolism. TAO was validated as a drug target decades ago and among the first inhibitors to be identified was salicylhydroxamic acid (SHAM), which produced the expected trypanocidal effects, especially when potentiated by coadministration with glycerol to inhibit anaerobic energy metabolism as well. However, the efficacy of this combination was too low to be of practical clinical use. The antibiotic ascofuranone (AF) proved a much stronger TAO inhibitor and was able to cure Trypanosoma vivax infections in mice without glycerol and at much lower doses, providing an important proof of concept milestone. Systematic efforts to improve the SHAM and AF scaffolds, aided with the elucidation of the TAO crystal structure, provided detailed structure-activity relationship information and reinvigorated the drug discovery effort. Recently, the coupling of mitochondrion-targeting lipophilic cations to TAO inhibitors has dramatically improved drug targeting and trypanocidal activity while retaining target protein potency. These developments appear to have finally signposted the way to preclinical development of TAO inhibitors.
Collapse
Affiliation(s)
- Godwin U Ebiloma
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emmanuel O Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
11
|
Meco-Navas A, Ebiloma GU, Martín-Domínguez A, Martínez-Benayas I, Cueto-Díaz EJ, Alhejely AS, Balogun EO, Saito M, Matsui M, Arai N, Shiba T, Harada S, de Koning HP, Dardonville C. SAR of 4-Alkoxybenzoic Acid Inhibitors of the Trypanosome Alternative Oxidase. ACS Med Chem Lett 2018; 9:923-928. [PMID: 30258542 DOI: 10.1021/acsmedchemlett.8b00282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/31/2018] [Indexed: 11/30/2022] Open
Abstract
The SAR of 4-hydroxybenzaldehyde inhibitors of the trypanosome alternative oxidase (TAO), a critical enzyme for the respiration of bloodstream forms of trypanosomes, was investigated. Replacing the aldehyde group with a methyl ester resulted in a 10-fold increase in TAO inhibition and activity against T. brucei. Remarkably, two analogues containing the 2-hydroxy-6-methyl scaffold (9e and 16e) displayed single digit nanomolar TAO inhibition, which constitute the most potent 4-alkoxybenzoic acid derivatives described to date. 9e was 50-times more potent against TAO and 10-times more active against T. brucei compared to its benzaldehyde analogue 1. The farnesyl derivative 16e was as potent a TAO inhibitor as ascofuranone with IC50 = 3.1 nM. Similar to ascofuranone derivatives, the 2-hydroxy and 6-methyl groups seemed essential for low nanomolar TAO inhibition of acid derivatives, suggesting analogous binding interactions with the TAO active site.
Collapse
Affiliation(s)
- Alejandro Meco-Navas
- Instituto de Química Médica, IQM-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Godwin U. Ebiloma
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Ana Martín-Domínguez
- Instituto de Química Médica, IQM-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | | | | | - Amani Saud Alhejely
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | - Machi Saito
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Miho Matsui
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Natsumi Arai
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Tomoo Shiba
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Shigeharu Harada
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Harry P. de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | |
Collapse
|