1
|
Guo Y, Li Z, Xu P, Guo G, He T, Lai Y. Subchronic and Chronic Toxicity Assessment of Sublancin in Sprague-Dawley Rats. TOXICS 2025; 13:413. [PMID: 40423492 DOI: 10.3390/toxics13050413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/28/2025]
Abstract
Sublancin, an S-linked antimicrobial (glycol) peptide produced by Bacillus subtilis, has emerged as a novel and promising veterinary drug due to its unique antibacterial mechanism, low risk of resistance, and properties that modulate the immune system, reduce inflammation, and promote gut health. This study comprehensively assessed the subchronic (90-day) and chronic (180-day) toxicity of Sprague-Dawley (SD) rats, following the guidelines issued by the Ministry of Agriculture of China. Rats were orally administered sublancin at doses of 2000, 10,000, or 50,000 mg/kg feed, representing 1666-5000 times the efficacious dose (1.0-1.2 mg/kg) reported in mice via the same administration route. Throughout this study, a wide range of physiological and behavioral parameters were monitored to access the toxicity of sublancin, including appetite, water intake, body weight gain, and organ weights. Hematological and biochemical analyses, as well as histopathological examinations of the major organs, were conducted at the end of each study period. The results indicated no adverse effects on any measured parameters at any dose level, with no significant differences observed between the sublancin-treated groups and the control group (p > 0.05). Notably, even the highest dose of 50,000 mg/kg did not induce growth inhibition or physiological dysfunction. A histopathological examination also revealed no tissue abnormalities in the major organs. The no-observed-effect level (NOEL) was determined to be 50,000 mg/kg for both study periods. These results demonstrate the long-term safety of sublancin in Sprague-Dawley rats, with no adverse effects during 180 days of oral administration at doses 1666-5000-fold the documented antimicrobially effective and immune-enhancing doses.
Collapse
Affiliation(s)
- Yong Guo
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 420200, China
- Sinagri YingTai Bio-peptide Co., Ltd., Linzhou 456550, China
- Key Laboratory of Feed Antibiotics Replacement Technology, Ministry of Agriculture and Rural Affairs, Linzhou 456550, China
| | - Zhihao Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Penglong Xu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Gantong Guo
- Sinagri YingTai Bio-peptide Co., Ltd., Linzhou 456550, China
- Key Laboratory of Feed Antibiotics Replacement Technology, Ministry of Agriculture and Rural Affairs, Linzhou 456550, China
| | - Tao He
- Sinagri YingTai Bio-peptide Co., Ltd., Linzhou 456550, China
- Key Laboratory of Feed Antibiotics Replacement Technology, Ministry of Agriculture and Rural Affairs, Linzhou 456550, China
| | - Yujiao Lai
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
2
|
Urbani G, Rondini E, Distrutti E, Marchianò S, Biagioli M, Fiorucci S. Phenotyping the Chemical Communications of the Intestinal Microbiota and the Host: Secondary Bile Acids as Postbiotics. Cells 2025; 14:595. [PMID: 40277921 PMCID: PMC12025480 DOI: 10.3390/cells14080595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025] Open
Abstract
The current definition of a postbiotic is a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Postbiotics can be mainly classified as metabolites, derived from intestinal bacterial fermentation, or structural components, as intrinsic constituents of the microbial cell. Secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) are bacterial metabolites generated by the enzymatic modifications of primary bile acids by microbial enzymes. Secondary bile acids function as receptor ligands modulating the activity of a family of bile-acid-regulated receptors (BARRs), including GPBAR1, Vitamin D (VDR) receptor and RORγT expressed by various cell types within the entire human body. Secondary bile acids integrate the definition of postbiotics, exerting potential beneficial effects on human health given their ability to regulate multiple biological processes such as glucose metabolism, energy expenditure and inflammation/immunity. Although there is evidence that bile acids might be harmful to the intestine, most of this evidence does not account for intestinal dysbiosis. This review examines this novel conceptual framework of secondary bile acids as postbiotics and how these mediators participate in maintaining host health.
Collapse
Affiliation(s)
- Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Elena Rondini
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy; (E.R.); (E.D.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy; (E.R.); (E.D.)
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| |
Collapse
|
3
|
Kohm K, Clanner AV, Hertel R, Commichau FM. Closely related and yet special - how SPβ family phages control lysis-lysogeny decisions. Trends Microbiol 2025; 33:387-396. [PMID: 39645480 DOI: 10.1016/j.tim.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
Soon after the discovery of genetic competence in the Gram-positive bacterium Bacillus subtilis, lytic and temperate phages that infect this organism were isolated. For instance, the lytic phage ϕ29 became a model for studying processes such as viral DNA packaging, replication, and transcription. By contrast, only a handful of temperate B. subtilis phages have been comprehensively characterized. However, the discovery of a peptide-based quorum sensing (QS) system in 2017 has brought temperate B. subtilis phages, particularly those of the SPβ family, back into the focus of research. The QS system is used by these phages to modulate lysis-lysogeny decisions. Meanwhile, many key components of the lysis-lysogeny management system have been identified. It turned out that a complex co-adaptation between the B. subtilis host cell and SPβ-like phages occurred during evolution and that a host-encoded toxin-antitoxin system plays a key role in controlling lysis-lysogeny decisions. There are many similarities and many important differences between the two well-studied model phages. Thus, a further comparative analysis of the lysis-lysogeny systems is essential to uncover the fundamental differences between ϕ3T and SPβ. Moreover, we believe that it would be exciting to revive research on temperate B. subtilis phages that are not related to SPβ-family phages.
Collapse
Affiliation(s)
- Katharina Kohm
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Annabel V Clanner
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Robert Hertel
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Germany
| | - Fabian M Commichau
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
4
|
Ramakrishna BS, Rani N, Xu H, Alan-Lee C, Schlegel HB, Nguyen HM. Why is thiol unexpectedly less reactive but more selective than alcohol in phenanthroline-catalyzed 1,2- cis O- and S-furanosylations? Org Biomol Chem 2025; 23:328-342. [PMID: 39575458 PMCID: PMC11582804 DOI: 10.1039/d4ob01593b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
The lack of catalytic stereoselective approaches for producing 1,2-cis S-furanosides emphasizes the critical need for further research in this area. Herein, we present a stereoselective S-furanosylation method, utilizing a 4,7-dipiperidine-substituted phenanthroline catalyst. This developed protocol fills a gap in the field, enabling the coupling of cysteine residues and thiols with furanosyl bromide electrophiles. The process allows for stereoselective access to 1,2-cis S-furanosides. Through computational and experimental investigations, thiol is found to be less reactive than alcohol but exhibits greater stereoselectivity. The 1,2-cis stereoselectivity of O-products depends on the nature of the electrophile, while S-products are obtained with excellent 1,2-cis stereoselectivity, irrespective of the furanose structure. The displaced bromide ion from the glycosyl electrophile influences the reaction's reactivity and stereoselectivity. Alcohol-OH forms a stronger hydrogen bond with bromide ion than thiol-SH, contributing to the difference in their reactivity. The energy difference between forming S-furanoside and O-furanoside transition states is 3.7 kcal mol-1, supporting the increased reactivity of alcohol over thiol. The difference in transition state energies between the major and minor S-product is greater than that for the major and minor O-product. This is consistent with experimental data showing how thiol is more stereoselective than alcohol. The catalyst and reaction conditions utilized for the generation of 1,2-cis O-furanosides in our prior studies are found to be unsuitable for the synthesis of 1,2-cis S-furanosides. In the present study, a highly reactive phenanthroline catalyst and specific reaction conditions have been developed to achieve stereoselective S-linked product formation.
Collapse
Affiliation(s)
- Boddu S Ramakrishna
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Neha Rani
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Hengfu Xu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Cyrus Alan-Lee
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| |
Collapse
|
5
|
Ma X, Wang Q, Ren K, Xu T, Zhang Z, Xu M, Rao Z, Zhang X. A Review of Antimicrobial Peptides: Structure, Mechanism of Action, and Molecular Optimization Strategies. FERMENTATION-BASEL 2024; 10:540. [DOI: 10.3390/fermentation10110540] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Antimicrobial peptides (AMPs) are bioactive macromolecules that exhibit antibacterial, antiviral, and immunomodulatory functions. They come from a wide range of sources and are found in all forms of life, from bacteria to plants, vertebrates, and invertebrates, and play an important role in controlling the spread of pathogens, promoting wound healing and treating tumors. Consequently, AMPs have emerged as promising alternatives to next-generation antibiotics. With advancements in systems biology and synthetic biology technologies, it has become possible to synthesize AMPs artificially. We can better understand their functional activities for further modification and development by investigating the mechanism of action underlying their antimicrobial properties. This review focuses on the structural aspects of AMPs while highlighting their significance for biological activity. Furthermore, it elucidates the membrane targeting mechanism and intracellular targets of these peptides while summarizing molecular modification approaches aimed at enhancing their antibacterial efficacy. Finally, this article outlines future challenges in the functional development of AMPs along with proposed strategies to overcome them.
Collapse
Affiliation(s)
- Xu Ma
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Qiang Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Kexin Ren
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Tongtong Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Zigang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| |
Collapse
|
6
|
Ahlawat S, Shukla BN, Singh V, Sharma Y, Choudhary P, Rao A. GLYCOCINS: The sugar peppered antimicrobials. Biotechnol Adv 2024; 75:108415. [PMID: 39033836 DOI: 10.1016/j.biotechadv.2024.108415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Glycosylated bacteriocins, known as glycocins, were first discovered in 2011. These bioactive peptides are produced by bacteria to gain survival advantages. They exhibit diverse types of glycans and demonstrate varied antimicrobial activity. Currently, there are 13 experimentally known glycocins, with over 250 identified in silico across different bacterial phyla. Notably, glycocins are recognized for their glycan-mediated antimicrobial activity, proving effective against drug-resistant and foodborne pathogens. Many glycocins contain rare S-linked glycans. Glycosyltransferases (GTs), responsible for transferring sugar to glycocins and involved in glycocin biosynthesis, often cluster together in the producer's genome. This clustering makes them valuable for custom glycoengineering with diverse substrate specificities. Heterologous expression of glycocins has paved the way for the establishment of microbial factories for glycopeptide and glycoconjugate production across various industries. In this review, we emphasize the primary roles of fully and partially characterized glycocins and their glycosylating enzymes. Additionally, we explore how specific glycan structures facilitate these functions in antibacterial activities. Furthermore, we discuss newer approaches and increasing efforts aimed at exploiting bacterial glycobiology for the development of food preservatives and as replacements or complements to traditional antibiotics, particularly in the face of antibiotic-resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Shimona Ahlawat
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| | | | - Vaidhvi Singh
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Yogita Sharma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | | | - Alka Rao
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India; Current address: Food Safety and Standards Authority of India (FSSAI), New Delhi 110002, India.
| |
Collapse
|
7
|
Liang Q, Liu Z, Liang Z, Zhu C, Li D, Kong Q, Mou H. Development strategies and application of antimicrobial peptides as future alternatives to in-feed antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172150. [PMID: 38580107 DOI: 10.1016/j.scitotenv.2024.172150] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
The use of in-feed antibiotics has been widely restricted due to the significant environmental pollution and food safety concerns they have caused. Antimicrobial peptides (AMPs) have attracted widespread attention as potential future alternatives to in-feed antibiotics owing to their demonstrated antimicrobial activity and environment friendly characteristics. However, the challenges of weak bioactivity, immature stability, and low production yields of natural AMPs impede practical application in the feed industry. To address these problems, efforts have been made to develop strategies for approaching the AMPs with enhanced properties. Herein, we summarize approaches to improving the properties of AMPs as potential alternatives to in-feed antibiotics, mainly including optimization of structural parameters, sequence modification, selection of microbial hosts, fusion expression, and industrially fermentation control. Additionally, the potential for application of AMPs in animal husbandry is discussed. This comprehensive review lays a strong theoretical foundation for the development of in-feed AMPs to achieve the public health globally.
Collapse
Affiliation(s)
- Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zhemin Liu
- Fundamental Science R&D Center of Vazyme Biotech Co. Ltd., Nanjing 210000, China
| | - Ziyu Liang
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
8
|
Peerzade IJ, Mutturi S, Halami PM. Improved production of RNA-inhibiting antimicrobial peptide by Bacillus licheniformis MCC 2514 facilitated by a genetic algorithm optimized medium. Bioprocess Biosyst Eng 2024; 47:683-695. [PMID: 38521865 DOI: 10.1007/s00449-024-02998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
One of the significant challenges during the purification and characterization of antimicrobial peptides (AMPs) from Bacillus sp. is the interference of unutilized peptides from complex medium components during analytical procedures. In this study, a semi-synthetic medium was devised to overcome this challenge. Using a genetic algorithm, the production medium of AMP is optimized. The parent organism, Bacillus licheniformis MCC2514, produces AMP in very small quantities. This AMP is known to inhibit RNA biosynthesis. The findings revealed that lactose, NH4Cl and NaNO3 were crucial medium constituents for enhanced AMP synthesis. The potency of the AMP produced was studied using bacterium, Kocuria rhizophila ATCC 9341. The AMP produced from the optimized medium was eightfold higher than that produced from the unoptimized medium. Furthermore, activity was increased by 1.5-fold when cultivation conditions were standardized using the optimized medium. Later, AMP was produced in a 5 L bioreactor under controlled conditions, which led to similar results as those of shake-flask production. The mode of action of optimally produced AMP was confirmed to be inhibition of RNA biosynthesis. Here, we demonstrate that improved production of AMP is possible with the developed semi-synthetic medium recipe and could help further AMP production in an industrial setup.
Collapse
Affiliation(s)
- Ishrat Jahan Peerzade
- Microbiology & Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - Sarma Mutturi
- Microbiology & Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - Prakash M Halami
- Microbiology & Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India.
| |
Collapse
|
9
|
Azadi S, Yazdanpanah MA, Afshari A, Alahdad N, Chegeni S, Angaji A, Rezayat SM, Tavakol S. Bioinspired synthetic peptide-based biomaterials regenerate bone through biomimicking of extracellular matrix. J Tissue Eng 2024; 15:20417314241303818. [PMID: 39670180 PMCID: PMC11635874 DOI: 10.1177/20417314241303818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
There have been remarkable advancements in regenerative medicine for bone regeneration, tackling the worldwide health concern of tissue loss. Tissue engineering uses the body's natural capabilities and applies biomaterials and bioactive molecules to replace damaged or lost tissues and restore their functionality. While synthetic ceramics have overcome some challenges associated with allografts and xenografts, they still need essential growth factors and biomolecules. Combining ceramics and bioactive molecules, such as peptides derived from biological motifs of vital proteins, is the most effective approach to achieve optimal bone regeneration. These bioactive peptides induce various cellular processes and modify scaffold properties by mimicking the function of natural osteogenic, angiogenic and antibacterial biomolecules. The present review aims to consolidate the latest and most pertinent information on the advancements in bioactive peptides, including angiogenic, osteogenic, antimicrobial, and self-assembling peptide nanofibers for bone tissue regeneration, elucidating their biological effects and potential clinical implications.
Collapse
Affiliation(s)
- Sareh Azadi
- Department of Medical Biotechnology, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Yazdanpanah
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Ali Afshari
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Niloofar Alahdad
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Solmaz Chegeni
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abdolhamid Angaji
- Department of Medical Biotechnology, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Medical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Research and Development, Tavakol Biomimetic Technologies Company, Tehran, Iran
| |
Collapse
|
10
|
Wu C, Lower BA, Moreira R, Dorantes D, Le T, Giurgiu C, Shi Y, van der Donk WA. Investigation into the mechanism of action of the antimicrobial peptide epilancin 15X. Front Microbiol 2023; 14:1247222. [PMID: 38029153 PMCID: PMC10652874 DOI: 10.3389/fmicb.2023.1247222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Addressing the current antibiotic-resistance challenge would be aided by the identification of compounds with novel mechanisms of action. Epilancin 15X, a lantibiotic produced by Staphylococcus epidermidis 15 × 154, displays antimicrobial activity in the submicromolar range against a subset of pathogenic Gram-positive bacteria. S. epidermidis is a common member of the human skin or mucosal microbiota. We here investigated the mechanism of action of epilancin 15X. The compound is bactericidal against Staphylococcus carnosus as well as Bacillus subtilis and appears to kill these bacteria by membrane disruption. Structure-activity relationship studies using engineered analogs show that its conserved positively charged residues and dehydroamino acids are important for bioactivity, but the N-terminal lactyl group is tolerant of changes. Epilancin 15X treatment negatively affects fatty acid synthesis, RNA translation, and DNA replication and transcription without affecting cell wall biosynthesis. The compound appears localized to the surface of bacteria and is most potent in disrupting the membranes of liposomes composed of negatively charged membrane lipids in a lipid II independent manner. Epilancin 15X does not elicit a LiaRS response in B. subtilis but did upregulate VraRS in S. carnosus. Treatment of S. carnosus or B. subtilis with epilancin 15X resulted in an aggregation phenotype in microscopy experiments. Collectively these studies provide new information on epilancin 15X activity.
Collapse
Affiliation(s)
- Chunyu Wu
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Champaign, IL, United States
| | - B. Alexis Lower
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Champaign, IL, United States
| | - Ryan Moreira
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Champaign, IL, United States
| | - Darian Dorantes
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Champaign, IL, United States
| | - Tung Le
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Champaign, IL, United States
| | - Constantin Giurgiu
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Champaign, IL, United States
| | - Yanxiang Shi
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Champaign, IL, United States
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Champaign, IL, United States
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Champaign, IL, United States
| |
Collapse
|
11
|
Kohm K, Jalomo-Khayrova E, Krüger A, Basu S, Steinchen W, Bange G, Frunzke J, Hertel R, Commichau FM, Czech L. Structural and functional characterization of MrpR, the master repressor of the Bacillus subtilis prophage SPβ. Nucleic Acids Res 2023; 51:9452-9474. [PMID: 37602373 PMCID: PMC10516654 DOI: 10.1093/nar/gkad675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/11/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023] Open
Abstract
Prophages control their lifestyle to either be maintained within the host genome or enter the lytic cycle. Bacillus subtilis contains the SPβ prophage whose lysogenic state depends on the MrpR (YopR) protein, a key component of the lysis-lysogeny decision system. Using a historic B. subtilis strain harboring the heat-sensitive SPβ c2 mutant, we demonstrate that the lytic cycle of SPβ c2 can be induced by heat due to a single nucleotide exchange in the mrpR gene, rendering the encoded MrpRG136E protein temperature-sensitive. Structural characterization revealed that MrpR is a DNA-binding protein resembling the overall fold of tyrosine recombinases. MrpR has lost its recombinase function and the G136E exchange impairs its higher-order structure and DNA binding activity. Genome-wide profiling of MrpR binding revealed its association with the previously identified SPbeta repeated element (SPBRE) in the SPβ genome. MrpR functions as a master repressor of SPβ that binds to this conserved element to maintain lysogeny. The heat-inducible excision of the SPβ c2 mutant remains reliant on the serine recombinase SprA. A suppressor mutant analysis identified a previously unknown component of the lysis-lysogeny management system that is crucial for the induction of the lytic cycle of SPβ.
Collapse
Affiliation(s)
- Katharina Kohm
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Ekaterina Jalomo-Khayrova
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Phillips-University Marburg, Marburg, Germany
| | - Aileen Krüger
- Institute of Bio- and Geosciences, iBG-1: Biotechnology, FZ Jülich, Germany
| | - Syamantak Basu
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Wieland Steinchen
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Phillips-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Phillips-University Marburg, Marburg, Germany
- Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, iBG-1: Biotechnology, FZ Jülich, Germany
| | - Robert Hertel
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Laura Czech
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Phillips-University Marburg, Marburg, Germany
| |
Collapse
|
12
|
Hassan M, Flanagan TW, Kharouf N, Bertsch C, Mancino D, Haikel Y. Antimicrobial Proteins: Structure, Molecular Action, and Therapeutic Potential. Pharmaceutics 2022; 15:pharmaceutics15010072. [PMID: 36678702 PMCID: PMC9864823 DOI: 10.3390/pharmaceutics15010072] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
Second- and third-line treatments of patients with antibiotic-resistant infections can have serious side effects, such as organ failure with prolonged care and recovery. As clinical practices such as cancer therapies, chronic disease treatment, and organ transplantation rely on the ability of available antibiotics to fight infection, the increased resistance of microbial pathogens presents a multifaceted, serious public health concern worldwide. The pipeline of traditional antibiotics is exhausted and unable to overcome the continuously developing multi-drug resistance. To that end, the widely observed limitation of clinically utilized antibiotics has prompted researchers to find a clinically relevant alternate antimicrobial strategy. In recent decades, the discovery of antimicrobial peptides (AMPs) as an excellent candidate to overcome antibiotic resistance has received further attention, particularly from scientists, health professionals, and the pharmaceutical industry. Effective AMPs are characterized by a broad spectrum of antimicrobial activities, high pathogen specificity, and low toxicity. In addition to their antimicrobial activity, AMPs have been found to be involved in a variety of biological functions, including immune regulation, angiogenesis, wound healing, and antitumor activity. This review provides a current overview of the structure, molecular action, and therapeutic potential of AMPs.
Collapse
Affiliation(s)
- Mohamed Hassan
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Correspondence: ; Tel.: +1-504-339-2671
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Naji Kharouf
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
| | - Christelle Bertsch
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
| | - Davide Mancino
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
| | - Youssef Haikel
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
| |
Collapse
|
13
|
Bacteriocin Production by Bacillus Species: Isolation, Characterization, and Application. Probiotics Antimicrob Proteins 2022; 14:1151-1169. [PMID: 35881232 DOI: 10.1007/s12602-022-09966-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 12/25/2022]
Abstract
Antibiotic resistance is a problem that has been increasing lately; therefore, it is important to find new alternatives to treat infections induced by pathogens that cannot be eliminated with available products. Small antimicrobial peptides (AMPs) known as bacteriocin could be an alternative to antibiotics because they have shown to be effective against a great number of multidrug-resistant microbes. In addition to its high specificity against microbial pathogens and its low cytotoxicity against human cells, most bacteriocin present tolerance to enzyme degradation and stability to temperature and pH alterations. Bacteriocins are small peptides with a great diversity of structures and functions; however, their mechanisms of action are still not well understood. In this review, bacteriocin produced by Bacillus species will be described, especially its mechanisms of action, culture conditions used to improve its production and state-of-the-art methodologies applied to identify them. Bacteriocin utilization as food preservatives and as new molecules to treat cancer also will be discussed.
Collapse
|
14
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
15
|
Zhou L, Lian K, Wang M, Jing X, Zhang Y, Cao J. The antimicrobial effect of a novel peptide LL-1 on Escherichia coli by increasing membrane permeability. BMC Microbiol 2022; 22:220. [PMID: 36117157 PMCID: PMC9484052 DOI: 10.1186/s12866-022-02621-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background The widespread use of antibiotics has led to the emergence of many drug-resistant strains; thus, the development of new antibacterial drugs is essential with antimicrobial peptides becoming the focus of research. This study assessed the antibacterial effect of a novel antimicrobial peptide, named LL-1 on Escherichia coli (E.coli) by determining the minimum inhibitory concentration (MIC) and the antibacterial curve. The interaction between LL-1 and E. coli DNA was then detected by nucleic acid gel electrophoresis. The effect of LL-1 on the E. coli cell membrane was assessed by detecting the leakage of β-galactosidase, nucleic acid and protein. The influence of LL-1 on the intracellular ATP of E. coli was analysed by determining the concentration of intracellular ATP. Finally, the bacteria and colonies of E. coli treated with LL-1 were observed using scanning and transmission electron microscopy. Results The results suggested that the MIC value was 3.125 µg/ml, and the antibacterial effect was dose-dependent. LL-1 dose-dependently combined with E. coli DNA. LL-1 resulted in the leakage of intracellular β-galactosidase, nucleic acid and protein, and decreased intracellular ATP concentrations of E. coli. Two MIC of LL-1 caused E. coli to shrink, resulting in a rough surface, plasmolysis, and bacterial adhesion. Conclusion This study indicated that LL-1 had a good bactericidal effect on E. coli by mainly increasing the permeability of the cell membrane, leading to leakage of the intracellular content. This will lay the foundation for an in-depth study on the antibacterial mechanism of LL-1 against E. coli and its clinical application. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02621-y.
Collapse
Affiliation(s)
- Lingling Zhou
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.,College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, People's Republic of China
| | - Kaiqi Lian
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, People's Republic of China.,Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang, 455000, Henan, People's Republic of China
| | - Mengting Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, People's Republic of China
| | - Xueyi Jing
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, People's Republic of China
| | - Yuanchen Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, People's Republic of China.,Taihang Mountain Forest Pests Observation and Research Station of Henan Province, Linzhou, 456550, Henan, People's Republic of China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.
| |
Collapse
|
16
|
Li S, Wang Y, Zhong L, Wang S, Liu Z, Dai Y, He Y, Feng Z. Boron-Promoted Umpolung Reaction of Sulfonyl Chlorides for the Stereospecific Synthesis of Thioglycosides via Reductive Deoxygenation Coupling Reactions. Org Lett 2022; 24:2463-2468. [PMID: 35333062 DOI: 10.1021/acs.orglett.2c00353] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
S-Glycosides have broad biological activities and serve as stable mimics of natural O-glycoside counterparts and thus are of great therapeutic potential. Herein we disclose an efficient method for the stereospecific synthesis of 1-thioglycosides via a boron-promoted reductive deoxygenation coupling reaction from readily accessible sulfonyl chlorides and glycosyl bromides. Our protocol features mild conditions and excellent functional group tolerance and stereoselectivity. The translational potential of this metal-free approach is demonstrated by the late-stage glycodiversification of natural products and drug molecules.
Collapse
Affiliation(s)
- Siyu Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yujuan Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Lei Zhong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Siyu Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Zhengli Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yuanwei Dai
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Zhang Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
| |
Collapse
|
17
|
Antimicrobial Bacillus: Metabolites and Their Mode of Action. Antibiotics (Basel) 2022; 11:antibiotics11010088. [PMID: 35052965 PMCID: PMC8772736 DOI: 10.3390/antibiotics11010088] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/12/2022] Open
Abstract
The agricultural industry utilizes antibiotic growth promoters to promote livestock growth and health. However, the World Health Organization has raised concerns over the ongoing spread of antibiotic resistance transmission in the populace, leading to its subsequent ban in several countries, especially in the European Union. These restrictions have translated into an increase in pathogenic outbreaks in the agricultural industry, highlighting the need for an economically viable, non-toxic, and renewable alternative to antibiotics in livestock. Probiotics inhibit pathogen growth, promote a beneficial microbiota, regulate the immune response of its host, enhance feed conversion to nutrients, and form biofilms that block further infection. Commonly used lactic acid bacteria probiotics are vulnerable to the harsh conditions of the upper gastrointestinal system, leading to novel research using spore-forming bacteria from the genus Bacillus. However, the exact mechanisms behind Bacillus probiotics remain unexplored. This review tackles this issue, by reporting antimicrobial compounds produced from Bacillus strains, their proposed mechanisms of action, and any gaps in the mechanism studies of these compounds. Lastly, this paper explores omics approaches to clarify the mechanisms behind Bacillus probiotics.
Collapse
|
18
|
Zhang QY, Yan ZB, Meng YM, Hong XY, Shao G, Ma JJ, Cheng XR, Liu J, Kang J, Fu CY. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res 2021; 8:48. [PMID: 34496967 PMCID: PMC8425997 DOI: 10.1186/s40779-021-00343-2] [Citation(s) in RCA: 323] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
The management of bacterial infections is becoming a major clinical challenge due to the rapid evolution of antibiotic resistant bacteria. As an excellent candidate to overcome antibiotic resistance, antimicrobial peptides (AMPs) that are produced from the synthetic and natural sources demonstrate a broad-spectrum antimicrobial activity with the high specificity and low toxicity. These peptides possess distinctive structures and functions by employing sophisticated mechanisms of action. This comprehensive review provides a broad overview of AMPs from the origin, structural characteristics, mechanisms of action, biological activities to clinical applications. We finally discuss the strategies to optimize and develop AMP-based treatment as the potential antimicrobial and anticancer therapeutics.
Collapse
Affiliation(s)
- Qi-Yu Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Zhi-Bin Yan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Yue-Ming Meng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Xiang-Yu Hong
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Gang Shao
- Department of Oncology, The 903rd Hospital of PLA, Hangzhou, 310013, Zhejiang, China
| | - Jun-Jie Ma
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Xu-Rui Cheng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Jun Liu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Jian Kang
- Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cai-Yun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
19
|
Biswas S, Wu C, van der Donk WA. The Antimicrobial Activity of the Glycocin Sublancin Is Dependent on an Active Phosphoenolpyruvate-Sugar Phosphotransferase System. ACS Infect Dis 2021; 7:2402-2412. [PMID: 34242010 DOI: 10.1021/acsinfecdis.1c00157] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antimicrobial resistance is a global challenge that is compounded by the limited number of available targets. Glycocins are antimicrobial glycopeptides that are believed to have novel targets. Previous studies have shown that the mechanism of action of the glycocin sublancin 168 involves the glucose uptake system. The phosphoenolpyruvate:sugar phosphotransferase system (PTS) phosphorylates the C6 hydroxyl group on glucose during import. Since sublancin carries a glucose on a Cys on an exposed loop, we investigated whether phosphorylation of this glucose might be involved in its mechanism of action by replacement with xylose. Surprisingly, the xylose analog was more active than wild-type sublancin and still required the glucose PTS for activity. Overexpression of the individual components of the PTS rendered cells more sensitive to sublancin, and their resistance frequency was considerably decreased. These observations suggest that sublancin is activated in some form by the glucose PTS or that sublancin imparts a deleterious gain-of-function on the PTS. Superresolution microscopy studies with fluorescent sublancin and fluorescently labeled PTS proteins revealed localization of both at the poles of cells. Resistant mutants raised under conditions that would minimize mutation of the PTS revealed mutations in FliQ, a protein involved in the flagellar protein export process. Overexpression of FliQ lead to decreased sensitivity of cells to sublancin. Collectively, these findings enforce a model in which the PTS is required for sublancin activity, either by inducing a deleterious gain-of-function or by activating or transporting sublancin.
Collapse
|
20
|
Abstract
Phages are viruses of bacteria and are the smallest and most common biological entities in the environment. They can reproduce immediately after infection or integrate as a prophage into their host genome. SPβ is a prophage of the Gram-positive model organism Bacillus subtilis 168, and it has been known for more than 50 years. It is sensitive to dsDNA damage and is induced through exposure to mitomycin C or UV radiation. When induced from the prophage, SPβ requires 90 min to produce and release about 30 virions. Genomes of sequenced related strains range between 128 and 140 kb, and particle-packed dsDNA exhibits terminal redundancy. Formed particles are of the Siphoviridae morphotype. Related isolates are known to infect other B. subtilis clade members. When infecting a new host, SPβ presumably follows a two-step strategy, adsorbing primarily to teichoic acid and secondarily to a yet unknown factor. Once in the host, SPβ-related phages pass through complex lysis-lysogeny decisions and either enter a lytic cycle or integrate as a dormant prophage. As prophages, SPβ-related phages integrate at the host chromosome's replication terminus, and frequently into the spsM or kamA gene. As a prophage, it imparts additional properties to its host via phage-encoded proteins. The most notable of these functional proteins is sublancin 168, which is used as a molecular weapon by the host and ensures prophage maintenance. In this review, we summarise the existing knowledge about the biology of the phage regarding its life cycle and discuss its potential as a research object.
Collapse
Affiliation(s)
- Katharina Kohm
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Robert Hertel
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany.
| |
Collapse
|
21
|
Fujinami D, Garcia de Gonzalo CV, Biswas S, Hao Y, Wang H, Garg N, Lukk T, Nair SK, van der Donk WA. Structural and mechanistic investigations of protein S-glycosyltransferases. Cell Chem Biol 2021; 28:1740-1749.e6. [PMID: 34283964 DOI: 10.1016/j.chembiol.2021.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/06/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Attachment of sugars to nitrogen and oxygen in peptides is ubiquitous in biology, but glycosylation of sulfur atoms has only been recently described. Here, we characterize two S-glycosyltransferases SunS and ThuS that selectively glycosylate one of five Cys residues in their substrate peptides; substitution of this Cys with Ser results in a strong decrease in glycosylation activity. Crystal structures of SunS and ThuS in complex with UDP-glucose or a derivative reveal an unusual architecture in which a glycosyltransferase type A (GTA) fold is decorated with additional domains to support homodimerization. Dimer formation creates an extended cavity for the substrate peptide, drawing functional analogy with O-glycosyltransferases involved in cell wall biosynthesis. This extended cavity contains a sharp bend that may explain the site selectivity of the glycosylation because the target Cys is in a Gly-rich stretch that can accommodate the bend. These studies establish a molecular framework for understanding the unusual S-glycosyltransferases.
Collapse
Affiliation(s)
- Daisuke Fujinami
- Howard Hughes Medical Institute and Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Chantal V Garcia de Gonzalo
- Howard Hughes Medical Institute and Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Subhanip Biswas
- Howard Hughes Medical Institute and Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Yue Hao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Huan Wang
- Howard Hughes Medical Institute and Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Neha Garg
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Tiit Lukk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
22
|
Dragoš A, Andersen AJC, Lozano-Andrade CN, Kempen PJ, Kovács ÁT, Strube ML. Phages carry interbacterial weapons encoded by biosynthetic gene clusters. Curr Biol 2021; 31:3479-3489.e5. [PMID: 34186025 DOI: 10.1016/j.cub.2021.05.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/16/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023]
Abstract
Bacteria produce diverse specialized metabolites that mediate ecological interactions and serve as a rich source of industrially relevant natural products. Biosynthetic pathways for these metabolites are encoded by organized groups of genes called biosynthetic gene clusters (BGCs). Understanding the natural function and distribution of BGCs provides insight into the mechanisms through which microorganisms interact and compete. Further, understanding BGCs is extremely important for biocontrol and the mining of new bioactivities. Here, we investigated phage-encoded BGCs (pBGCs), challenging the relationship between phage origin and BGC structure and function. The results demonstrated that pBGCs are rare, and they predominantly reside within temperate phages infecting commensal or pathogenic bacterial hosts. Further, the vast majority of pBGCs were found to encode for bacteriocins. Using the soil- and gut-associated bacterium Bacillus subtilis, we experimentally demonstrated how a temperate phage equips a bacterium with a fully functional BGC, providing a clear competitive fitness advantage over the ancestor. Moreover, we demonstrated a similar transfer of the same phage in prophage form. Finally, using genetic and genomic comparisons, a strong association between pBGC type and phage host range was revealed. These findings suggest that bacteriocins are encoded in temperate phages of a few commensal bacterial genera. In these cases, lysogenic conversion provides an evolutionary benefit to the infected host and, hence, to the phage itself. This study is an important step toward understanding the natural role of bacterial compounds encoded by BGCs, the mechanisms driving their horizontal transfer, and the sometimes mutualistic relationship between bacteria and temperate phages.
Collapse
Affiliation(s)
- Anna Dragoš
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark.
| | - Aaron J C Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Carlos N Lozano-Andrade
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Paul J Kempen
- Department of Health Technology, Technical University of Denmark, Produktionstorvet bldg. 423, DK-2800 Kgs Lyngby, Denmark; National Center for Nano Fabrication and Characterization, Technical University of Denmark, Fysikvej bldg. 307, DK-2800 Kgs Lyngby, Denmark
| | - Ákos T Kovács
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark.
| |
Collapse
|
23
|
Groenevelt JM, Corey DJ, Fehl C. Chemical Synthesis and Biological Applications of O-GlcNAcylated Peptides and Proteins. Chembiochem 2021; 22:1854-1870. [PMID: 33450137 DOI: 10.1002/cbic.202000843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/15/2021] [Indexed: 12/25/2022]
Abstract
All human cells use O-GlcNAc protein modifications (O-linked N-acetylglucosamine) to rapidly adapt to changing nutrient and stress conditions through signaling, epigenetic, and proteostasis mechanisms. A key challenge for biologists in defining precise roles for specific O-GlcNAc sites is synthetic access to homogenous isoforms of O-GlcNAc proteins, a result of the non-genetically templated, transient, and heterogeneous nature of O-GlcNAc modifications. Toward a solution, this review details the state of the art of two strategies for O-GlcNAc protein modification: advances in "bottom-up" O-GlcNAc peptide synthesis and direct "top-down" installation of O-GlcNAc on full proteins. We also describe key applications of synthetic O-GlcNAc peptide and protein tools as therapeutics, biophysical structure-function studies, biomarkers, and as disease mechanistic probes to advance translational O-GlcNAc biology.
Collapse
Affiliation(s)
- Jessica M Groenevelt
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Daniel J Corey
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Charlie Fehl
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
24
|
Qiao M, Zhang L, Jiao R, Zhang S, Li B, Zhang X. Chemical and enzymatic synthesis of S-linked sugars and glycoconjugates. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Soltani S, Hammami R, Cotter PD, Rebuffat S, Said LB, Gaudreau H, Bédard F, Biron E, Drider D, Fliss I. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol Rev 2021; 45:fuaa039. [PMID: 32876664 PMCID: PMC7794045 DOI: 10.1093/femsre/fuaa039] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
In recent decades, bacteriocins have received substantial attention as antimicrobial compounds. Although bacteriocins have been predominantly exploited as food preservatives, they are now receiving increased attention as potential clinical antimicrobials and as possible immune-modulating agents. Infections caused by antibiotic-resistant bacteria have been declared as a global threat to public health. Bacteriocins represent a potential solution to this worldwide threat due to their broad- or narrow-spectrum activity against antibiotic-resistant bacteria. Notably, despite their role in food safety as natural alternatives to chemical preservatives, nisin remains the only bacteriocin legally approved by regulatory agencies as a food preservative. Moreover, insufficient data on the safety and toxicity of bacteriocins represent a barrier against the more widespread use of bacteriocins by the food and medical industry. Here, we focus on the most recent trends relating to the application of bacteriocins, their toxicity and impacts.
Collapse
Affiliation(s)
- Samira Soltani
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - Riadh Hammami
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 75 Laurier Ave. E, Ottawa, ON K1N 6N5, Canada
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996 Ireland
- APC Microbiome Ireland, Institute and school of Microbiology, University College Cork, Western Road, Cork, T12 YN60, Ireland
| | - Sylvie Rebuffat
- Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM), UMR 7245 CNRS-MNHN, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Laila Ben Said
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - Hélène Gaudreau
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - François Bédard
- Faculty of Pharmacy and Centre de Recherche en Endocrinologie Moléculaire et Oncologique et Génomique Humaine, Université Laval, 2705 Boulevard Laurier, Quebec G1V 4G2, Canada
| | - Eric Biron
- Faculty of Pharmacy and Centre de Recherche en Endocrinologie Moléculaire et Oncologique et Génomique Humaine, Université Laval, 2705 Boulevard Laurier, Quebec G1V 4G2, Canada
| | - Djamel Drider
- Institut Charles Viollette, Université de Lille, EA 7394, 53955 Villeneuve d'Ascq, France
| | - Ismail Fliss
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
- Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga, Québec G1V 0A6, Canada
| |
Collapse
|
26
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 488] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
27
|
SELECT-GLYCOCIN: a recombinant microbial system for expression and high-throughput screening of glycocins. Glycoconj J 2020; 38:233-250. [PMID: 33206284 DOI: 10.1007/s10719-020-09960-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/03/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022]
Abstract
Glycosylated bacteriocins (glycocins) are potential clean label food preservatives and new alternatives to antibiotics. Further development requires the availability of a method for laboratory evolution of glycocins, wherein the challenges to overcome include ensuring glycosylation in a heterologous host, avoiding potential toxicity of active glycocins to the host, and provisioning of a one-pot screening assay for active mutants. Employing EntS, a sequential O/S- di-glycosyltransferase from Enterococcus faecalis TX0104, a proof of the concept microbial system and high throughput screening assay (SELECT-GLYCOCIN) is developed for generation of O/S- linked glycopeptide libraries and screening of glycocins for desired activity/property. The method enabled enzyme-dependent in vivo glycosylation in the heterologous host and rapid screening of mutants of enterocin 96 (Ent96)- a glycocin active against food-borne pathogen L. monocytogenes. Using SELECT-GLYCOCIN, a library of random (1.5 X 10^3) and rational (17) mutants of Ent96 was generated. The mutants were screened for bioactivity to identify a total of 376 random and 14 rational mutants as bioactive. Downstream detailed analysis of 16 random and 14 rational mutants led to the identification of sequence- and or glyco-variants namely, G16E-H24Q, C13T, and Ent96-K4_K5insYYGNGV (PedioEnt96) as improved antimicrobials. To summaries, SELECT-GLYCOCIN provides a system and a generic method for discovery and screening of glycocins that can further be adapted to any known/unknown glycocins and can be employed in food preservatives' and drug discovery programs.
Collapse
|
28
|
Singh V, Rao A. Distribution and diversity of glycocin biosynthesis gene clusters beyond Firmicutes. Glycobiology 2020; 31:89-102. [PMID: 32614945 DOI: 10.1093/glycob/cwaa061] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Glycocins are the ribosomally synthesized glycosylated bacteriocins discovered and characterized in Firmicutes, only. These peptides have antimicrobial activity against several pathogenic bacteria, including Streptococcus pyogenes , methicillin-resistant Staphylococcus aureus and food-spoilage bacteria Listeria monocytogenes. Glycocins exhibit immunostimulatory properties and make a promising source of new antibiotics and food preservatives akin to Nisin. Biochemical studies of Sublancin, Glycocin F, Pallidocin and ASM1 prove that the nested disulfide-bonds are essential for their bioactivities. Using in silico approach of genome mining coupled with manual curation, here we identify 220 new putative glycocin biosynthesis gene clusters (PGBCs) spread across 153 bacterial species belonging to seven different bacterial phyla. Based on gene composition, we have grouped these PGBCs into five distinct conserved cluster Types I-V. All experimentally identified glycocins belong to Type I PGBCs. From protein sequence based phylograms, tanglegrams, global similarity heat-maps and cumulative mutual information analysis, it appears that glycocins may have originated from closely related bacteriocins, whereas recruitment of cognate glycosyltransferases (GTs) might be an independent event. Analysis further suggests that GTs may have coevolved with glycocins in cluster-specific manner to define distinctive donor specificities of GTs or to contribute to glycocin diversity across these clusters. We further identify 162 hitherto unreported PGBCs wherein the corresponding product glycocins have three or less than three cysteines. Secondary structure predictions suggest that these putative glycocins may not form di-nested disulfide-bonds. Therefore, production of such glycocins in heterologous host Escherichia coli is feasible and may provide novel antimicrobial spectrum and or mechanism of action for varied applications.
Collapse
Affiliation(s)
- Vaidhvi Singh
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Alka Rao
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India.,Academy of Scientific and Innovation Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, India
| |
Collapse
|
29
|
Sharma D, Singh SS, Baindara P, Sharma S, Khatri N, Grover V, Patil PB, Korpole S. Surfactin Like Broad Spectrum Antimicrobial Lipopeptide Co-produced With Sublancin From Bacillus subtilis Strain A52: Dual Reservoir of Bioactives. Front Microbiol 2020; 11:1167. [PMID: 32595619 PMCID: PMC7300217 DOI: 10.3389/fmicb.2020.01167] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/07/2020] [Indexed: 01/31/2023] Open
Abstract
An antimicrobial substance producing strain designated as A52 was isolated from a marine sediment sample and identified as Bacillus sp., based on 16S rRNA gene sequence analysis. The ANI and dDDH analysis of the genome sequence displayed high identity with two strains of B. subtilis sub sp. subtilis. Strain A52 yielded two antimicrobial peptides (AMPs) that differed in activity spectrum. MALDI mass spectrometry analysis of HPLC purified fractions revealed mass of peptides as 3881.6 and 1061.9 Da. The antiSMASH analysis of genome sequence unraveled presence of identical biosynthetic cluster involved in production of sublancin from B. subtilis sub sp. subtilis strain 168, which yielded peptide with identical mass. The low molecular weight peptide is found to be a cyclic lipopeptide containing C16 β-hydroxy fatty acid that resembled surfactin-like group of biosurfactants. However, it differed in fatty acid composition and antimicrobial spectrum in comparison to other surfactins produced by strains of B. subtilis. It exhibited broad spectrum antibacterial activity, inhibited growth of pathogenic strains of Candida and filamentous fungi. Further, it exhibited hemolytic activity, but did not show phytotoxic effect in seed germination experiment. The emulgel formulation of surfactin-like lipopeptide showed antimicrobial activity in vitro and did not show any irritation effects in animal studies using BALB/c mice. Moreover, surfactin-like lipopeptide displayed synergistic activity with fluconazole against Candida, indicating its potential for external therapeutic applications.
Collapse
Affiliation(s)
- Deepika Sharma
- Council of Scientific and Industrial Research (CSIR) - Institute of Microbial Technology, Chandigarh, India
| | - Shelley Sardul Singh
- Council of Scientific and Industrial Research (CSIR) - Institute of Microbial Technology, Chandigarh, India
| | - Piyush Baindara
- Council of Scientific and Industrial Research (CSIR) - Institute of Microbial Technology, Chandigarh, India
| | - Shikha Sharma
- Council of Scientific and Industrial Research (CSIR) - Institute of Microbial Technology, Chandigarh, India
| | - Neeraj Khatri
- Council of Scientific and Industrial Research (CSIR) - Institute of Microbial Technology, Chandigarh, India
| | - Vishakha Grover
- Dr. Harvansh Singh Judge Institute of Dental Sciences & Hospital, Panjab University, Chandigarh, India
| | - Prabhu B Patil
- Council of Scientific and Industrial Research (CSIR) - Institute of Microbial Technology, Chandigarh, India
| | - Suresh Korpole
- Council of Scientific and Industrial Research (CSIR) - Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
30
|
A Novel Adjuvant "Sublancin" Enhances Immune Response in Specific Pathogen-Free Broiler Chickens Inoculated with Newcastle Disease Vaccine. J Immunol Res 2019; 2019:1016567. [PMID: 31871952 PMCID: PMC6913348 DOI: 10.1155/2019/1016567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023] Open
Abstract
Sublancin is a glycosylated antimicrobial peptide produced by Bacillus subtilis 168 possessing antibacterial and immunomodulatory activities. This study was aimed at investigating the effects of sublancin on immune functions and serum antibody titer in specific pathogen-free (SPF) broiler chickens vaccinated with Newcastle disease (ND) vaccine. For this purpose, 3 experiments were performed. Experiment 1: SPF broiler chicks (14 days old) were randomly allotted to 1 of 7 groups including a blank control (BC), vaccine control (VC), and 5 (3-7) vaccinated and sublancin supplemented at 5, 15, 30, 45, and 60 mg activity/L of water, respectively. Vaccinated groups (2-7) were vaccinated with ND vaccine by intranasal and intraocular routes at the 14th day. On 7, 14, 21, and 28 days post vaccination (dpv), the blood samples were collected for the determination of serum hemagglutination inhibition (HI) antibody titer. Experiment 2: SPF broiler chicks were divided into 1 of 3 groups, i.e., blank control (BC), vaccine control (VC), and sublancin treatment (ST). On 7, 14, and 21 dpv, the blood samples were collected for measuring HI antibody titer by micromethod. Experiment 3: the design of this experiment was the same as that of experiment 2. On 7 and 21 dpv, pinocytosis of peritoneal macrophages, B lymphocyte proliferation assay, measurement of CD4+ and CD8+ T cells, and serum cytokine quantitation were carried out. It was noted that sublancin promoted B lymphocyte proliferation, increased the proportion of CD8+ T lymphocyte subpopulations, and enhanced the antibody titer in broiler chickens. In addition, it was also observed that sublancin has the potential to induce the secretion of IFN-γ, IL-10, and IL-4. In conclusion, these findings suggested that sublancin could promote both humoral and cellular immune responses and has the potential to be a promising vaccine adjuvant.
Collapse
|
31
|
Zhu S, Samala G, Sletten ET, Stockdill JL, Nguyen HM. Facile triflic acid-catalyzed α-1,2- cis-thio glycosylations: scope and application to the synthesis of S-linked oligosaccharides, glycolipids, sublancin glycopeptides, and T N/T F antigens. Chem Sci 2019; 10:10475-10480. [PMID: 32110337 PMCID: PMC7020787 DOI: 10.1039/c9sc04079j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/30/2019] [Indexed: 01/22/2023] Open
Abstract
Studies of S-linked glycoconjugates have attracted growing interest because of their enhanced chemical stability and enzymatic resistance over O-glycoside counterparts.
Studies of S-linked glycoconjugates have attracted growing interest because of their enhanced chemical stability and enzymatic resistance over O-glycoside counterparts. We here report a facile approach to access α-1,2-cis-S-linked glycosides using triflic acid as a catalyst to promote the glycosylation of a series of thiols with d-glucosamine, galactosamine, glucose, and galactose electrophiles. This method is broadly applicable for the stereoselective synthesis of S-linked glycopeptides, oligosaccharides and glycolipids in high yield and excellent α-selectivity. Many of the synthetic limitations associated with the preparation of these S-linked products are overcome by this catalytic method.
Collapse
Affiliation(s)
- Sanyong Zhu
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , USA . ;
| | - Ganesh Samala
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , USA . ;
| | - Eric T Sletten
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , USA
| | - Jennifer L Stockdill
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , USA . ;
| | - Hien M Nguyen
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , USA . ;
| |
Collapse
|
32
|
Ogawara H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules 2019; 24:E3430. [PMID: 31546630 PMCID: PMC6804068 DOI: 10.3390/molecules24193430] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance poses a tremendous threat to human health. To overcome this problem, it is essential to know the mechanism of antibiotic resistance in antibiotic-producing and pathogenic bacteria. This paper deals with this problem from four points of view. First, the antibiotic resistance genes in producers are discussed related to their biosynthesis. Most resistance genes are present within the biosynthetic gene clusters, but some genes such as paromomycin acetyltransferases are located far outside the gene cluster. Second, when the antibiotic resistance genes in pathogens are compared with those in the producers, resistance mechanisms have dependency on antibiotic classes, and, in addition, new types of resistance mechanisms such as Eis aminoglycoside acetyltransferase and self-sacrifice proteins in enediyne antibiotics emerge in pathogens. Third, the relationships of the resistance genes between producers and pathogens are reevaluated at their amino acid sequence as well as nucleotide sequence levels. Pathogenic bacteria possess other resistance mechanisms than those in antibiotic producers. In addition, resistance mechanisms are little different between early stage of antibiotic use and the present time, e.g., β-lactam resistance in Staphylococcus aureus. Lastly, guanine + cytosine (GC) barrier in gene transfer to pathogenic bacteria is considered. Now, the resistance genes constitute resistome composed of complicated mixture from divergent environments.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, 33-9, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, 522-1, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
33
|
Enhancement of Macrophage Function by the Antimicrobial Peptide Sublancin Protects Mice from Methicillin-Resistant Staphylococcus aureus. J Immunol Res 2019; 2019:3979352. [PMID: 31583256 PMCID: PMC6754899 DOI: 10.1155/2019/3979352] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/02/2019] [Indexed: 01/12/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is the major pathogen responsible for community and hospital bacterial infections. Sublancin, a glucosylated antimicrobial peptide isolated from Bacillus subtilis 168, possesses antibacterial infective effects. In this study, we investigated the role and anti-infection mechanism of sublancin in a mouse model of MRSA-induced sublethal infection. Sublancin could modulate innate immunity by inducing the production of IL-1β, IL-6, TNF-α, and nitric oxide, enhancing phagocytosis and MRSA-killing activity in both RAW264.7 cells and mouse peritoneal macrophages. The enhanced macrophage function by the peptide in vitro correlated with stronger protective activity in vivo in the MRSA-invasive sublethal infection model. Macrophage activation by sublancin was found to be partly dependent on TLR4 and the NF-κB and MAPK signaling pathways. Moreover, oral administration of sublancin increased the frequencies of CD4+ and CD8+ T cells in mesenteric lymph nodes. The protective activity of sublancin was associated with in vivo augmenting phagocytic activity of peritoneal macrophages and partly improving T cell-mediated immunity. Macrophages thus represent a potentially pivotal and novel target for future development of innate defense regulator therapeutics against S. aureus infection.
Collapse
|