1
|
Khan A, Zakirullah, Wahab S, Hong ST. Advances in antiviral strategies targeting mosquito-borne viruses: cellular, viral, and immune-related approaches. Virol J 2025; 22:26. [PMID: 39905499 PMCID: PMC11792744 DOI: 10.1186/s12985-025-02622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Mosquito-borne viruses (MBVs) are a major global health threat, causing significant morbidity and mortality. MBVs belong to several distinct viral families, each with unique characteristics. The primary families include Flaviviridae (e.g., Dengue, Zika, West Nile, Yellow Fever, Japanese Encephalitis), transmitted predominantly by Aedes and Culex mosquitoes; Togaviridae, which consists of the genus Alphavirus (e.g., Chikungunya, Eastern and Western Equine Encephalitis viruses), also transmitted by Aedes and Culex; Bunyaviridae (recently reorganized), containing viruses like Rift Valley Fever and Oropouche virus, transmitted by mosquitoes and sometimes sandflies; and Reoviridae, which includes the genus Orbivirus (e.g., West Nile and Bluetongue viruses), primarily affecting animals and transmitted by mosquitoes and sandflies. Despite extensive research, effective antiviral treatments for MBVs remain scarce, and current therapies mainly provide symptomatic relief and supportive care. This review examines the viral components and cellular and immune factors involved in the life cycle of MBVs. It also highlights recent advances in antiviral strategies targeting host factors such as lipid metabolism, ion channels, and proteasomes, as well as viral targets like NS2B-NS3 proteases and nonstructural proteins. Additionally, it explores immunomodulatory therapies to enhance antiviral responses and emphasizes the potential of drug repurposing, bioinformatics, artificial intelligence, and deep learning in identifying novel antiviral candidates. Continued research is crucial in mitigating MBVs' impact and preventing future outbreaks.
Collapse
Affiliation(s)
- Ayyaz Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea
| | - Zakirullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shahid Wahab
- Department of Agriculture, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea.
| |
Collapse
|
2
|
Pajtinka P, Vácha R. Amphipathic Helices Can Sense Both Positive and Negative Curvatures of Lipid Membranes. J Phys Chem Lett 2024; 15:175-179. [PMID: 38153203 PMCID: PMC10788957 DOI: 10.1021/acs.jpclett.3c02785] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Curvature sensing is an essential ability of biomolecules to preferentially localize to membrane regions of a specific curvature. It has been shown that amphipathic helices (AHs), helical peptides with both hydrophilic and hydrophobic regions, could sense a positive membrane curvature. The origin of this AH sensing has been attributed to their ability to exploit lipid-packing defects that are enhanced in regions of positive curvature. In this study, we revisit an alternative framework where AHs act as sensors of local internal stress within the membrane, suggesting the possibility of an AH sensing a negative membrane curvature. Using molecular dynamics simulations, we gradually tuned the hydrophobicity of AHs, thereby adjusting their insertion depth so that the curvature preference of AHs is switched from positive to negative. This study suggests that highly hydrophobic AHs could preferentially localize proteins to regions of a negative membrane curvature.
Collapse
Affiliation(s)
- Peter Pajtinka
- CEITEC
− Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Robert Vácha
- CEITEC
− Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Department
of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech
Republic
| |
Collapse
|
3
|
Shin S, Ko H, Kim CH, Yoon BK, Son S, Lee JA, Shin JM, Lee J, Song SH, Jackman JA, Park JH. Curvature-sensing peptide inhibits tumour-derived exosomes for enhanced cancer immunotherapy. NATURE MATERIALS 2023; 22:656-665. [PMID: 36959501 DOI: 10.1038/s41563-023-01515-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/21/2023] [Indexed: 05/05/2023]
Abstract
Tumour-derived exosomes (T-EXOs) impede immune checkpoint blockade therapies, motivating pharmacological efforts to inhibit them. Inspired by how antiviral curvature-sensing peptides disrupt membrane-enveloped virus particles in the exosome size range, we devised a broadly useful strategy that repurposes an engineered antiviral peptide to disrupt membrane-enveloped T-EXOs for synergistic cancer immunotherapy. The membrane-targeting peptide inhibits T-EXOs from various cancer types and exhibits pH-enhanced membrane disruption relevant to the tumour microenvironment. The combination of T-EXO-disrupting peptide and programmed cell death protein-1 antibody-based immune checkpoint blockade therapy improves treatment outcomes in tumour-bearing mice. Peptide-mediated disruption of T-EXOs not only reduces levels of circulating exosomal programmed death-ligand 1, but also restores CD8+ T cell effector function, prevents premetastatic niche formation and reshapes the tumour microenvironment in vivo. Our findings demonstrate that peptide-induced T-EXO depletion can enhance cancer immunotherapy and support the potential of peptide engineering for exosome-targeting applications.
Collapse
Affiliation(s)
- Sol Shin
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hyewon Ko
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bo Kyeong Yoon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon, Republic of Korea
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Soyoung Son
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Ah Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Min Shin
- Division of Biotechnology, Convergence Research Institute, DGIST, Daegu, Republic of Korea
| | - Jeongjin Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Seok Ho Song
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Joshua A Jackman
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
- Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon, Republic of Korea.
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Jae Hyung Park
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
4
|
Park S, Cho NJ. Lipid Membrane Interface Viewpoint: From Viral Entry to Antiviral and Vaccine Development. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1-11. [PMID: 36576966 DOI: 10.1021/acs.langmuir.2c02501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Membrane-enveloped viruses are responsible for most viral pandemics in history, and more effort is needed to advance broadly applicable countermeasures to mitigate the impact of future outbreaks. In this Perspective, we discuss how biosensing techniques associated with lipid model membrane platforms are contributing to improving our mechanistic knowledge of membrane fusion and destabilization that is closely linked to viral entry as well as vaccine and antiviral drug development. A key benefit of these platforms is the simplicity of interpreting the results which can be complemented by other techniques to decipher more complicated biological observations and evaluate the biophysical functionalities that can be correlated to biological activities. Then, we introduce exciting application examples of membrane-targeting antivirals that have been refined over time and will continue to improve based on biophysical insights. Two ways to abrogate the function of viral membranes are introduced here: (1) selective disruption of the viral membrane structure and (2) alteration of the membrane component. While both methods are suitable for broadly useful antivirals, the latter also has the potential to produce an inactivated vaccine. Collectively, we emphasize how biosensing tools based on membrane interfacial science can provide valuable information that could be translated into biomedicines and improve their selectivity and performance.
Collapse
Affiliation(s)
- Soohyun Park
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
5
|
Jackman JA, Lavergne TA, Elrod CC. Antimicrobial monoglycerides for swine and poultry applications. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.1019320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of natural, broadly acting antimicrobial solutions to combat viral and bacterial pathogens is a high priority for the livestock industry. Herein, we cover the latest progress in utilizing lipid-based monoglycerides as feed additives to address some of the biggest challenges in animal agriculture. The current industry needs for effective antimicrobial strategies are introduced before discussing why medium-chain monoglycerides are a promising solution due to attractive molecular features and biological functions. We then critically analyze recent application examples in which case monoglycerides demonstrated superior activity to prevent feed transmission of viruses in swine and to mitigate bacterial infections in poultry along with gut microbiome modulation capabilities. Future innovation strategies are also suggested to expand the range of application possibilities and to enable new monoglyceride delivery options.
Collapse
|
6
|
Liu R, Liu Z, Peng H, Lv Y, Feng Y, Kang J, Lu N, Ma R, Hou S, Sun W, Ying Q, Wang F, Gao Q, Zhao P, Zhu C, Wang Y, Wu X. Bomidin: An Optimized Antimicrobial Peptide With Broad Antiviral Activity Against Enveloped Viruses. Front Immunol 2022; 13:851642. [PMID: 35663971 PMCID: PMC9160972 DOI: 10.3389/fimmu.2022.851642] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/19/2022] [Indexed: 12/29/2022] Open
Abstract
The rapid evolution of highly infectious pathogens is a major threat to global public health. In the front line of defense against bacteria, fungi, and viruses, antimicrobial peptides (AMPs) are naturally produced by all living organisms and offer new possibilities for next-generation antibiotic development. However, the low yields and difficulties in the extraction and purification of AMPs have hindered their industry and scientific research applications. To overcome these barriers, we enabled high expression of bomidin, a commercial recombinant AMP based upon bovine myeloid antimicrobial peptide-27. This novel AMP, which can be expressed in Escherichia coli by adding methionine to the bomidin sequence, can be produced in bulk and is more biologically active than chemically synthesized AMPs. We verified the function of bomidin against a variety of bacteria and enveloped viruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), herpes simplex virus (HSV), dengue virus (DENV), and chikungunya virus (CHIKV). Furthermore, based on the molecular modeling of bomidin and membrane lipids, we elucidated the possible mechanism by which bomidin disrupts bacterial and viral membranes. Thus, we obtained a novel AMP with an optimized, efficient heterologous expression system for potential therapeutic application against a wide range of life-threatening pathogens.
Collapse
Affiliation(s)
- Rongrong Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Ziyu Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Haoran Peng
- Department of Microbiology, Second Military Medical University, Shanghai, China
| | - Yunhua Lv
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Yunan Feng
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Junjun Kang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Naining Lu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Ruixue Ma
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Shiyuan Hou
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Wenjie Sun
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Qikang Ying
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Fang Wang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Qikang Gao
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Ping Zhao
- Department of Microbiology, Second Military Medical University, Shanghai, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Yixing Wang
- Jiangsu Genloci Biotech Inc., Nanjing, China
| | - Xingan Wu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
7
|
Sun Y, Gong L, Yin Y, Zhang L, Sun Q, Feng K, Cui Y, Zhang Q, Zhang X, Deng X, You F, Lu D, Lin Z. A Gradient pH-Sensitive Polymer-Based Antiviral Strategy via Viroporin-Induced Membrane Acidification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109580. [PMID: 35229371 DOI: 10.1002/adma.202109580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Lipid-membrane-targeting strategies hold great promise to develop broad-spectrum antivirals. However, it remains a big challenge to identify novel membrane-based targets of viruses and virus-infected cells for development of precision targeted approaches. Here, it is discovered that viroporins, viral-encoded ion channels, which have been reported to mediate release of hydrogen ions, trigger membrane acidification of virus-infected cells. Through development of a fine-scale library of gradient pH-sensitive (GPS) polymeric nanoprobes, the cellular membrane pH transitions are measured from pH 6.8-7.1 (uninfection) to pH 6.5-6.8 (virus-infection). In response to the subtle pH alterations, the GPS polymer with sharp response at pH 6.8 (GPS6.8 ) selectively binds to virus-infected cell membranes or the viral envelope, and even completely disrupts the viral envelope. Accordingly, GPS6.8 treatment exerts suppressive effects on a wide variety of viruses including SARS-CoV-2 through triggering viral-envelope lysis rather than affecting immune pathway or viability of host cells. Murine viral-infection models exhibit that supplementation of GPS6.8 decreases viral titers and ameliorates inflammatory damage. Thus, the gradient pH-sensitive nanotechnology offers a promising strategy for accurate detection of biological pH environments and robust interference with viruses.
Collapse
Affiliation(s)
- Yizhe Sun
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Lidong Gong
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yue Yin
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Lei Zhang
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 65018, P. R. China
| | - Kai Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 65018, P. R. China
| | - Yimin Cui
- Department of Pharmacy Administration and Clinical Pharmacy, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qiang Zhang
- Department of Pharmacy Administration and Clinical Pharmacy, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xuehui Zhang
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xuliang Deng
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Dan Lu
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P. R. China
| |
Collapse
|
8
|
Antiviral peptide engineering for targeting membrane-enveloped viruses: Recent progress and future directions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183821. [PMID: 34808121 DOI: 10.1016/j.bbamem.2021.183821] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/26/2022]
Abstract
Membrane-enveloped viruses are a major cause of global health challenges, including recent epidemics and pandemics. This mini-review covers the latest efforts to develop membrane-targeting antiviral peptides that inhibit enveloped viruses by 1) preventing virus-cell fusion or 2) disrupting the viral membrane envelope. The corresponding mechanisms of antiviral activity are discussed along with peptide engineering strategies to modulate membrane-peptide interactions in terms of potency and selectivity. Application examples are presented demonstrating how membrane-targeting antiviral peptides are useful therapeutics and prophylactics in animal models, while a stronger emphasis on biophysical concepts is proposed to refine mechanistic understanding and support potential clinical translation.
Collapse
|
9
|
Chng CP, Cho NJ, Hsia KJ, Huang C. Role of Membrane Stretch in Adsorption of Antiviral Peptides onto Lipid Membranes and Membrane Pore Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13390-13398. [PMID: 34724382 DOI: 10.1021/acs.langmuir.1c02067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many medically important viruses are enveloped viruses, which are surrounded by a structurally conserved, host-derived lipid membrane coating. Agents that target and disrupt this membrane coating could potentially function as broad-spectrum antiviral drugs. The amphipathic α-helical (AH) peptide derived from the N-terminus of the hepatitis C virus NS5A protein is one such candidate and has been demonstrated to be able to selectively rupture lipid vesicles in the size range of viruses (<160 nm diameter). However, the mechanism underlying this membrane curvature selectivity remains elusive. In this study, we have performed molecular dynamics simulations to study the binding of the AH peptide to model membranes that are stretched to resemble the looser lipid headgroup packing present on highly curved outer membranes of nanoscale vesicles. We found that the AH peptide binds more favorably to membranes that are stretched. In addition, a tetrameric placement of peptides across the membrane induced stable pore formation in the stretched membrane. Thus, our results suggest that the AH peptide senses the high curvature of nanoscale vesicles via the enhanced exposure of lipid packing defects induced by membrane area strain.
Collapse
Affiliation(s)
- Choon-Peng Chng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Republic of Singapore
- China-Singapore International Joint Research Institute (CSIJRI), Guangzhou 510000, P. R. China
| | - K Jimmy Hsia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Republic of Singapore
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| |
Collapse
|
10
|
Tan JYB, Yoon BK, Cho NJ, Lovrić J, Jug M, Jackman JA. Lipid Nanoparticle Technology for Delivering Biologically Active Fatty Acids and Monoglycerides. Int J Mol Sci 2021; 22:9664. [PMID: 34575831 PMCID: PMC8465605 DOI: 10.3390/ijms22189664] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022] Open
Abstract
There is enormous interest in utilizing biologically active fatty acids and monoglycerides to treat phospholipid membrane-related medical diseases, especially with the global health importance of membrane-enveloped viruses and bacteria. However, it is difficult to practically deliver lipophilic fatty acids and monoglycerides for therapeutic applications, which has led to the emergence of lipid nanoparticle platforms that support molecular encapsulation and functional presentation. Herein, we introduce various classes of lipid nanoparticle technology and critically examine the latest progress in utilizing lipid nanoparticles to deliver fatty acids and monoglycerides in order to treat medical diseases related to infectious pathogens, cancer, and inflammation. Particular emphasis is placed on understanding how nanoparticle structure is related to biological function in terms of mechanism, potency, selectivity, and targeting. We also discuss translational opportunities and regulatory needs for utilizing lipid nanoparticles to deliver fatty acids and monoglycerides, including unmet clinical opportunities.
Collapse
Affiliation(s)
- Jia Ying Brenda Tan
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore;
| | - Bo Kyeong Yoon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore;
| | - Jasmina Lovrić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.L.); (M.J.)
| | - Mario Jug
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.L.); (M.J.)
| | - Joshua A. Jackman
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
| |
Collapse
|
11
|
Oeyen M, Meyen E, Noppen S, Claes S, Doijen J, Vermeire K, Süssmuth RD, Schols D. Labyrinthopeptin A1 inhibits dengue and Zika virus infection by interfering with the viral phospholipid membrane. Virology 2021; 562:74-86. [PMID: 34274562 DOI: 10.1016/j.virol.2021.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 11/18/2022]
Abstract
To date, there are no broad-spectrum antivirals available to treat infections with flaviviruses such as dengue (DENV) and Zika virus (ZIKV). In this study, we determine the broad antiviral activity of the lantibiotic Labyrinthopeptin A1. We show that Laby A1 inhibits all DENV serotypes and various ZIKV strains with IC50 around 1 μM. The structurally related Laby A2 also displayed a consistent, but about tenfold lower, antiviral activity. Furthermore, Laby A1 inhibits many viruses from divergent families such as HIV, YFV, RSV and Punta Torovirus. Of interest, Laby A1 does not show activity against non-enveloped viruses. Its antiviral activity is independent of the cell line or the used evaluation method, and can also be observed in MDDC, a physiologically relevant primary cell type. Furthermore, Laby A1 demonstrates low cellular toxicity and has a more favorable SI compared to duramycin, a well-described lantibiotic with broad-spectrum antiviral activity. Time-of-drug addition experiments demonstrate that Laby A1 inhibits infection and entry processes of ZIKV and DENV. We reveal that Laby A1 performs its broad antiviral activity by interacting with a viral factor rather than a cellular factor, and that it has virucidal properties. Finally, using SPR interaction studies we demonstrate that Laby A1 interacts with several phospholipids (i.e. PE and PS) present in the viral envelope. Together with other recent Labyrinthopeptin antiviral publications, this work validates the activity of Laby A1 as broad antiviral entry inhibitor with a unique mechanism of action and demonstrates its potential value as antiviral agent against emerging flaviviruses.
Collapse
Affiliation(s)
- Merel Oeyen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium
| | - Eef Meyen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium
| | - Sam Noppen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium
| | - Sandra Claes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium
| | - Jordi Doijen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium
| | - Kurt Vermeire
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium
| | - Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124/TC 2, D-10623 Berlin, Germany
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
12
|
Sardar A, Lahiri A, Kamble M, Mallick AI, Tarafdar PK. Translation of Mycobacterium Survival Strategy to Develop a Lipo‐peptide based Fusion Inhibitor**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Avijit Sardar
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur PIN-741246 India
| | - Aritraa Lahiri
- Department of Biological Sciences Indian Institute of Science Education and Research Kolkata Mohanpur PIN-741246 India
| | - Mithila Kamble
- Department of Biological Sciences Indian Institute of Science Education and Research Kolkata Mohanpur PIN-741246 India
| | - Amirul I. Mallick
- Department of Biological Sciences Indian Institute of Science Education and Research Kolkata Mohanpur PIN-741246 India
| | - Pradip K. Tarafdar
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur PIN-741246 India
| |
Collapse
|
13
|
Sardar A, Lahiri A, Kamble M, Mallick AI, Tarafdar PK. Translation of Mycobacterium Survival Strategy to Develop a Lipo-peptide based Fusion Inhibitor*. Angew Chem Int Ed Engl 2021; 60:6101-6106. [PMID: 33241871 PMCID: PMC7753697 DOI: 10.1002/anie.202013848] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 12/16/2022]
Abstract
The entry of enveloped virus requires the fusion of viral and host cell membranes. An effective fusion inhibitor aiming at impeding such membrane fusion may emerge as a broad-spectrum antiviral agent against a wide range of viral infections. Mycobacterium survives inside the phagosome by inhibiting phagosome-lysosome fusion with the help of a coat protein coronin 1. Structural analysis of coronin 1 and other WD40-repeat protein suggest that the trp-asp (WD) sequence is placed at distorted β-meander motif (more exposed) in coronin 1. The unique structural feature of coronin 1 was explored to identify a simple lipo-peptide sequence (myr-WD), which effectively inhibits membrane fusion by modulating the interfacial order, water penetration, and surface potential. The mycobacterium inspired lipo-dipeptide was successfully tested to combat type 1 influenza virus (H1N1) and murine coronavirus infections as a potential broad-spectrum antiviral agent.
Collapse
Affiliation(s)
- Avijit Sardar
- Department of Chemical SciencesIndian Institute of Science Education and Research KolkataMohanpurPIN-741246India
| | - Aritraa Lahiri
- Department of Biological SciencesIndian Institute of Science Education and Research KolkataMohanpurPIN-741246India
| | - Mithila Kamble
- Department of Biological SciencesIndian Institute of Science Education and Research KolkataMohanpurPIN-741246India
| | - Amirul I. Mallick
- Department of Biological SciencesIndian Institute of Science Education and Research KolkataMohanpurPIN-741246India
| | - Pradip K. Tarafdar
- Department of Chemical SciencesIndian Institute of Science Education and Research KolkataMohanpurPIN-741246India
| |
Collapse
|
14
|
Yoon BK, Jeon WY, Sut TN, Cho NJ, Jackman JA. Stopping Membrane-Enveloped Viruses with Nanotechnology Strategies: Toward Antiviral Drug Development and Pandemic Preparedness. ACS NANO 2021; 15:125-148. [PMID: 33306354 DOI: 10.1021/acsnano.0c07489] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Membrane-enveloped viruses are a leading cause of viral epidemics, and there is an outstanding need to develop broad-spectrum antiviral strategies to treat and prevent enveloped virus infections. In this review, we critically discuss why the lipid membrane surrounding enveloped virus particles is a promising antiviral target and cover the latest progress in nanotechnology research to design and evaluate membrane-targeting virus inhibition strategies. These efforts span diverse topics such as nanomaterials, self-assembly, biosensors, nanomedicine, drug delivery, and medical devices and have excellent potential to support the development of next-generation antiviral drug candidates and technologies. Application examples in the areas of human medicine and agricultural biosecurity are also presented. Looking forward, research in this direction is poised to strengthen capabilities for virus pandemic preparedness and demonstrates how nanotechnology strategies can help to solve global health challenges related to infectious diseases.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Won-Yong Jeon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Tun Naw Sut
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Joshua A Jackman
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
15
|
Onyango MG, Ciota AT, Kramer LD. The Vector - Host - Pathogen Interface: The Next Frontier in the Battle Against Mosquito-Borne Viral Diseases? Front Cell Infect Microbiol 2020; 10:564518. [PMID: 33178624 PMCID: PMC7596266 DOI: 10.3389/fcimb.2020.564518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
An unprecedented spread of mosquito-borne viruses and increasing populations of mosquito vectors has led to an increase in the frequency of mosquito-borne virus disease outbreaks. Recent outbreaks of Zika virus (ZIKV) and yellow fever virus (YFV), among others have led to a concerted effort to understand the biology of mosquito-borne viruses and their interaction with their vector mosquito and vertebrate hosts. Recent studies have aimed to understand the vector-host-pathogen interface and how it influences infection, tropism and disease severity in the vertebrate host. The initial replication of the pathogen at the skin bite site is crucial in determining the progression of the infection in the vertebrate host. Delineating the role of the commensal microbes in the mosquito saliva as well as how they interact with the vertebrate host keratinocytes will improve our understanding of disease immunopathology and may lead to new therapeutics.
Collapse
Affiliation(s)
- Maria Gorreti Onyango
- New York State Department of Health, Wadsworth Center, Slingerlands, NY, United States
| | - Alexander T Ciota
- New York State Department of Health, Wadsworth Center, Slingerlands, NY, United States.,School of Public Health, State University of New York at Albany, Albany, NY, United States
| | - Laura D Kramer
- New York State Department of Health, Wadsworth Center, Slingerlands, NY, United States.,School of Public Health, State University of New York at Albany, Albany, NY, United States
| |
Collapse
|
16
|
Weil T, Groß R, Röcker A, Bravo-Rodriguez K, Heid C, Sowislok A, Le MH, Erwin N, Dwivedi M, Bart SM, Bates P, Wettstein L, Müller JA, Harms M, Sparrer K, Ruiz-Blanco YB, Stürzel CM, von Einem J, Lippold S, Read C, Walther P, Hebel M, Kreppel F, Klärner FG, Bitan G, Ehrmann M, Weil T, Winter R, Schrader T, Shorter J, Sanchez-Garcia E, Münch J. Supramolecular Mechanism of Viral Envelope Disruption by Molecular Tweezers. J Am Chem Soc 2020; 142:17024-17038. [PMID: 32926779 PMCID: PMC7523239 DOI: 10.1021/jacs.0c06400] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Broad-spectrum
antivirals are powerful weapons against dangerous
viruses where no specific therapy exists, as in the case of the ongoing
SARS-CoV-2 pandemic. We discovered that a lysine- and arginine-specific
supramolecular ligand (CLR01) destroys enveloped viruses, including
HIV, Ebola, and Zika virus, and remodels amyloid fibrils in semen
that promote viral infection. Yet, it is unknown how CLR01 exerts
these two distinct therapeutic activities. Here, we delineate a novel
mechanism of antiviral activity by studying the activity of tweezer
variants: the “phosphate tweezer” CLR01, a “carboxylate
tweezer” CLR05, and a “phosphate clip” PC. Lysine
complexation inside the tweezer cavity is needed to antagonize amyloidogenesis
and is only achieved by CLR01. Importantly, CLR01 and CLR05 but not
PC form closed inclusion complexes with lipid head groups of viral
membranes, thereby altering lipid orientation and increasing surface
tension. This process disrupts viral envelopes and diminishes infectivity
but leaves cellular membranes intact. Consequently, CLR01 and CLR05
display broad antiviral activity against all enveloped viruses tested,
including herpesviruses, Measles virus, influenza, and SARS-CoV-2.
Based on our mechanistic insights, we potentiated the antiviral, membrane-disrupting
activity of CLR01 by introducing aliphatic ester arms into each phosphate
group to act as lipid anchors that promote membrane targeting. The
most potent ester modifications harbored unbranched C4 units, which
engendered tweezers that were approximately one order of magnitude
more effective than CLR01 and nontoxic. Thus, we establish the mechanistic
basis of viral envelope disruption by specific tweezers and establish
a new class of potential broad-spectrum antivirals with enhanced activity.
Collapse
Affiliation(s)
- Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Annika Röcker
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Kenny Bravo-Rodriguez
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Christian Heid
- Faculty of Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
| | - Andrea Sowislok
- Faculty of Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
| | - My-Hue Le
- Faculty of Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
| | - Nelli Erwin
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Mridula Dwivedi
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Stephen M Bart
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Paul Bates
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lukas Wettstein
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Konstantin Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Yasser B Ruiz-Blanco
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jens von Einem
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Sina Lippold
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Clarissa Read
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany.,Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany
| | - Marco Hebel
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Florian Kreppel
- Center for Biomedical Education and Research, University of Witten/Herdecke, Stockumer Strasse 10, 58453 Witten, Germany
| | | | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, Brain Research Institute, and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Michael Ehrmann
- Microbiology II, Center of Medical Biotechnology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Roland Winter
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
| | - James Shorter
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
17
|
Liang L, Ahamed A, Ge L, Fu X, Lisak G. Advances in Antiviral Material Development. Chempluschem 2020; 85:2105-2128. [PMID: 32881384 PMCID: PMC7461489 DOI: 10.1002/cplu.202000460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
The rise in human pandemics demands prudent approaches in antiviral material development for disease prevention and treatment via effective protective equipment and therapeutic strategy. However, the current state of the antiviral materials research is predominantly aligned towards drug development and its related areas, catering to the field of pharmaceutical technology. This review distinguishes the research advances in terms of innovative materials exhibiting antiviral activities that take advantage of fast-developing nanotechnology and biopolymer technology. Essential concepts of antiviral principles and underlying mechanisms are illustrated, followed with detailed descriptions of novel antiviral materials including inorganic nanomaterials, organic nanomaterials and biopolymers. The biomedical applications of the antiviral materials are also elaborated based on the specific categorization. Challenges and future prospects are discussed to facilitate the research and development of protective solutions and curative treatments.
Collapse
Affiliation(s)
- Lili Liang
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Interdisciplinary Graduate ProgramNanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Ashiq Ahamed
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
- Laboratory of Molecular Science and EngineeringJohan Gadolin Process Chemistry Centre Åbo Akademi UniversityFI-20500Turku/ÅboFinland
| | - Liya Ge
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Xiaoxu Fu
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Grzegorz Lisak
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| |
Collapse
|
18
|
Cho NJ, Glenn JS. Materials science approaches in the development of broad-spectrum antiviral therapies. NATURE MATERIALS 2020; 19:813-816. [PMID: 32427958 DOI: 10.1038/s41563-020-0698-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- Nam Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Jeffrey S Glenn
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
19
|
Jackman JA, Boyd RD, Elrod CC. Medium-chain fatty acids and monoglycerides as feed additives for pig production: towards gut health improvement and feed pathogen mitigation. J Anim Sci Biotechnol 2020; 11:44. [PMID: 32337029 PMCID: PMC7178611 DOI: 10.1186/s40104-020-00446-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Ongoing challenges in the swine industry, such as reduced access to antibiotics and virus outbreaks (e.g., porcine epidemic diarrhea virus, African swine fever virus), have prompted calls for innovative feed additives to support pig production. Medium-chain fatty acids (MCFAs) and monoglycerides have emerged as a potential option due to key molecular features and versatile functions, including inhibitory activity against viral and bacterial pathogens. In this review, we summarize recent studies examining the potential of MCFAs and monoglycerides as feed additives to improve pig gut health and to mitigate feed pathogens. The molecular properties and biological functions of MCFAs and monoglycerides are first introduced along with an overview of intervention needs at different stages of pig production. The latest progress in testing MCFAs and monoglycerides as feed additives in pig diets is then presented, and their effects on a wide range of production issues, such as growth performance, pathogenic infections, and gut health, are covered. The utilization of MCFAs and monoglycerides together with other feed additives such as organic acids and probiotics is also described, along with advances in molecular encapsulation and delivery strategies. Finally, we discuss how MCFAs and monoglycerides demonstrate potential for feed pathogen mitigation to curb disease transmission. Looking forward, we envision that MCFAs and monoglycerides may become an important class of feed additives in pig production for gut health improvement and feed pathogen mitigation.
Collapse
Affiliation(s)
- Joshua A Jackman
- 1School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - R Dean Boyd
- Hanor Company, Franklin, KY 42134 USA.,3North Carolina State University, Raleigh, NC 27695 USA
| | - Charles C Elrod
- Natural Biologics Inc., Newfield, NY 14867 USA.,5Department of Animal Science, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
20
|
Jackman JA, Ferhan AR, Cho NJ. Surface-Based Nanoplasmonic Sensors for Biointerfacial Science Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190112] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Joshua A. Jackman
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
21
|
Park S, Jackman JA, Cho NJ. Comparing the Membrane-Interaction Profiles of Two Antiviral Peptides: Insights into Structure-Function Relationship. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9934-9943. [PMID: 31291111 DOI: 10.1021/acs.langmuir.9b01052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In recent years, certain amphipathic, α-helical peptides have been discovered that inhibit medically important enveloped viruses by disrupting the lipid membrane surrounding individual virus particles. Interestingly, only a small subset of amphipathic, α-helical peptides demonstrate inhibitory activity, and there is broad interest in understanding how the structures of these peptides contribute to functional activity against lipid membranes. To address this question, herein, we employed multiple surface-sensitive measurement techniques along with computational simulations in order to investigate how AH and C5A peptides, two of the most biologically active peptides in this class, interact with model lipid membranes while gaining insight into membrane-induced peptide conformational changes. Circular dichroism spectroscopy experiments revealed that both AH and C5A peptides undergo pronounced coil-to-helix transitions in the presence of lipid membrane environments, and the C5A conformational change was the largest. Time-lapsed fluorescence microscopy measurements were conducted to monitor the interaction of peptides with arrays of tethered, individual lipid vesicles and showed that C5A potently lyses lipid vesicles indiscriminate of vesicle size at peptide concentrations as low as 10 nM whereas AH peptide preferentially lyses lipid vesicles with high membrane curvature and is less potent than C5A. These findings were complemented by electrochemical impedance spectroscopy measurements on a tethered lipid bilayer membrane platform, which indicated that C5A solubilizes lipid membranes in a manner that is distinct from how AH disrupts lipid membranes via pore formation. Computational simulations supported that the distinct membrane-interaction profiles arise from different helical folding patterns, whereby AH monomers predominantly exist as two shorter helices with a hinge in-between and C5A monomers form a single helix. Taken together, our findings demonstrate that membrane-active antiviral peptides can exhibit distinct membrane-interaction profiles that confer different degrees of targeting selectivity, and the corresponding structural insights will be useful for peptide engineering applications.
Collapse
Affiliation(s)
- Soohyun Park
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore
| | - Joshua A Jackman
- School of Chemical Engineering , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive 637459 , Singapore
| |
Collapse
|
22
|
Camargos VN, Foureaux G, Medeiros DC, da Silveira VT, Queiroz-Junior CM, Matosinhos ALB, Figueiredo AFA, Sousa CDF, Moreira TP, Queiroz VF, Dias ACF, Santana KTO, Passos I, Real ALCV, Silva LC, Mourão FAG, Wnuk NT, Oliveira MAP, Macari S, Silva T, Garlet GP, Jackman JA, Soriani FM, Moraes MFD, Mendes EMAM, Ribeiro FM, Costa GMJ, Teixeira AL, Cho NJ, Oliveira ACP, Teixeira MM, Costa VV, Souza DG. In-depth characterization of congenital Zika syndrome in immunocompetent mice: Antibody-dependent enhancement and an antiviral peptide therapy. EBioMedicine 2019; 44:516-529. [PMID: 31130472 PMCID: PMC6604363 DOI: 10.1016/j.ebiom.2019.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) infection during pregnancy may cause major congenital defects, including microcephaly, ocular, articular and muscle abnormalities, which are collectively defined as Congenital Zika Syndrome. Here, we performed an in-depth characterization of the effects of congenital ZIKV infection (CZI) in immunocompetent mice. METHODS Pregnant dams were inoculated with ZIKV on embryonic day 5.5 in the presence or absence of a sub-neutralizing dose of a pan-flavivirus monoclonal antibody (4G2) to evaluate the potential role of antibody-dependent enhancement phenomenon (ADE) during short and long outcomes of CZI. FINDINGS ZIKV infection induced maternal immune activation (MIA), which was associated with occurrence of foetal abnormalities and death. Therapeutic administration of AH-D antiviral peptide during the early stages of pregnancy prevented ZIKV replication and death of offspring. In the post-natal period, CZI was associated with a decrease in whole brain volume, ophthalmologic abnormalities, changes in testicular morphology, and disruption in bone microarchitecture. Some alterations were enhanced in the presence of 4G2 antibody. INTERPRETATION Our results reveal that early maternal ZIKV infection causes several birth defects in immunocompetent mice, which can be potentiated by ADE phenomenon and are associated with MIA. Additionally, antiviral treatment with AH-D peptide may be beneficial during early maternal ZIKV infection. FUND: This work was supported by the Brazilian National Science Council (CNPq, Brazil), Minas Gerais Foundation for Science (FAPEMIG), Funding Authority for Studies and Projects (FINEP), Coordination of Superior Level Staff Improvement (CAPES), National Research Foundation of Singapore and Centre for Precision Biology at Nanyang Technological University.
Collapse
Affiliation(s)
- Vidyleison N Camargos
- Host-Microorganism Interaction Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Giselle Foureaux
- Transversal Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniel C Medeiros
- Centre for Technology and Research in Magnetic-Resonance, Graduate Program in Electrical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian T da Silveira
- Neuropharmacology Lab, Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Celso M Queiroz-Junior
- Transversal Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Luisa B Matosinhos
- Neuropharmacology Lab, Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - André F A Figueiredo
- Cellular Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carla D F Sousa
- Host-Microorganism Interaction Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thaiane P Moreira
- Host-Microorganism Interaction Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Victória F Queiroz
- Host-Microorganism Interaction Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Carolina F Dias
- Host-Microorganism Interaction Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Karina T O Santana
- Centre for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, MG, Brazil
| | - Ingredy Passos
- Centre for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, MG, Brazil; Research Group in Arboviral Diseases, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, MG, Brazil
| | - Ana Luíza C V Real
- Neurobiochemistry Lab, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ludmila C Silva
- Transversal Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávio A G Mourão
- Centre for Technology and Research in Magnetic-Resonance, Graduate Program in Electrical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Natália T Wnuk
- Cellular Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Milton A P Oliveira
- Department of Microbiology, Immunology, Parasitology and Pathology, Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiania, GO, Brazil
| | - Soraia Macari
- Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tarcília Silva
- Department of Oral Pathology and Surgery, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gustavo P Garlet
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University, Bauru, SP, Brazil
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Frederico M Soriani
- Centre for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, MG, Brazil
| | - Márcio F D Moraes
- Centre for Technology and Research in Magnetic-Resonance, Graduate Program in Electrical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eduardo M A M Mendes
- Centre for Technology and Research in Magnetic-Resonance, Graduate Program in Electrical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabíola M Ribeiro
- Neurobiochemistry Lab, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme M J Costa
- Cellular Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioural Sciences, McGovern Medical Houston, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Antônio C P Oliveira
- Neuropharmacology Lab, Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro M Teixeira
- Immunopharmacology Lab, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, MG, Brazil; Centre for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, MG, Brazil
| | - Vivian V Costa
- Centre for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, MG, Brazil; Research Group in Arboviral Diseases, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, MG, Brazil.
| | - Danielle G Souza
- Host-Microorganism Interaction Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|