1
|
Theuretzbacher U, Jumde RP, Hennessy A, Cohn J, Piddock LJV. Global health perspectives on antibacterial drug discovery and the preclinical pipeline. Nat Rev Microbiol 2025:10.1038/s41579-025-01167-w. [PMID: 40148602 DOI: 10.1038/s41579-025-01167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Antibacterial resistance is a global challenge that requires a coordinated international response. The current clinical pipeline largely consists of derivatives of established antibiotic classes, whereas the discovery and preclinical pipeline is diverse and innovative including new direct-acting agents with no cross-resistance with existing antibiotics. These novel compounds target pathways such as lipoprotein synthesis, lipopolysaccharide biosynthesis and transport, outer membrane assembly, peptidoglycan biosynthesis, fatty acid biosynthesis and isoprenoid biosynthesis. If these agents can be developed into safe, effective and affordable drugs, they could address a broad range of infections worldwide, benefiting large patient populations without geographical limitations. However, strategies such as indirect-acting or pathogen-specific treatments are likely to benefit small patient groups, primarily in high-income countries that have advanced health-care systems and diagnostic infrastructure. Although encouraging, the discovery and preclinical pipeline remains insufficiently robust to offset the high attrition rates typical of early-stage drug innovation and to meet global health needs.
Collapse
Affiliation(s)
| | - Ravindra P Jumde
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| | - Alan Hennessy
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| | - Jennifer Cohn
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| | - Laura J V Piddock
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland.
| |
Collapse
|
2
|
Melchiorri D, Rocke T, Alm RA, Cameron AM, Gigante V. Addressing urgent priorities in antibiotic development: insights from WHO 2023 antibacterial clinical pipeline analyses. THE LANCET. MICROBE 2025; 6:100992. [PMID: 39454608 PMCID: PMC11876093 DOI: 10.1016/j.lanmic.2024.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 10/28/2024]
Abstract
Antimicrobial resistance continues to evolve and remains a leading cause of death worldwide, with children younger than 5 years being among those at the highest risk. Addressing antimicrobial resistance requires a comprehensive response, including infection prevention efforts, surveillance, stewardship, therapy appropriateness and access, and research and development. However, antimicrobial research and development is limited and lags behind the output of other fields, such as that of cancer or HIV research. The 2023 WHO analysis of the global antibacterial clinical pipeline serves as a tool to monitor and guide research and development efforts. The analysis emphasises the remaining gaps in developing a robust and effective antibacterial drug pipeline, drawing insights from trend analyses and assessment of the innovation potential of candidate antimicrobials. In the present analysis, we evaluated the activity of antibiotics against the new WHO bacterial priority pathogens list 2024, which reflects changing trends in resistance patterns, distribution of bacterial infections, and the emergence of new resistance mechanisms.
Collapse
Affiliation(s)
- Daniela Melchiorri
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; AMR Division, World Health Organization, Geneva, Switzerland.
| | - Tamarie Rocke
- AMR Division, World Health Organization, Geneva, Switzerland
| | - Richard A Alm
- AMR Division, World Health Organization, Geneva, Switzerland; Combating Antibiotic Resistant Bacteria Biopharmaceutical Accelerator, Boston, MA, USA
| | | | - Valeria Gigante
- AMR Division, World Health Organization, Geneva, Switzerland.
| |
Collapse
|
3
|
Martinez-Guerra BA, Xancal-Salvador LF, Esteban-Kenel V, Tello-Mercado AC, Bobadilla-Del-Valle M, Sifuentes-Osornio J, Ponce-de-Leon A, Gonzalez-Lara MF. Favourable effect of clavulanic acid on the minimum inhibitory concentrations of cefixime and ceftibuten in ESBL-producing Escherichia coli and Klebsiella pneumoniae. J Glob Antimicrob Resist 2024; 38:212-215. [PMID: 38945364 DOI: 10.1016/j.jgar.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/17/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024] Open
Abstract
OBJECTIVES The use of cephalosporins combined with clavulanate for the treatment of ESBL-harbouring Enterobacteriaceae has been scarcely described. We aimed to describe the effect of different concentrations of clavulanate in the MIC of cefixime and ceftibuten of ESBL-producing Escherichia coli and Klebsiella pneumoniae. METHODS ESBL-producing E. coli and K. pneumoniae isolates were studied. Fixed concentrations of cefixime and ceftibuten (ranges of 32-0.25 and 64-0.5 ng/ml, respectively) were used. Combinations of cefixime/clavulanate and ceftibuten/clavulanate in different ratios (1:0, 1:1, 2:1, 4:1, 8:1, 16:1, 32:1) were tested. MIC were determined by broth microdilution. RESULTS A total of 6 ESBL-producing E. coli, 6 ESBL-producing K. pneumoniae and 2 control E. coli were tested. When different quantities of clavulanate were added to cefixime and ceftibuten, greater than two-fold decreases in the MIC were observed. When testing the 1:1 cefixime/clavulanate ratio, 10/12 isolates were susceptible. When the ratios 2:1, 4:1, 8:1 and 16:1 were tested, susceptibility was noted for 9/12, 8/12, 4/12 and 5/12 isolates, respectively. Only 2/12 K. pneumoniae isolates were susceptible when the ratio 32:1 was tested. When testing ceftibuten/clavulanate, all isolates remained susceptible across all experiments. CONCLUSIONS Clavulanic acid has a favourable effect in reducing the MIC of cefixime and ceftibuten in isolates of ESBL-producing E. coli and K. pneumoniae. Combining clavulanate with ceftibuten or cefixime could be a useful treatment strategy.
Collapse
Affiliation(s)
- Bernardo Alfonso Martinez-Guerra
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; Department of Infectious Diseases, Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| | - Luis Fernando Xancal-Salvador
- Department of Infectious Diseases, Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Veronica Esteban-Kenel
- Department of Infectious Diseases, Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Andrea Carolina Tello-Mercado
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Miriam Bobadilla-Del-Valle
- Department of Infectious Diseases, Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jose Sifuentes-Osornio
- General Direction, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Alfredo Ponce-de-Leon
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Maria Fernanda Gonzalez-Lara
- Department of Infectious Diseases, Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
4
|
Singh G, Rana A, Smriti. Decoding antimicrobial resistance: unraveling molecular mechanisms and targeted strategies. Arch Microbiol 2024; 206:280. [PMID: 38805035 DOI: 10.1007/s00203-024-03998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Antimicrobial resistance poses a significant global health threat, necessitating innovative approaches for combatting it. This review explores various mechanisms of antimicrobial resistance observed in various strains of bacteria. We examine various strategies, including antimicrobial peptides (AMPs), novel antimicrobial materials, drug delivery systems, vaccines, antibody therapies, and non-traditional antibiotic treatments. Through a comprehensive literature review, the efficacy and challenges of these strategies are evaluated. Findings reveal the potential of AMPs in combating resistance due to their unique mechanisms and lower propensity for resistance development. Additionally, novel drug delivery systems, such as nanoparticles, show promise in enhancing antibiotic efficacy and overcoming resistance mechanisms. Vaccines and antibody therapies offer preventive measures, although challenges exist in their development. Non-traditional antibiotic treatments, including CRISPR-Cas systems, present alternative approaches to combat resistance. Overall, this review underscores the importance of multifaceted strategies and coordinated global efforts to address antimicrobial resistance effectively.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India
| | - Anita Rana
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India.
| | - Smriti
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India
| |
Collapse
|
5
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
6
|
Sun Z, Lin H, Hu L, Neetu N, Sankaran B, Wang J, Prasad BVV, Palzkill T. Klebsiella pneumoniae carbapenemase variant 44 acquires ceftazidime-avibactam resistance by altering the conformation of active-site loops. J Biol Chem 2024; 300:105493. [PMID: 38000656 PMCID: PMC10716778 DOI: 10.1016/j.jbc.2023.105493] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Klebsiella pneumoniae carbapenemase 2 (KPC-2) is an important source of drug resistance as it can hydrolyze and inactivate virtually all β-lactam antibiotics. KPC-2 is potently inhibited by avibactam via formation of a reversible carbamyl linkage of the inhibitor with the catalytic serine of the enzyme. However, the use of avibactam in combination with ceftazidime (CAZ-AVI) has led to the emergence of CAZ-AVI-resistant variants of KPC-2 in clinical settings. One such variant, KPC-44, bears a 15 amino acid duplication in one of the active-site loops (270-loop). Here, we show that the KPC-44 variant exhibits higher catalytic efficiency in hydrolyzing ceftazidime, lower efficiency toward imipenem and meropenem, and a similar efficiency in hydrolyzing ampicillin, than the WT KPC-2 enzyme. In addition, the KPC-44 variant enzyme exhibits 12-fold lower AVI carbamylation efficiency than the KPC-2 enzyme. An X-ray crystal structure of KPC-44 showed that the 15 amino acid duplication results in an extended and partially disordered 270-loop and also changes the conformation of the adjacent 240-loop, which in turn has altered interactions with the active-site omega loop. Furthermore, a structure of KPC-44 with avibactam revealed that formation of the covalent complex results in further disorder in the 270-loop, suggesting that rearrangement of the 270-loop of KPC-44 facilitates AVI carbamylation. These results suggest that the duplication of 15 amino acids in the KPC-44 enzyme leads to resistance to CAZ-AVI by modulating the stability and conformation of the 270-, 240-, and omega-loops.
Collapse
Affiliation(s)
- Zhizeng Sun
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - Hanfeng Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - Neetu Neetu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - B V Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - Timothy Palzkill
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
7
|
Farhat N, Khan AU. Repurposing FDA approved drug molecules against A B C classes of β-lactamases: a computational biology and molecular dynamics simulations study. J Biomol Struct Dyn 2023; 42:13635-13649. [PMID: 37909541 DOI: 10.1080/07391102.2023.2276890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
β-lactamase are the main resistance factor for β-lactam antibiotics in Gram-negative bacteria. Since β-lactam antibiotics are being utilised as an antimicrobial agents extensively for the past 70 years, a large number of β-lactam-inactivating β-lactamases have been produced by bacteria. Here, we employed a structure-based drug discovery approach to identify and assess the efficacy of a potential medication that might block the β-lactamases which hydrolyse antibiotics. The FDA-approved medications were subjected to virtual screening, molecular docking, molecular dynamics simulations, density functional theory, and covalent docking against the β-lactamases. We identified diosmin, hidrosmin, monoxuritin and solasulfone as β-lactamase inhibitors which are authorised for therapeutic use in humans. These medications interact in a remarkable variety of non-covalent ways with the conserved residues in the substrate-binding pocket of the β-lactamases. Diosmin has been identified as an inhibitor that binds covalently to the NDM-1 a class B metallo-betalactamase. After experimental validation and clinical demonstration, this study offers adequate evidence for the therapeutic use of these drugs for controlling multidrug resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nabeela Farhat
- Medical Microbiology and Molecular Biology Lab. Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Lab. Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
8
|
Dhanda G, Acharya Y, Haldar J. Antibiotic Adjuvants: A Versatile Approach to Combat Antibiotic Resistance. ACS OMEGA 2023; 8:10757-10783. [PMID: 37008128 PMCID: PMC10061514 DOI: 10.1021/acsomega.3c00312] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/21/2023] [Indexed: 06/13/2023]
Abstract
The problem of antibiotic resistance is on the rise, with multidrug-resistant strains emerging even to the last resort antibiotics. The drug discovery process is often stalled by stringent cut-offs required for effective drug design. In such a scenario, it is prudent to delve into the varying mechanisms of resistance to existing antibiotics and target them to improve antibiotic efficacy. Nonantibiotic compounds called antibiotic adjuvants which target bacterial resistance can be used in combination with obsolete drugs for an improved therapeutic regime. The field of "antibiotic adjuvants" has gained significant traction in recent years where mechanisms other than β-lactamase inhibition have been explored. This review discusses the multitude of acquired and inherent resistance mechanisms employed by bacteria to resist antibiotic action. The major focus of this review is how to target these resistance mechanisms by the use of antibiotic adjuvants. Different types of direct acting and indirect resistance breakers are discussed including enzyme inhibitors, efflux pump inhibitors, inhibitors of teichoic acid synthesis, and other cellular processes. The multifaceted class of membrane-targeting compounds with poly pharmacological effects and the potential of host immune-modulating compounds have also been reviewed. We conclude with providing insights about the existing challenges preventing clinical translation of different classes of adjuvants, especially membrane-perturbing compounds, and a framework about the possible directions which can be pursued to fill this gap. Antibiotic-adjuvant combinatorial therapy indeed has immense potential to be used as an upcoming orthogonal strategy to conventional antibiotic discovery.
Collapse
Affiliation(s)
- Geetika Dhanda
- Antimicrobial
Research Laboratory, New Chemistry Unit and School of Advanced
Materials, Jawaharlal Nehru Centre for Advanced
Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Yash Acharya
- Antimicrobial
Research Laboratory, New Chemistry Unit and School of Advanced
Materials, Jawaharlal Nehru Centre for Advanced
Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial
Research Laboratory, New Chemistry Unit and School of Advanced
Materials, Jawaharlal Nehru Centre for Advanced
Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
9
|
Heydarian N, Wouters CL, Neel A, Ferrell M, Panlilio H, Haight T, Gu T, Rice CV. Eradicating Biofilms of Carbapenem-Resistant Enterobacteriaceae by Simultaneously Dispersing the Biomass and Killing Planktonic Bacteria with PEGylated Branched Polyethyleneimine. ChemMedChem 2023; 18:e202200428. [PMID: 36542457 PMCID: PMC9899318 DOI: 10.1002/cmdc.202200428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are emerging pathogens that cause variety of severe infections. CRE evade antibiotic treatments because these bacteria produce enzymes that degrade a wide range of antibiotics including carbapenems and β-lactams. The formation of biofilms aggravates CRE infections, especially in a wound environment. These difficulties lead to persistent infection and non-healing wounds. This creates the need for new compounds to overcome CRE antimicrobial resistance and disrupt biofilms. Recent studies in our lab show that 600 Da branched polyethyleneimine (BPEI) and its derivative PEG350-BPEI can overcome antimicrobial resistance and eradicate biofilms in methicillin-resistant S. aureus, methicillin-resistant S. epidermidis, P. aeruginosa, and E. coli. In this study, the ability of 600 Da BPEI and PEG350-BPEI to eradicate carbapenem-resistant Enterobacteriaceae bacteria and their biofilms is demonstrated. We show that both BPEI and PEG350-BPEI have anti-biofilm efficacy against CRE strains expressing Klebsiella pneumoniae carbapenemases (KPCs) and metallo-β-lactamases (MBLs), such as New Delhi MBL (NDM-1). Furthermore, our results illustrate that BPEI affects planktonic CRE bacteria by increasing bacterial length and width from the inability to proceed with normal cell division processes. These data demonstrate the multi-functional properties of 600 Da BPEI and PEG350-BPEI to reduce biofilm formation and mitigate virulence in carbapenem-resistant Enterobacteriaceae.
Collapse
Affiliation(s)
- Neda Heydarian
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Cassandra L. Wouters
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Andrew Neel
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Maya Ferrell
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Hannah Panlilio
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Tristan Haight
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Tingting Gu
- Department of Biology, 730 Van Vleet Oval, Room 314, University of Oklahoma, Norman, OK 73019, USA
| | - Charles V. Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| |
Collapse
|
10
|
Yi S, Zhou Y, Zhang J, Wang M, Zheng S, Yang X, Duan L, Reis RL, Dai F, Kundu SC, Xiao B. Flat Silk Cocoon-Based Dressing: Daylight-Driven Rechargeable Antibacterial Membranes Accelerate Infected Wound Healing. Adv Healthc Mater 2022; 11:e2201397. [PMID: 35996858 DOI: 10.1002/adhm.202201397] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/17/2022] [Indexed: 01/28/2023]
Abstract
One of the leading causes of death globally, especially in underdeveloped countries, is bacterial infection. Recently, the prevalence of infections from antibiotic-resistant bacteria has been increasing, which makes the need for innovative antibacterial wound dressings urgent. It is reported that g-C3 N4 -based flat silk cocoons (FSCs) with rechargeable antibacterial activity can efficiently generate reactive oxygen species (ROS) under daylight irradiation. The photoactive FSCs store the ROS and then release them in the dark. The engineered FSCs exhibit integrated properties of good biocompatibility, strong mechanical characteristics, robust photoactivity with photostorability, and excellent bactericidal efficiency (99.9% contact killing). In a rat model of infected wounds, the photoactive FSCs induce faster healing and reduce bacterial infections. The successful application of these FSC materials as wound dressings may provide a versatile platform for exploring the use of green photoactive antibacterial materials for accelerated wound healing and prevention of infections.
Collapse
Affiliation(s)
- Shixiong Yi
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Ying Zhou
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Jiamei Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Min Wang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Shaohui Zheng
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Xiao Yang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Lian Duan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimaraes, 4805-017, Portugal
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimaraes, 4805-017, Portugal
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, P. R. China
| |
Collapse
|
11
|
Design, Synthesis, and Biological Evaluation of New 1H-Imidazole-2-Carboxylic Acid Derivatives as Metallo-β-Lactamase Inhibitors. Bioorg Med Chem 2022; 72:116993. [PMID: 36084491 DOI: 10.1016/j.bmc.2022.116993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/21/2022]
Abstract
As one of important mechanisms to β-lactam antimicrobial resistance, metallo-β-lactamases (MBLs) have been receiving increasing worldwide attentions. Ambler subclass B1 MBLs are most clinically relevant, because they can hydrolyze almost all β-lactams with the exception of monobactams. However, it is still lacking of clinically useful drugs to combat MBL-medicated resistance. We previously identified 1H-imidazole-2-carboxylic acid as a core metal-binding pharmacophore (MBP) to target multiple B1 MBLs. Herein, we report structural optimization of 1H-imidazole-2-carboxylic acid and substituents. Structure-activity relationship (SAR) analyses revealed that replacement of 1H-imidazole-2-carboxylic acid with other structurally highly similar MBPs excepting thiazole-4-carboxylic acid resulted in decreased MBL inhibition. Further SAR studies identified more potent inhibitors to MBLs, of which 28 manifested IC50 values of 0.018 µM for both VIM-2 and VIM-5. The microbiological tests demonstrated that the most tested compounds showed improved synergistic effects; some compounds at 1 µg/ml were able to reduce meropenem MIC by at least 16-fold, which will be worth further development of new potent inhibitors particularly targeting VIM-type MBLs.
Collapse
|
12
|
Zhou J, Stapleton P, Xavier-Junior FH, Schatzlein A, Haider S, Healy J, Wells G. Triazole-substituted phenylboronic acids as tunable lead inhibitors of KPC-2 antibiotic resistance. Eur J Med Chem 2022; 240:114571. [DOI: 10.1016/j.ejmech.2022.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
|
13
|
Li R, Chen X, Zhou C, Dai QQ, Yang L. Recent advances in β-lactamase inhibitor chemotypes and inhibition modes. Eur J Med Chem 2022; 242:114677. [PMID: 35988449 DOI: 10.1016/j.ejmech.2022.114677] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022]
Abstract
The effectiveness of β-lactam antibiotics is increasingly influenced by serine β-lactamases (SBLs) and metallo-β-lactamases (MBLs), which can hydrolyze β-lactam antibiotics. The development of effective β-lactamase inhibitors is an important direction to extend use of β-lactam antibiotics. Although six SBL inhibitors have been approved for clinical use, but no MBL inhibitors or MBL/SBL dual-action inhibitors are available so far. Broad-spectrum targeting clinically relevant MBLs and SBLs is currently desirable, while it is not easy to achieve such a purpose owing to structural and mechanistic differences between MBLs and SBLs. In this review, we summarized recent advances of inhibitor chemotypes targeting MBLs and SBLs and their inhibition mechanisms, particularly including lead discovery and structural optimization strategies, with the aim to provide useful information for future efforts to develop new MBL and SBL inhibitors.
Collapse
Affiliation(s)
- Rong Li
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China
| | - Xi Chen
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China
| | - Cong Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Qing-Qing Dai
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Lingling Yang
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China.
| |
Collapse
|
14
|
Kaur R, Kanotra M, Sood A, Abdellatif AAH, Bhatia S, Al-Harrasi A, Aleya L, Vargas-De-La-Cruz C, Behl T. Emergence of nutriments as a nascent complementary therapy against antimicrobial resistance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49568-49582. [PMID: 35589902 DOI: 10.1007/s11356-022-20775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
With these growing and evolving years, antimicrobial resistance has become a great subject of interest. The idea of using natural productive ways can be an effective measure against antimicrobial resistance. The growing prevalence of antimicrobial resistance indicates that advanced natural approaches are a topic of concern for fighting the resistance. Many natural products including essential oils, flavonoids, alkaloids and botanicals have been demonstrated as effective bactericidal agents. In this review, we will discuss in detail about the relevance of such natural products to tackle the problem of antimicrobial resistance, antibiotic adjuvants that aim towards non-essential bacterial targets to reduce the prevalence of resistant bacterial infections, latest bioinformatics approach towards antibacterial drug discovery along with an understanding of biogenic nanoparticles in antimicrobial activity.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Patiala, Punjab, India
| | - Muskan Kanotra
- Chitkara College of Pharmacy, Chitkara University, Patiala, Punjab, India
| | - Ankita Sood
- Chitkara College of Pharmacy, Chitkara University, Patiala, Punjab, India
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besancon, France
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
- E-Health Research Center, Universidad de Ciencias Y Humanidades, Lima, Peru
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Patiala, Punjab, India.
| |
Collapse
|
15
|
Sun S, Chen K, Kong X, Tian W, Niu S. Genetic Diversity and in vitro Activity of Aztreonam/Avibactam and Ceftazidime/Avibactam Against Carbapenem-Resistant Enterobacterales: A Multi-Center Study in Southwest China. Infect Drug Resist 2022; 15:2243-2251. [PMID: 35510161 PMCID: PMC9058005 DOI: 10.2147/idr.s357396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/07/2022] [Indexed: 12/17/2022] Open
Affiliation(s)
- Shan Sun
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Kai Chen
- College of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xuehua Kong
- College of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Wenjun Tian
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Correspondence: Wenjun Tian; Siqiang Niu, Email ;
| | - Siqiang Niu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
16
|
Coram MA, Wang L, Godinez WJ, Barkan DT, Armstrong Z, Ando DM, Feng BY. Morphological Characterization of Antibiotic Combinations. ACS Infect Dis 2022; 8:66-77. [PMID: 34937332 DOI: 10.1021/acsinfecdis.1c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Combination therapies are common in many therapeutic contexts, including infectious diseases and cancer. A common approach for evaluating combinations in vitro is to assess effects on cell growth as synergistic, antagonistic, or neutral using "checkerboard" experiments to systematically sample combinations of agents in multiple doses. To further understand the effects of antibiotic combinations, we employed high-content imaging to study the morphological changes caused by combination treatments in checkerboard experiments. Using an automated, unsupervised image analysis approach to group morphologies, and an "expert-in-the-loop" to annotate them, we attributed the heterogeneous morphological changes ofEscherichia coli cells to varying doses of both single-agent and combination treatments. We identified patterns of morphological change, including morphological potentiation, competition, and the emergence of unexpected morphologies. We found these frequently did not correlate with synergistic or antagonistic effects on viability, suggesting morphological approaches may provide a distinctive signature of the biological interaction between compounds over a range of conditions. Among the unexpected morphologies we observed, there were transitional changes associated with intermediate doses of compounds and uncharacterized phenotypes associated with well-studied antibiotics. Our approach exemplifies how unsupervised image analysis and expert knowledge can be combined to reckon with complex phenotypic changes arising from combination screening, dose titrations, or polypharmacology. In this way, quantification of morphological diversity across treatment conditions could aid in analysis and prioritization of complementary pairings of antibiotic agents by more closely capturing the true signature of the integrated cellular response.
Collapse
Affiliation(s)
- Marc A. Coram
- Google Research Applied Science, Mountain View, California 94043, United States
| | - Lisha Wang
- Infectious Diseases, Novartis Institutes for BioMedical Research, Inc., Emeryville, California 94608, United States
| | - William J. Godinez
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Inc., Emeryville, California 94608, United States
| | - David T. Barkan
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Inc., Emeryville, California 94608, United States
| | - Zan Armstrong
- Google Research Applied Science, Mountain View, California 94043, United States
| | - D. Michael Ando
- Google Research Applied Science, Mountain View, California 94043, United States
| | - Brian Y. Feng
- Infectious Diseases, Novartis Institutes for BioMedical Research, Inc., Emeryville, California 94608, United States
| |
Collapse
|
17
|
Yan YH, Li W, Chen W, Li C, Zhu KR, Deng J, Dai QQ, Yang LL, Wang Z, Li GB. Structure-guided optimization of 1H-imidazole-2-carboxylic acid derivatives affording potent VIM-Type metallo-β-lactamase inhibitors. Eur J Med Chem 2021; 228:113965. [PMID: 34763944 DOI: 10.1016/j.ejmech.2021.113965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023]
Abstract
Production of metallo-β-lactamases (MBLs) in bacterial pathogens is an important cause of resistance to the 'last-resort' carbapenem antibiotics. Development of effective MBL inhibitors to reverse carbapenem resistance in Gram-negative bacteria is still needed. We herein report X-ray structure-guided optimization of 1H-imidazole-2-carboxylic acid (ICA) derivatives by considering how to engage with the active-site flexible loops and improve penetration into Gram-negative bacteria. Structure-activity relationship studies revealed the importance of appropriate substituents at ICA 1-position to achieve potent inhibition to class B1 MBLs, particularly the Verona Integron-encoded MBLs (VIMs), mainly by involving ingenious interactions with the flexible active site loops as observed by crystallographic analyses. Of the tested ICA inhibitors, 55 displayed potent synergistic antibacterial activity with meropenem against engineered Escherichia coli strains and even intractable clinically isolated Pseudomonas aeruginosa producing VIM-2 MBL. The morphologic and internal structural changes of bacterial cells after treatment further demonstrated that 55 crossed the outer membrane and reversed the activity of meropenem. Moreover, 55 showed good pharmacokinetic and safety profile in vivo, which could be a potential candidate for combating VIM-mediated Gram-negative carbapenem resistance.
Collapse
Affiliation(s)
- Yu-Hang Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Sichuan, 610041, China
| | - Wenfang Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Chen
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, China
| | - Chao Li
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, China
| | - Kai-Rong Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Sichuan, 610041, China
| | - Ji Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Sichuan, 610041, China
| | - Qing-Qing Dai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Sichuan, 610041, China
| | - Ling-Ling Yang
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, China
| | - Zhenling Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Sichuan, 610041, China.
| |
Collapse
|
18
|
Panlilio H, Lam AK, Heydarian N, Haight T, Wouters CL, Moen EL, Rice CV. Dual-Function Potentiation by PEG-BPEI Restores Activity of Carbapenems and Penicillins against Carbapenem-Resistant Enterobacteriaceae. ACS Infect Dis 2021; 7:1657-1665. [PMID: 33945257 PMCID: PMC8689638 DOI: 10.1021/acsinfecdis.0c00863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The rise of life-threatening carbapenem-resistant Enterobacteriaceae (CRE) infections has become a critical medical threat. Some of the most dangerous CRE bacteria can produce enzymes that degrade a wide range of antibiotics, including carbapenems and β-lactams. Infections by CRE have a high mortality rate, and survivors can have severe morbidity from treatment with toxic last-resort antibiotics. CRE have mobile genetic elements that transfer resistance genes to other species. These bacteria also circulate throughout the healthcare system. The mobility and spread of CRE need to be curtailed, but these goals are impeded by having few agents that target a limited range of pathogenic CRE species. Against CRE possessing the metallo-β-lactamase NDM-1, Klebsiella pneumoniae ATCC BAA-2146 and Escherichia coli ATCC BAA-2452, the potentiation of meropenem and imipenem is possible with low-molecular weight branched polyethylenimine (600 Da BPEI) and its poly(ethylene glycol) (PEG)ylated derivative (PEG-BPEI) that has a low in vivo toxicity. The mechanism of action is elucidated with fluorescence assays of drug influx and isothermal calorimetry data showing the chelation of essential Zn2+ ions. These results suggested that 600 Da BPEI and PEG-BPEI may also improve the uptake of antibiotics and β-lactamase inhibitors. Indeed, the CRE E. coli strain is rendered susceptible to the combination of piperacillin and tazobactam. These results expand the possible utility of 600 Da BPEI potentiators, where previously we have demonstrated the ability to improve antibiotic efficacy against antibiotic resistant clinical isolates of Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis.
Collapse
Affiliation(s)
- Hannah Panlilio
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Anh K Lam
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Neda Heydarian
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Tristan Haight
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Cassandra L Wouters
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Erika L Moen
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Charles V Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
19
|
Spiliopoulou I, Kazmierczak K, Stone GG. In vitro activity of ceftazidime/avibactam against isolates of carbapenem-non-susceptible Enterobacteriaceae collected during the INFORM global surveillance programme (2015-17). J Antimicrob Chemother 2021; 75:384-391. [PMID: 31742604 PMCID: PMC6966093 DOI: 10.1093/jac/dkz456] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/21/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023] Open
Abstract
Objectives To report data for ceftazidime/avibactam and comparators against meropenem-non-susceptible Enterobacteriaceae collected globally (excluding centres in the USA) from 2015 to 2017 as part of the International Network For Optimal Resistance Monitoring (INFORM) surveillance programme. Methods MICs and susceptibility were determined using EUCAST broth microdilution methodology and EUCAST breakpoints. Isolates were screened to detect genes encoding β-lactamases using multiplex PCR assays. MBL-positive isolates were those in which one or more of the IMP, VIM and/or NDM genes were detected. Results A total of 1460 meropenem-non-susceptible isolates were collected and, of the agents on the panel, susceptibility was highest to ceftazidime/avibactam, colistin and tigecycline [73.0%, 77.0% (1081/1403) and 78.1%, respectively]. Ceftazidime/avibactam was not active against MBL-positive isolates (n=367); these isolates showed the highest rates of susceptibility to colistin (92.1%, 303/329), tigecycline (71.9%) and amikacin (46.6%). A total of 394 isolates were resistant to ceftazidime/avibactam and, of the 369 isolates that were screened, 98.4% were found to carry a gene encoding an MBL enzyme. Among isolates that were identified as carbapenemase positive and MBL negative (n=910), susceptibility was highest to ceftazidime/avibactam (99.8%). Susceptibility was also highest to ceftazidime/avibactam among isolates that were carbapenemase negative and MBL negative (94/98, 95.9%). Conclusions These data highlight the need for continued surveillance of antimicrobial activity as well as the need for new antimicrobials to treat infections caused by meropenem-non-susceptible Enterobacteriaceae, for which the options are extremely limited.
Collapse
Affiliation(s)
- Iris Spiliopoulou
- Department of Microbiology, School of Medicine, University of Patras, Rion, Patras, Greece
| | | | | |
Collapse
|
20
|
Mushtaq S, Garello P, Vickers A, Woodford N, Livermore DM. Activity of cefepime/zidebactam (WCK 5222) against 'problem' antibiotic-resistant Gram-negative bacteria sent to a national reference laboratory. J Antimicrob Chemother 2021; 76:1511-1522. [PMID: 33760082 DOI: 10.1093/jac/dkab067] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Triple-action diazabicyclooctanes, e.g. zidebactam, combine β-lactamase inhibition, antibacterial activity, and 'enhancement' of PBP3-targeted β-lactams. OBJECTIVES To examine the activity of cefepime/zidebactam against consecutive 'problem' Gram-negative bacteria referred to the UK national reference laboratory. METHODS MICs were determined by BSAC agar dilution for 1632 Enterobacterales, 745 Pseudomonas aeruginosa and 450 other non-fermenters, categorized by carbapenemase detection and interpretive reading. RESULTS Universal susceptibility to cefepime/zidebactam 8 + 8 mg/L was seen for otherwise multidrug-resistant Enterobacterales with AmpC, extended-spectrum, K1, KPC and OXA-48-like β-lactamases, or with impermeability and 'unassigned' mechanisms. Unlike ceftazidime/avibactam and all other comparators, cefepime/zidebactam 8 + 8 mg/L also inhibited most (190/210, 90.5%) Enterobacterales with MBLs. Resistance in the remaining minority of MBL producers, and in 13/24 with both NDM MBLs and OXA-48-like enzymes, was associated with Klebsiella pneumoniae ST14. For Pseudomonas aeruginosa, MICs of cefepime/zidebactam rose with efflux grade, but exceeded 8 + 8 mg/L for only 11/85 isolates even in the highly-raised efflux group. Among 103 P. aeruginosa with ESBLs or MBLs, 97 (94.5%) were inhibited by cefepime/zidebactam 8 + 8 mg/L whereas fewer than 15% were susceptible to any comparator. MICs for Acinetobacter baumannii with acquired OXA carbapenemases clustered around 8 + 8 to 32 + 32 mg/L, with higher values for MBL producers. A strong enhancer effect augmented activity against many isolates that were highly resistant to cefepime and zidebactam alone and which had mechanisms not inhibited by zidebactam. CONCLUSIONS Assuming successful clinical trials, cefepime/zidebactam has scope to widely overcome critical resistances in both Enterobacterales and non-fermenters.
Collapse
Affiliation(s)
- Shazad Mushtaq
- Antimicrobial Resistance and Healthcare-Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Paolo Garello
- Antimicrobial Resistance and Healthcare-Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Anna Vickers
- Antimicrobial Resistance and Healthcare-Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare-Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - David M Livermore
- Antimicrobial Resistance and Healthcare-Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK.,Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
21
|
Chang M, Mahasenan KV, Hermoso JA, Mobashery S. Unconventional Antibacterials and Adjuvants. Acc Chem Res 2021; 54:917-929. [PMID: 33512995 DOI: 10.1021/acs.accounts.0c00776] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The need for new classes of antibacterials is genuine in light of the dearth of clinical options for the treatment of bacterial infections. The prodigious discoveries of antibiotics during the 1940s to 1970s, a period wistfully referred to as the Golden Age of Antibiotics, have not kept up in the face of emergence of resistant bacteria in the past few decades. There has been a renewed interest in old drugs, the repurposing of the existing antibiotics and pairing of synergistic antibiotics or of an antibiotic with an adjuvant. Notwithstanding, discoveries of novel classes of these life-saving drugs have become increasingly difficult, calling for new paradigms. We describe, herein, three strategies from our laboratories toward discoveries of new antibacterials and adjuvants using computational and multidisciplinary experimental methods. One approach targets penicillin-binding proteins (PBPs), biosynthetic enzymes of cell-wall peptidoglycan, for discoveries of non-β-lactam inhibitors. Oxadiazoles and quinazolinones emerged as two structural classes out of these efforts. Several hundred analogs of these two classes of antibiotics have been synthesized and fully characterized in our laboratories. A second approach ventures into inhibition of allosteric regulation of cell-wall biosynthesis. The mechanistic details of allosteric regulation of PBP2a of Staphylococcus aureus, discovered in our laboratories, is outlined. The allosteric site in this protein is at 60 Å distance to the active site, whereby ligand binding at the former makes access to the latter by the substrate possible. We have documented that both quinazolinones and ceftaroline, a fifth-generation cephalosporin, bind to the allosteric site in manifestation of the antibacterial activity. Attempts at inhibition of the regulatory phosphorylation events identified three classes of antibacterial adjuvants and one class of antibacterials, the picolinamides. The chemical structures for these hits went through diversification by synthesis of hundreds of analogs. These analogs were characterized in various assays for identification of leads with adjuvant and antibacterial activities. Furthermore, we revisited the mechanism of bulgecins, a class of adjuvants discovered and abandoned in the 1980s. These compounds potentiate the activities of β-lactam antibiotics by the formation of bulges at the sites of septum formation during bacterial replication, which are points of structural weakness in the envelope. These bulges experience rupture, which leads to bacterial death. Bulgecin A inhibits the lytic transglycosylase Slt of Pseudomonas aeruginosa as a likely transition-state mimetic for its turnover of the cell-wall peptidoglycan. Once damage to cell wall is inflicted by a β-lactam antibiotic, the function of Slt is to repair the damage. When Slt is inhibited by bulgecin A, the organism cannot cope with it and would undergo rapid lysis. Bulgecin A is an effective adjuvant of β-lactam antibiotics. These discoveries of small-molecule classes of antibacterials or of adjuvants to antibacterials hold promise in strategies for treatment of bacterial infections.
Collapse
Affiliation(s)
- Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, McCourtney Hall, Notre Dame Indiana 46556, United States
| | - Kiran V. Mahasenan
- Department of Chemistry and Biochemistry, University of Notre Dame, McCourtney Hall, Notre Dame Indiana 46556, United States
| | - Juan A. Hermoso
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física “Rocasolano”, CSIC, Serrano 119, 28006-Madrid Spain
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, McCourtney Hall, Notre Dame Indiana 46556, United States
| |
Collapse
|
22
|
Shapiro AB, Gao N. Interactions of the Diazabicyclooctane Serine β-Lactamase Inhibitor ETX1317 with Target Enzymes. ACS Infect Dis 2021; 7:114-122. [PMID: 33300345 PMCID: PMC7837508 DOI: 10.1021/acsinfecdis.0c00656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
ETX0282
is an orally bioavailable prodrug of the diazabicyclooctane
serine β-lactamase inhibitor ETX1317. The combination of ETX0282
with cefpodoxime proxetil is in clinical trials as an oral therapy
for complicated urinary tract infections caused by Enterobacterales. Earlier diazabicyclooctane β-lactamase inhibitors, such as
avibactam and durlobactam, contain a sulfate moiety as the essential
anionic group and are administered intravenously. In contrast, ETX1317
contains a fluoroacetate moiety, which is esterified with an isopropyl
group in ETX0282 to provide high oral bioavailability. Previous studies
of avibactam and durlobactam showed that covalent inhibition of certain
β-lactamases is reversible due to the ability of the ring-opened
inhibitors to recyclize and dissociate in their original form. We
investigated the interaction of ETX1317 with several β-lactamases
commonly found in relevant bacterial pathogens, including CTX-M-15,
KPC-2, SHV-5, and TEM-1 from Ambler Class A; Pseudomonas aeruginosa AmpC and Enterobacter cloacae P99 from Class C,
and OXA-48 from Class D. The second-order rate constants for inhibition
(kinact/Ki) of these enzymes show that ETX1317 is intermediate in potency between
durlobactam and avibactam. The partition ratios were all approximately
1, indicating that the inhibitor is not also a substrate of these
enzymes. The rate constants for dissociation of the covalent complex
(koff) were similar to those for durlobactam
and avibactam. Acylation exchange experiments demonstrated that ETX1317
dissociated in its original form. No loss of mass from the inhibitor
was observed in the covalent inhibitor-enzyme complexes.
Collapse
Affiliation(s)
- Adam B. Shapiro
- Entasis Therapeutics, Waltham, Massachusetts 02451, United States
| | - Ning Gao
- AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| |
Collapse
|
23
|
Shapiro AB, Moussa SH, Carter NM, Gao N, Miller AA. Ceftazidime-Avibactam Resistance Mutations V240G, D179Y, and D179Y/T243M in KPC-3 β-Lactamase Do Not Alter Cefpodoxime-ETX1317 Susceptibility. ACS Infect Dis 2021; 7:79-87. [PMID: 33291867 DOI: 10.1021/acsinfecdis.0c00575] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutations in KPC-2 and KPC-3 β-lactamase can confer resistance to the β-lactam/β-lactamase inhibitor antibacterial intravenous drug combination ceftazidime-avibactam, introduced in 2015. Avibactam was the first of the diazabicyclooctane class of non-β-lactam β-lactamase inhibitors to be approved for clinical use. The orally bioavailable prodrug ETX0282 of the diazabicyclooctane β-lactamase inhibitor ETX1317 is in clinical development in combination with the oral β-lactam prodrug cefpodoxime proxetil for use against complicated urinary tract infections. We investigated the effects of 3 ceftazidime-avibactam resistance mutations in KPC-3 (V240G, D179Y, and D179Y/T243M) on the ability of ETX1317 to overcome KPC-3-induced cefpodoxime resistance. Isogenic Escherichia coli strains, each expressing the wild-type or a mutant KPC-3 at similar levels, retained susceptibility to cefpodoxime-ETX1317 (1:2) with essentially identical minimal inhibitory concentrations of 0.125-0.25 μg/mL cefpodoxime. The KPC-3 mutations had little or no effect on the kinact/Ki values for inhibition by each of 3 diazabicyclooctanes: avibactam, durlobactam (ETX2514), and ETX1317. The KM values for hydrolysis of cefpodoxime were similar for all 4 variants, but the kcat values of the D179Y and D179Y/T243M variants were much lower than those of the wild-type and V240G mutant enzymes. All 4 KPC-3 variants formed stable, reversibly covalent complexes with ETX1317, but dissociation of ETX1317 was much slower from the D179Y and D179Y/T243M mutants than from the wild-type and V240G mutant enzymes. Thus, the KPC-3 variants examined here that cause resistance to ceftazidime-avibactam do not cause resistance to cefpodoxime-ETX1317.
Collapse
Affiliation(s)
- Adam B Shapiro
- Entasis Therapeutics, Waltham, Massachusetts 02451, United States
| | - Samir H Moussa
- Entasis Therapeutics, Waltham, Massachusetts 02451, United States
| | - Nicole M Carter
- Entasis Therapeutics, Waltham, Massachusetts 02451, United States
| | - Ning Gao
- Discovery Sciences, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| | - Alita A Miller
- Entasis Therapeutics, Waltham, Massachusetts 02451, United States
| |
Collapse
|
24
|
Zou C, Wei J, Shan B, Chen X, Wang D, Niu S. In vitro Activity of Ceftazidime-Avibactam and Aztreonam-Avibactam Against Carbapenem-resistant Enterobacteriaceae Isolates Collected from Three Secondary Hospitals in Southwest China Between 2018 and 2019. Infect Drug Resist 2020; 13:3563-3568. [PMID: 33116675 PMCID: PMC7567573 DOI: 10.2147/idr.s273989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/03/2020] [Indexed: 01/25/2023] Open
Abstract
Purpose To assess the antimicrobial activities of ceftazidime/avibactam (CAZ/AVI) and aztreonam/avibactam (ATM/AVI) against carbapenem-resistant Enterobacteriaceae (CRE) isolates collected from three secondary hospitals in Southwest China between 2018 and 2019. Materials and Methods A total of 120 unique CRE clinical isolates were collected and carbapenemase genes were detected using PCR. Antimicrobial susceptibility was determined using standard broth microdilution method and the results were interpreted according to CLSI breakpoints. Results The 120 carbapenem-resistant strains included 92 Klebsiella pneumoniae, 10 Escherichia coli, 10 Enterobacter cloacae, five Klebsiella aerogenes, and three Klebsiella oxytoca isolates. Seventy-four percent of these 120 CRE isolates were collected from patients located in non-ICUs; 65.0% of these CRE isolates were collected from male patients; and 34.2% of these isolates were isolated from respiratory tracts. Four different carbapenemase genes were identified among 103 carbapenemase-producing Enterobacteriaceae (CPE) isolates, including bla KPC-2 (n=77), bla NDM-1 (n=16), bla NDM-5 (n=12) and bla IMP-4 (n=2). Overall, 21.7%, 37.5%, 40.8%, 75.0%, and 100% of the CRE strains were susceptible to levofloxacin, trimethoprim/sulfamethoxazole, amikacin, CAZ/AVI, and ATM/AVI, respectively. In addition, antimicrobial susceptibility testing showed that 96.7% isolates (n=116) were resistant to aztreonam, and the addition of avibactam (4 mg/L) significantly reduced the MICs of those aztreonam-resistant isolates by more than 128-fold (range: ≤0.125-4 mg/L), and 90.0% (n=108) of total 120 isolates were inhibited at ATM/AVI concentration ≤1 mg/L. Conclusion Our study revealed significant antimicrobial resistance among the CRE isolates against some commonly used antibiotics in three secondary Chinese hospitals. ATM/AVI exhibited potent activity against CRE isolates, including double carbapenemase-producing isolates, whereas CAZ/AVI was active against all KPC producers.
Collapse
Affiliation(s)
- Chunhong Zou
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,College of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jie Wei
- Department of Laboratory Medicine, West China Second University Hospital, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, People's Republic of China
| | - Baoju Shan
- Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xian Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Deqiang Wang
- College of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China.,The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, People's Republic of China
| | - Siqiang Niu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
25
|
Dubey KK, Indu, Sharma M. Reprogramming of antibiotics to combat antimicrobial resistance. Arch Pharm (Weinheim) 2020; 353:e2000168. [DOI: 10.1002/ardp.202000168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/04/2020] [Accepted: 07/11/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Kashyap K. Dubey
- Bioprocess Engineering Laboratory, Department of Biotechnology Central University of Haryana Mahendergarh Haryana India
- School of Biotechnology Jawaharlal Nehru University New Delhi India
| | - Indu
- Bioprocess Engineering Laboratory, Department of Biotechnology Central University of Haryana Mahendergarh Haryana India
| | - Manisha Sharma
- Bioprocess Engineering Laboratory, Department of Biotechnology Central University of Haryana Mahendergarh Haryana India
| |
Collapse
|
26
|
Laws M, Shaaban A, Rahman KM. Antibiotic resistance breakers: current approaches and future directions. FEMS Microbiol Rev 2020; 43:490-516. [PMID: 31150547 PMCID: PMC6736374 DOI: 10.1093/femsre/fuz014] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
Infections of antibiotic-resistant pathogens pose an ever-increasing threat to mankind. The investigation of novel approaches for tackling the antimicrobial resistance crisis must be part of any global response to this problem if an untimely reversion to the pre-penicillin era of medicine is to be avoided. One such promising avenue of research involves so-called antibiotic resistance breakers (ARBs), capable of re-sensitising resistant bacteria to antibiotics. Although some ARBs have previously been employed in the clinical setting, such as the β-lactam inhibitors, we posit that the broader field of ARB research can yet yield a greater diversity of more effective therapeutic agents than have been previously achieved. This review introduces the area of ARB research, summarises the current state of ARB development with emphasis on the various major classes of ARBs currently being investigated and their modes of action, and offers a perspective on the future direction of the field.
Collapse
Affiliation(s)
- Mark Laws
- Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH
| | - Ali Shaaban
- Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH
| |
Collapse
|
27
|
Yadav TC, Agarwal V, Srivastava AK, Raghuwanshi N, Varadwaj P, Prasad R, Pruthi V. Insight into Structure-Function Relationships of β-Lactamase and BLIPs Interface Plasticity using Protein-Protein Interactions. Curr Pharm Des 2020; 25:3378-3389. [PMID: 31544712 DOI: 10.2174/1381612825666190911154650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/05/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mostly BLIPs are identified in soil bacteria Streptomyces and originally isolated from Streptomyces clavuligerus and can be utilized as a model system for biophysical, structural, mutagenic and computational studies. BLIP possess homology with two proteins viz., BLIP-I (Streptomyces exofoliatus) and BLP (beta-lactamase inhibitory protein like protein from S. clavuligerus). BLIP consists of 165 amino acid, possessing two homologues domains comprising helix-loop-helix motif packed against four stranded beta-sheet resulting into solvent exposed concave surface with extended four stranded beta-sheet. BLIP-I is a 157 amino acid long protein obtained from S. exofoliatus having 37% sequence identity to BLIP and inhibits beta-lactamase. METHODS This review is intended to briefly illustrate the beta-lactamase inhibitory activity of BLIP via proteinprotein interaction and aims to open up a new avenue to combat antimicrobial resistance using peptide based inhibition. RESULTS D49A mutation in BLIP-I results in a decrease in affinity for TEM-1 from 0.5 nM to 10 nM (Ki). It is capable of inhibiting TEM-1 and bactopenemase and differs from BLIP only in modulating cell wall synthesis enzyme. Whereas, BLP is a 154 amino acid long protein isolated from S. clavuligerus via DNA sequencing analysis of Cephamycin-Clavulanate gene bunch. It shares 32% sequence similarity with BLIP and 42% with BLIP-I. Its biological function is unclear and lacks beta-lactamase inhibitory activity. CONCLUSION Protein-protein interactions mediate a significant role in regulation and modulation of cellular developments and processes. Specific biological markers and geometric characteristics are manifested by active site binding clefts of protein surfaces which determines the specificity and affinity for their targets. TEM1.BLIP is a classical model to study protein-protein interaction. β-Lactamase inhibitory proteins (BLIPs) interacts and inhibits various β-lactamases with extensive range of affinities.
Collapse
Affiliation(s)
- Tara C Yadav
- Department of Biotechnology, Indian Institute of Technology, Roorkee-247667, Uttarakhand, India
| | - Vidhu Agarwal
- Department of Bioinformatics, Indian Institute of Information Technology, Allahabad 211015, India
| | - Amit K Srivastava
- Department of Biotechnology, Indian Institute of Technology, Roorkee-247667, Uttarakhand, India
| | - Navdeep Raghuwanshi
- Vaccine Formulation & Research Center, Gennova (Emcure) Biopharmaceuticals Limited, Pune - 11057, Maharashtra, India
| | - Pritish Varadwaj
- Department of Bioinformatics, Indian Institute of Information Technology, Allahabad 211015, India
| | - Ramasare Prasad
- Department of Biotechnology, Indian Institute of Technology, Roorkee-247667, Uttarakhand, India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology, Roorkee-247667, Uttarakhand, India
| |
Collapse
|
28
|
Tehrani KHME, Brüchle NC, Wade N, Mashayekhi V, Pesce D, van Haren MJ, Martin NI. Small Molecule Carboxylates Inhibit Metallo-β-lactamases and Resensitize Carbapenem-Resistant Bacteria to Meropenem. ACS Infect Dis 2020; 6:1366-1371. [PMID: 32227874 PMCID: PMC7296533 DOI: 10.1021/acsinfecdis.9b00459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the search for new inhibitors of bacterial metallo-β-lactamases (MBLs), a series of commonly used small molecule carboxylic acid derivatives were evaluated for their ability to inhibit New Delhi metallo-β-lactamase (NDM)-, Verona integron-encoded metallo-β-lactamase (VIM)-, and imipenemase (IMP)-type enzymes. Nitrilotriacetic acid (3) and N-(phosphonomethyl)iminodiacetic acid (5) showed promising activity especially against NDM-1 and VIM-2 with IC50 values in the low-to-sub μM range. Binding assays using isothermal titration calorimetry reveal that 3 and 5 bind zinc with high affinity with dissociation constant (Kd) values of 121 and 56 nM, respectively. The in vitro biological activity of 3 and 5 against E. coli expressing NDM-1 was evaluated in checkerboard format, demonstrating a strong synergistic relationship for both compounds when combined with Meropenem. Compounds 3 and 5 were then tested against 35 pathogenic strains expressing MBLs of the NDM, VIM, or IMP classes. Notably, when combined with Meropenem, compounds 3 and 5 were found to lower the minimum inhibitory concentration (MIC) of Meropenem up to 128-fold against strains producing NDM- and VIM-type enzymes.
Collapse
Affiliation(s)
- Kamaleddin H. M. E. Tehrani
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Nora C. Brüchle
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Nicola Wade
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Vida Mashayekhi
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Diego Pesce
- Laboratory of Genetics, Wageningen University and Research, 6700 AA Wageningen, The Netherlands
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthijs J. van Haren
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Nathaniel I. Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
29
|
Chen J, Huang T, Gong X, Yu Z, Shi Y, Yan Y, Zheng Y, Liu X, Li G, Wu Y. Ruthenium‐Catalyzed
meta
‐Selective C−H Nitration of Biologically Important Aryltetrazoles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jian Chen
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Tianle Huang
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Xinrui Gong
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Zhu‐Jun Yu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Yuesen Shi
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Yu‐Hang Yan
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Yang Zheng
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Xuexin Liu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Guo‐Bo Li
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Yong Wu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| |
Collapse
|
30
|
Novelli A, Del Giacomo P, Rossolini GM, Tumbarello M. Meropenem/vaborbactam: a next generation β-lactam β-lactamase inhibitor combination. Expert Rev Anti Infect Ther 2020; 18:643-655. [PMID: 32297801 DOI: 10.1080/14787210.2020.1756775] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION infections due to carbapenem-resistant Enterobacterales (CRE) constitute a worldwide threat and are associated with significant mortality, especially in fragile patients, and costs. Meropenem-vaborbactam (M/V) is a combination of a group 2 carbapenem with a novel cyclic boronic acid-based β-lactamase inhibitor which has shown good efficacy against KPC carbapenemase-producing Klebsiella pneumoniae, which are amongst the most prevalent types of CRE. AREAS COVERED This article reviews the microbiological and pharmacological profile and current clinical experience and safety of M/V in the treatment of infections caused by CRE. EXPERT OPINION M/V is a promising drug for the treatment of infections due to KPC-producing CRE (KPC-CRE). It exhibited an almost complete coverage of KPC-CRE isolates from large surveillance studies and a low propensity for resistance selection, retaining activity also against strains producing KPC mutants resistant to ceftazidime-avibactam. Both meropenem and vaborbactam have a favorable pharmacokinetic profile, with similar kinetic properties, a good intrapulmonary penetration, and are efficiently cleared during continuous venovenous hemofiltration (CVVH). According to available data, M/V monotherapy is associated with higher clinical cure rates and lower rates of adverse events, especially in terms of nephrotoxicity, if compared to 'older' combination therapies.
Collapse
Affiliation(s)
- Andrea Novelli
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence , Florence, Italy
| | - Paola Del Giacomo
- UOC Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS , Rome, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence and Clinical Microbiology and Virology Unit, Florence Careggi University Hospital , Florence, Italy
| | - Mario Tumbarello
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS , Rome, Italy.,Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore , Rome, Italy
| |
Collapse
|
31
|
Lefurgy ST, Caselli E, Taracila MA, Malashkevich VN, Biju B, Papp-Wallace KM, Bonanno JB, Prati F, Almo SC, Bonomo RA. Structures of FOX-4 Cephamycinase in Complex with Transition-State Analog Inhibitors. Biomolecules 2020; 10:biom10050671. [PMID: 32349291 PMCID: PMC7277225 DOI: 10.3390/biom10050671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022] Open
Abstract
Boronic acid transition-state analog inhibitors (BATSIs) are partners with β-lactam antibiotics for the treatment of complex bacterial infections. Herein, microbiological, biochemical, and structural findings on four BATSIs with the FOX-4 cephamycinase, a class C β-lactamase that rapidly hydrolyzes cefoxitin, are revealed. FOX-4 is an extended-spectrum class C cephalosporinase that demonstrates conformational flexibility when complexed with certain ligands. Like other β-lactamases of this class, studies on FOX-4 reveal important insights into structure–activity relationships. We show that SM23, a BATSI, shows both remarkable flexibility and affinity, binding similarly to other β-lactamases, yet retaining an IC50 value < 0.1 μM. Our analyses open up new opportunities for the design of novel transition-state analogs of class C enzymes.
Collapse
Affiliation(s)
- Scott T. Lefurgy
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, USA
| | - Emilia Caselli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Magdalena A. Taracila
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | | | - Beena Biju
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, USA
| | - Krisztina M. Papp-Wallace
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jeffrey B. Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Fabio Prati
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert A. Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +216-791-3800 (ext. 64801); Fax: +216-231-3482
| |
Collapse
|
32
|
VNRX-5133 (Taniborbactam), a Broad-Spectrum Inhibitor of Serine- and Metallo-β-Lactamases, Restores Activity of Cefepime in Enterobacterales and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2020; 64:AAC.01963-19. [PMID: 31871094 PMCID: PMC7038240 DOI: 10.1128/aac.01963-19] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/11/2019] [Indexed: 12/24/2022] Open
Abstract
As shifts in the epidemiology of β-lactamase-mediated resistance continue, carbapenem-resistant Enterobacterales (CRE) and carbapenem-resistant Pseudomonas aeruginosa (CRPA) are the most urgent threats. Although approved β-lactam (BL)-β-lactamase inhibitor (BLI) combinations address widespread serine β-lactamases (SBLs), such as CTX-M-15, none provide broad coverage against either clinically important serine-β-lactamases (KPC, OXA-48) or clinically important metallo-β-lactamases (MBLs; e.g., NDM-1). VNRX-5133 (taniborbactam) is a new cyclic boronate BLI that is in clinical development combined with cefepime for the treatment of infections caused by β-lactamase-producing CRE and CRPA. Taniborbactam is the first BLI with direct inhibitory activity against Ambler class A, B, C, and D enzymes. From biochemical and structural analyses, taniborbactam exploits substrate mimicry while employing distinct mechanisms to inhibit both SBLs and MBLs. It is a reversible covalent inhibitor of SBLs with slow dissociation and a prolonged active-site residence time (half-life, 30 to 105 min), while in MBLs, it behaves as a competitive inhibitor, with inhibitor constant (Ki ) values ranging from 0.019 to 0.081 μM. Inhibition is achieved by mimicking the transition state structure and exploiting interactions with highly conserved active-site residues. In microbiological testing, taniborbactam restored cefepime activity in 33/34 engineered Escherichia coli strains overproducing individual enzymes covering Ambler classes A, B, C, and D, providing up to a 1,024-fold shift in the MIC. Addition of taniborbactam restored the antibacterial activity of cefepime against all 102 Enterobacterales clinical isolates tested and 38/41 P. aeruginosa clinical isolates tested with MIC90s of 1 and 4 μg/ml, respectively, representing ≥256- and ≥32-fold improvements, respectively, in antibacterial activity over that of cefepime alone. The data demonstrate the potent, broad-spectrum rescue of cefepime activity by taniborbactam against clinical isolates of CRE and CRPA.
Collapse
|
33
|
Relationship between urinalysis findings and responsible pathogens in children with urinary tract infections. J Pediatr Urol 2019; 15:606.e1-606.e6. [PMID: 31735519 DOI: 10.1016/j.jpurol.2019.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 09/18/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Pyuria, presence of bacteria, leukocyte esterase, and nitrite positivity in urinalysis should be considered together, and simultaneous urine culture test should be performed in the diagnostic evaluation of urinary tract infection (UTI). The absence of pyuria in urinalysis cannot exclude UTI in patients with suggestive clinical findings. OBJECTIVE It was aimed to assess relationship between urinalysis tests and uropathogen and to evaluate antibiotic resistance in children. METHODS The study included patients (aged 0-18 years) with significant uropathogen growth in urine culture tests. The patients' data regarding age, gender, results of urine microscopy, urine culture, and antibiogram were recorded retrospectively. RESULTS Overall, 705 patients (562 girls, 143 boys) with significant growth in urine culture test were included. Median age was 72 months among girls and 12 months among boys. Most common uropathogens were Escherichia coli (79.6%) and Klebsiella pneumoniae (8.2%). E. coli was more commonly among girls (87%) and Klebsiella spp. among boys (53.3%). Pyuria was positive in urinalysis in 75% of patients. Pyuria presence was more common in patients with E.coli or Proteus spp. (80.6% and 71.4%, respectively) than those with Enterococcus spp. and Klebsiella spp. (52.0% and 53.3%, respectively). In culture antibiogram tests, ampicillin resistance was 100% in Klebsiella oxytoca and Enterobacter spp. and 72% in E. coli strains. No ceftriaxone resistance was observed in K. oxytoca, Citrobacter spp., Pseudomonas aeruginosa, and Enterobacter spp. DISCUSSION Most UTIs were seen in older girls. Pyuria might be lacking in UTIs associated to Klebsiella spp. and Enterococcus spp., and absence of pyuria may not exclude UTI in patients with compatible clinical findings. Ceftriaxone is still an option in empirical treatment; unnecessary use of third-generation cephalosporins should be avoided, particularly in infections other than UTI. CONLUSIONS It was found that E. coli more commonly caused leukocyturia, leukocyte esterase positivity, and pyuria; that pyuria might be lacking in UTIs associated to Klebsiella spp. and Enterococcus spp. and that pyuria was more prevalent among girls. It is though that urine culture tests should be performed in children with suspected UTI even in the absence of pyuria because lack of pyuria may lead delay in diagnosis and treatment as well as renal scar formation.
Collapse
|
34
|
Giri P, Delvadia P, Ladani MK, Prajapati N, Joshi V, Giri S, Patel N, Jain MR, Srinivas NR. Relevance of preclinical rodent pharmacokinetics in the selection of a companion antibiotic for combining with beta-lactamase inhibitor. Xenobiotica 2019; 50:815-821. [PMID: 31755347 DOI: 10.1080/00498254.2019.1696494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Recent approvals of beta-lactamase inhibitor (BLI) drug in combination with cephalosporins/penems have provided the right impetus for novel BLIs. One important research question, hitherto not addressed, is pertaining to the relevance of preclinical pharmacokinetics for pairing the antibiotic with existing/novel BLI.Two BLI combination drugs: (a) approved (i.e. ceftazidime/avibactam); (b) clinical development (i.e. cefepime/zidebactam) were explored to provide insights to address the research question.Individual intravenous dosing of ceftazidime, avibactam, cefepime and zidebactam was done at 1 mg/kg by intravenous route in Balb/c mice and Wistar rats. Serial blood samples were collected and analysed by LC-MS/MS method.Examination of the ratios of pharmacokinetic parameters (CL, VSS and T1/2) for individual drugs in combinations (for instance, CL (ceftazidime)/CL (avibactam); CL (cefepime)/CL (zidebactam)) suggested that the pharmacokinetic data gathered in rats were generally within 0.5- to 2-fold; but mouse data revealed larger disparity for VSS (0.11- to 8.25-fold) or CL (0.49- to 4.03-fold).The observed ratio for CL/VSS observed in rats agreed with corresponding human ratios for the pairwise comparison of the individual drugs in the combinations.Retrospectively, current pharmacokinetic findings suggest rat pharmacokinetic data may aid the combination of BLI with an appropriate antibiotic.
Collapse
Affiliation(s)
- Poonam Giri
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Ahmadabad, India
| | - Prashant Delvadia
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Ahmadabad, India
| | - Meera K Ladani
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Ahmadabad, India
| | - Namrata Prajapati
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Ahmadabad, India
| | - Vipul Joshi
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Ahmadabad, India
| | - Shyamkumar Giri
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Ahmadabad, India
| | - Nirmal Patel
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Ahmadabad, India
| | - Mukul R Jain
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Ahmadabad, India.,Department of Pharmacology and Toxicology, Zydus Research Centre, Ahmadabad, India
| | - Nuggehally R Srinivas
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Ahmadabad, India
| |
Collapse
|
35
|
Solomkin JS, Sway A, Lawrence K, Olesky M, Izmailyan S, Tsai L. Eravacycline: a new treatment option for complicated intra-abdominal infections in the age of multidrug resistance. Future Microbiol 2019; 14:1293-1308. [DOI: 10.2217/fmb-2019-0135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: Recently approved for use in complicated intra-abdominal infection, eravacycline is a novel fluorocycline with broad spectrum of activity against resistant Gram-negative pathogens. This manuscript is a pooled analysis of two Phase III trials. Clinical efficacy: Clinical cure rates were 86.8% for eravacycline versus 87.6% for ertapenem, and 90.8% for eravacycline versus 91.2% for meropenem in the Intent to Treat (micro-ITT) populations, and 87.0% for eravacycline versus 88.8% ertapenem, and 92.4 versus 91.6% for meropenem in the Modified Intent to Treat (MITT) populations. Safety: Eravacycline is well tolerated, with lower rates of nausea, vomiting and diarrhea than other tetracyclines. Conclusion: Eravacycline is an effective new option for use in complicated intra-abdominal infections, and in particular, for the treatment of extended-spectrum β-lactamase- and carbapenem-resistant Enterobacteriaceae-expressing organisms.
Collapse
Affiliation(s)
- Joseph S Solomkin
- Department of Surgery, University of Cincinnati College of Medicine, 6005 Given Road Cincinnati, OH 45243, USA
| | - Angie Sway
- Medical Writing, World Surgical Infection Society, Cincinnati, OH 45243, USA
| | - Kenneth Lawrence
- Medical Affairs, Tetraphase Pharmaceuticals, Watertown, MA 02472, USA
| | - Melanie Olesky
- Medical Affairs, Tetraphase Pharmaceuticals, Watertown, MA 02472, USA
| | - Sergey Izmailyan
- Medical Affairs, Tetraphase Pharmaceuticals, Watertown, MA 02472, USA
| | - Larry Tsai
- Medical Affairs, Tetraphase Pharmaceuticals, Watertown, MA 02472, USA
| |
Collapse
|
36
|
Synergistic enhancement of beta-lactam antibiotics by modified tunicamycin analogs TunR1 and TunR2. J Antibiot (Tokyo) 2019; 72:807-815. [DOI: 10.1038/s41429-019-0220-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 01/15/2023]
|
37
|
Kållberg C, Salvesen Blix H, Laxminarayan R. Challenges in Antibiotic R&D Calling for a Global Strategy Considering Both Short- and Long-Term Solutions. ACS Infect Dis 2019; 5:1265-1268. [PMID: 31144803 DOI: 10.1021/acsinfecdis.9b00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A recent analysis of antibiotics approved between 1999 and 2014, conducted by researchers at the Norwegian Institute of Public Health; the University of Oslo; the Center for Disease Dynamics, Economics & Policy (CDDEP); and Boston University, showed a lack of novelty and diversity regarding target pathogens and indications and a failure to address the most urgent resistance threats, including resistant Gram-negative bacteria. A global research and development strategy should incentivize development of broad-spectrum antibiotics for critically ill patients, as well as therapeutic alternatives to antibiotics, decreasing our dependence on traditional, small-molecule antibiotics.
Collapse
Affiliation(s)
- Cecilia Kållberg
- Institute of Health and Society, Faculty of Medicine, University of Oslo, PO Box 1072 Blindern, Oslo 0316, Norway
- Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| | - Hege Salvesen Blix
- Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
- School of Pharmacy, University of Oslo, PO Box 1068 Blindern, Oslo 0316, Norway
| | - Ramanan Laxminarayan
- Center for Disease Dynamics, Economics & Policy, 1400 Eye Street Northwest, Suite 500, Washington DC 20005, United States
- Princeton Environmental Institute, Princeton University, Guyot Hall, Room 129, Princeton, New Jersey 08544-1003, United States
| |
Collapse
|
38
|
Wencewicz TA. Crossroads of Antibiotic Resistance and Biosynthesis. J Mol Biol 2019; 431:3370-3399. [PMID: 31288031 DOI: 10.1016/j.jmb.2019.06.033] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
The biosynthesis of antibiotics and self-protection mechanisms employed by antibiotic producers are an integral part of the growing antibiotic resistance threat. The origins of clinically relevant antibiotic resistance genes found in human pathogens have been traced to ancient microbial producers of antibiotics in natural environments. Widespread and frequent antibiotic use amplifies environmental pools of antibiotic resistance genes and increases the likelihood for the selection of a resistance event in human pathogens. This perspective will provide an overview of the origins of antibiotic resistance to highlight the crossroads of antibiotic biosynthesis and producer self-protection that result in clinically relevant resistance mechanisms. Some case studies of synergistic antibiotic combinations, adjuvants, and hybrid antibiotics will also be presented to show how native antibiotic producers manage the emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|
39
|
Wang YL, Liu S, Yu ZJ, Lei Y, Huang MY, Yan YH, Ma Q, Zheng Y, Deng H, Sun Y, Wu C, Yu Y, Chen Q, Wang Z, Wu Y, Li GB. Structure-Based Development of (1-(3′-Mercaptopropanamido)methyl)boronic Acid Derived Broad-Spectrum, Dual-Action Inhibitors of Metallo- and Serine-β-lactamases. J Med Chem 2019; 62:7160-7184. [PMID: 31269398 DOI: 10.1021/acs.jmedchem.9b00735] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yao-Ling Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Sha Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Zhu-Jun Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Yuan Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Meng-Yi Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Yu-Hang Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Qiang Ma
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Yang Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Hui Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ying Sun
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Chengyong Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yamei Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Zhenling Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| |
Collapse
|
40
|
Shapiro AB, Comita-Prevoir J, Sylvester M. 5-Carboxytetramethylrhodamine-Ampicillin Fluorescence Anisotropy-Based Assay of Escherichia coli Penicillin-Binding Protein 2 Transpeptidase Inhibition. ACS Infect Dis 2019; 5:863-872. [PMID: 30848883 DOI: 10.1021/acsinfecdis.8b00351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The high-molecular mass penicillin-binding proteins (PBPs) are the essential targets of the β-lactam classes of antibacterial drugs. In the Gram-negative pathogen Escherichia coli, these include PBP1a, PBP1b, PBP2, and PBP3. Techniques that enable facile measurement of the potency of inhibition of these targets are valuable for understanding structure-activity relationships in programs aimed at discovering new antibiotics to combat drug-resistant infections. Continuous fluorescence anisotropy-based assays for inhibition of soluble constructs of PBP1a, PBP2, and PBP3 from the serious Gram-negative bacterial pathogens Pseudomonas aeruginosa and Acinetobacter baumannii and PBP3 from E. coli using the fluorescent phenoxypenicillin analogue BOCILLIN FL have been described previously, but this technique was not useful for PBP2 from E. coli due to a lack of change in fluorescence anisotropy or intensity upon reaction. Here, we report that a fluorescent analogue of ampicillin, 5-carboxytetramethylrhodamine-ampicillin (5-TAMRA-ampicillin), was useful as the indicator in a continuous fluorescence anisotropy-based kinetic assay for inhibition of a soluble construct of PBP2 from E. coli. The assay enables measurement of the bimolecular rate constant for inhibition kinact /Ki. This measurement was made for representative drugs from four classes of β-lactams and for the diazabicyclooctenone ETX2514. 5-TAMRA-ampicillin was also useful in a fluorescence anisotropy-based assay for P. aeruginosa PBP2 and in fluorescence intensity-based assays with PBP1a and PBP3 from P. aeruginosa and A. baumannii and PBP3 from E. coli.
Collapse
Affiliation(s)
- Adam B. Shapiro
- Entasis Therapeutics, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | | | - Mark Sylvester
- Entasis Therapeutics, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
41
|
Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat Rev Microbiol 2019; 17:141-155. [PMID: 30683887 DOI: 10.1038/s41579-018-0141-x] [Citation(s) in RCA: 526] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/22/2018] [Indexed: 01/03/2023]
Abstract
Antimicrobial resistance threatens a resurgence of life-threatening bacterial infections and the potential demise of many aspects of modern medicine. Despite intensive drug discovery efforts, no new classes of antibiotics have been developed into new medicines for decades, in large part owing to the stringent chemical, biological and pharmacological requisites for effective antibiotic drugs. Combinations of antibiotics and of antibiotics with non-antibiotic activity-enhancing compounds offer a productive strategy to address the widespread emergence of antibiotic-resistant strains. In this Review, we outline a theoretical and practical framework for the development of effective antibiotic combinations.
Collapse
|
42
|
Theuretzbacher U, Gottwalt S, Beyer P, Butler M, Czaplewski L, Lienhardt C, Moja L, Paul M, Paulin S, Rex JH, Silver LL, Spigelman M, Thwaites GE, Paccaud JP, Harbarth S. Analysis of the clinical antibacterial and antituberculosis pipeline. THE LANCET. INFECTIOUS DISEASES 2018; 19:e40-e50. [PMID: 30337260 DOI: 10.1016/s1473-3099(18)30513-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/05/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022]
Abstract
This analysis of the global clinical antibacterial pipeline was done in support of the Global Action Plan on Antimicrobial Resistance. The study analysed to what extent antibacterial and antimycobacterial drugs for systemic human use as well as oral non-systemic antibacterial drugs for Clostridium difficile infections were active against pathogens included in the WHO priority pathogen list and their innovativeness measured by their absence of cross-resistance (new class, target, mode of action). As of July 1, 2018, 30 new chemical entity (NCE) antibacterial drugs, ten biologics, ten NCEs against Mycobacterium tuberculosis, and four NCEs against C difficile were identified. Of the 30 NCEs, 11 are expected to have some activity against at least one critical priority pathogen expressing carbapenem resistance. The clinical pipeline is dominated by derivatives of established classes and most development candidates display limited innovation. New antibacterial drugs without pre-existing cross-resistance are under-represented and are urgently needed, especially for geographical regions with high resistance rates among Gram-negative bacteria and M tuberculosis.
Collapse
Affiliation(s)
| | - Simon Gottwalt
- Biovision Foundation for Ecological Development, Zurich, Switzerland
| | - Peter Beyer
- Essential Medicines and Health Products, WHO, Geneva, Switzerland
| | - Mark Butler
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | | | - Christian Lienhardt
- Global TB Programme, WHO, Geneva, Switzerland; Unité Mixte Internationale TransVIHMI, Institut de Recherche pour le Développement, Montpellier, France
| | - Lorenzo Moja
- Essential Medicines and Health Products, WHO, Geneva, Switzerland
| | - Mical Paul
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel
| | - Sarah Paulin
- Essential Medicines and Health Products, WHO, Geneva, Switzerland
| | | | | | | | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Stephan Harbarth
- WHO Collaborating Centre on Patient Safety, Geneva University Hospitals, Geneva, Switzerland; Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
43
|
Ex Vivo Characterization of Effects of Renal Replacement Therapy Modalities and Settings on Pharmacokinetics of Meropenem and Vaborbactam. Antimicrob Agents Chemother 2018; 62:AAC.01306-18. [PMID: 30082292 PMCID: PMC6153839 DOI: 10.1128/aac.01306-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/25/2018] [Indexed: 11/20/2022] Open
Abstract
The combination product meropenem-vaborbactam, with activity against KPC-producing carbapenem-resistant Enterobacteriaceae, is likely to be used during renal replacement therapy. The aim of this work was to describe the extracorporeal removal (adsorption and clearance) of meropenem-vaborbactam during continuous venovenous hemofiltration (CVVH). The combination product meropenem-vaborbactam, with activity against KPC-producing carbapenem-resistant Enterobacteriaceae, is likely to be used during renal replacement therapy. The aim of this work was to describe the extracorporeal removal (adsorption and clearance) of meropenem-vaborbactam during continuous venovenous hemofiltration (CVVH). An ex vivo model was used to examine the effects of a matrix of operational settings. Vaborbactam did not adsorb to AN69 (acrylonitrile and sodium methallylsulfonate copolymer) ST100 (surface area, 1 m2) hemofilter; the mean (±standard deviation [SD]) meropenem adsorption was 9% (±1%). The sieving coefficients (mean ± SD) with AN69 ST100 and ST150 (surface area, 1.5 m2) filters ranged from 0.97 ± 0.16 to 1.14 ± 0.12 and from 1.13 ± 0.01 to 1.53 ± 0.28, respectively, for meropenem and from 0.64 ± 0.39 to 0.90 ± 0.14 and 0.78 ± 0.18 to 1.04 ± 0.28, respectively, for vaborbactam. At identical settings, vaborbactam sieving coefficients were 25% to 30% lower than for meropenem. Points of dilution, blood flow rates, or effluent flow rates did not affect sieving coefficients for either drug. However, doubling the effluent flow rate resulted in >50 to 100% increases in filter clearance for both drugs. Postfilter dilution resulted in 40 to 80% increases in filter clearance at a high effluent flow rate (4,000 ml/h), compared with ∼15% increases at a low effluent flow rate (1,000 ml/h) for both drugs. For all combinations of setting and filters tested, vaborbactam clearance was lower than that of meropenem by ∼20 to 40%. Overall, meropenem-vaborbactam is efficiently cleared in CVVH mode.
Collapse
|
44
|
Tehrani KHME, Martin NI. β-lactam/β-lactamase inhibitor combinations: an update. MEDCHEMCOMM 2018; 9:1439-1456. [PMID: 30288219 PMCID: PMC6151480 DOI: 10.1039/c8md00342d] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022]
Abstract
Antibiotic resistance caused by β-lactamase production continues to present a growing challenge to the efficacy of β-lactams and their role as the most important class of clinically used antibiotics. In response to this threat however, only a handful of β-lactamase inhibitors have been introduced to the market over the past thirty years. The first-generation β-lactamase inhibitors (clavulanic acid, sulbactam and tazobactam) are all β-lactam derivatives and work primarily by inactivating class A and some class C serine β-lactamases. The newer generations of β-lactamase inhibitors including avibactam and vaborbactam are based on non-β-lactam structures and their spectrum of inhibition is extended to KPC as an important class A carbapenemase. Despite these advances several class D and virtually all important class B β-lactamases are resistant to existing inhibitors. The present review provides an overview of recent FDA-approved β-lactam/β-lactamase inhibitor combinations as well as an update on research efforts aimed at the discovery and development of novel β-lactamase inhibitors.
Collapse
Affiliation(s)
- Kamaleddin H M E Tehrani
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | - Nathaniel I Martin
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
- Biological Chemistry Group , Institute of Biology Leiden , Leiden University , Sylvius Laboratories, Sylviusweg 72 , 2333 BE Leiden , The Netherlands . ; Tel: +31 (0)6 1878 5274
| |
Collapse
|
45
|
Wu G, Cheon E. Meropenem-vaborbactam for the treatment of complicated urinary tract infections including acute pyelonephritis. Expert Opin Pharmacother 2018; 19:1495-1502. [DOI: 10.1080/14656566.2018.1512586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Gary Wu
- Department of Pharmacy, NewYork-Presbyterian Brooklyn Methodist Hospital, New York, NY, USA
| | - Eunah Cheon
- Department of Pharmacy, NewYork-Presbyterian Brooklyn Methodist Hospital, New York, NY, USA
| |
Collapse
|
46
|
Tackling the Antibiotic Resistance Caused by Class A β-Lactamases through the Use of β-Lactamase Inhibitory Protein. Int J Mol Sci 2018; 19:ijms19082222. [PMID: 30061509 PMCID: PMC6121496 DOI: 10.3390/ijms19082222] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/27/2022] Open
Abstract
β-Lactams are the most widely used and effective antibiotics for the treatment of infectious diseases. Unfortunately, bacteria have developed several mechanisms to combat these therapeutic agents. One of the major resistance mechanisms involves the production of β-lactamase that hydrolyzes the β-lactam ring thereby inactivating the drug. To overcome this threat, the small molecule β-lactamase inhibitors (e.g., clavulanic acid, sulbactam and tazobactam) have been used in combination with β-lactams for treatment. However, the bacterial resistance to this kind of combination therapy has evolved recently. Therefore, multiple attempts have been made to discover and develop novel broad-spectrum β-lactamase inhibitors that sufficiently work against β-lactamase producing bacteria. β-lactamase inhibitory proteins (BLIPs) (e.g., BLIP, BLIP-I and BLIP-II) are potential inhibitors that have been found from soil bacterium Streptomyces spp. BLIPs bind and inhibit a wide range of class A β-lactamases from a diverse set of Gram-positive and Gram-negative bacteria, including TEM-1, PC1, SME-1, SHV-1 and KPC-2. To the best of our knowledge, this article represents the first systematic review on β-lactamase inhibitors with a particular focus on BLIPs and their inherent properties that favorably position them as a source of biologically-inspired drugs to combat antimicrobial resistance. Furthermore, an extensive compilation of binding data from β-lactamase–BLIP interaction studies is presented herein. Such information help to provide key insights into the origin of interaction that may be useful for rationally guiding future drug design efforts.
Collapse
|
47
|
Dik DA, Fisher JF, Mobashery S. Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance. Chem Rev 2018; 118:5952-5984. [PMID: 29847102 PMCID: PMC6855303 DOI: 10.1021/acs.chemrev.8b00277] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The importance of the cell wall to the viability of the bacterium is underscored by the breadth of antibiotic structures that act by blocking key enzymes that are tasked with cell-wall creation, preservation, and regulation. The interplay between cell-wall integrity, and the summoning forth of resistance mechanisms to deactivate cell-wall-targeting antibiotics, involves exquisite orchestration among cell-wall synthesis and remodeling and the detection of and response to the antibiotics through modulation of gene regulation by specific effectors. Given the profound importance of antibiotics to the practice of medicine, the assertion that understanding this interplay is among the most fundamentally important questions in bacterial physiology is credible. The enigmatic regulation of the expression of the AmpC β-lactamase, a clinically significant and highly regulated resistance response of certain Gram-negative bacteria to the β-lactam antibiotics, is the exemplar of this challenge. This review gives a current perspective to this compelling, and still not fully solved, 35-year enigma.
Collapse
Affiliation(s)
- David A. Dik
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jed F. Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
48
|
Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 2018; 4:482-501. [PMID: 31294229 PMCID: PMC6604941 DOI: 10.3934/microbiol.2018.3.482] [Citation(s) in RCA: 795] [Impact Index Per Article: 113.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/13/2018] [Indexed: 01/29/2023] Open
Abstract
Resistance to antimicrobial agents has become a major source of morbidity and mortality worldwide. When antibiotics were first introduced in the 1900's, it was thought that we had won the war against microorganisms. It was soon discovered however, that the microorganisms were capable of developing resistance to any of the drugs that were used. Apparently most pathogenic microorganisms have the capability of developing resistance to at least some antimicrobial agents. The main mechanisms of resistance are: limiting uptake of a drug, modification of a drug target, inactivation of a drug, and active efflux of a drug. These mechanisms may be native to the microorganisms, or acquired from other microorganisms. Understanding more about these mechanisms should hopefully lead to better treatment options for infective diseases, and development of antimicrobial drugs that can withstand the microorganisms attempts to become resistant.
Collapse
Affiliation(s)
- Wanda C Reygaert
- Department of Biomedical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| |
Collapse
|
49
|
Tomoshige S, Dik DA, Akabane-Nakata M, Madukoma CS, Fisher JF, Shrout JD, Mobashery S. Total Syntheses of Bulgecins A, B, and C and Their Bactericidal Potentiation of the β-Lactam Antibiotics. ACS Infect Dis 2018; 4:860-867. [PMID: 29716193 PMCID: PMC5996343 DOI: 10.1021/acsinfecdis.8b00105] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/15/2022]
Abstract
The bulgecins are iminosaccharide secondary metabolites of the Gram-negative bacterium Paraburkholderia acidophila and inhibitors of lytic transglycosylases of bacterial cell-wall biosynthesis and remodeling. The activities of the bulgecins are intimately intertwined with the mechanism of a cobiosynthesized β-lactam antibiotic. β-Lactams inhibit the penicillin-binding proteins, enzymes also critical to cell-wall biosynthesis. The simultaneous loss of the lytic transglycosylase (by bulgecin) and penicillin-binding protein (by β-lactams) activities results in deformation of the septal cell wall, observed microscopically as a bulge preceding bacterial cell lysis. We describe a practical synthesis of the three naturally occurring bulgecin iminosaccharides and their mechanistic evaluation in a series of microbiological studies. These studies identify potentiation by the bulgecin at subminimum inhibitory concentrations of the β-lactam against three pathogenic Gram-negative bacteria and establish for the first time that this potentiation results in a significant increase in the bactericidal efficacy of a clinical β-lactam.
Collapse
Affiliation(s)
- Shusuke Tomoshige
- Department of Chemistry
& Biochemistry, University of Notre
Dame, 352 McCourtney
Hall, Notre Dame, Indiana 46556, United States
| | - David A. Dik
- Department of Chemistry
& Biochemistry, University of Notre
Dame, 352 McCourtney
Hall, Notre Dame, Indiana 46556, United States
| | - Masaaki Akabane-Nakata
- Department of Chemistry
& Biochemistry, University of Notre
Dame, 352 McCourtney
Hall, Notre Dame, Indiana 46556, United States
| | - Chinedu S. Madukoma
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre
Dame, Indiana 46556, United States
| | - Jed F. Fisher
- Department of Chemistry
& Biochemistry, University of Notre
Dame, 352 McCourtney
Hall, Notre Dame, Indiana 46556, United States
| | - Joshua D. Shrout
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre
Dame, Indiana 46556, United States
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry
& Biochemistry, University of Notre
Dame, 352 McCourtney
Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
50
|
Markley JL, Wencewicz TA. Tetracycline-Inactivating Enzymes. Front Microbiol 2018; 9:1058. [PMID: 29899733 PMCID: PMC5988894 DOI: 10.3389/fmicb.2018.01058] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/04/2018] [Indexed: 12/25/2022] Open
Abstract
Tetracyclines have been foundational antibacterial agents for more than 70 years. Renewed interest in tetracycline antibiotics is being driven by advancements in tetracycline synthesis and strategic scaffold modifications designed to overcome established clinical resistance mechanisms including efflux and ribosome protection. Emerging new resistance mechanisms, including enzymatic antibiotic inactivation, threaten recent progress on bringing these next-generation tetracyclines to the clinic. Here we review the current state of knowledge on the structure, mechanism, and inhibition of tetracycline-inactivating enzymes.
Collapse
Affiliation(s)
- Jana L Markley
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|