1
|
Stephens DR, Fung HYJ, Han Y, Liang J, Chen Z, Ready J, Collins JJ. A genome-scale drug discovery pipeline uncovers new therapeutic targets and a unique p97 allosteric binding site in Schistosoma mansoni. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643303. [PMID: 40161785 PMCID: PMC11952559 DOI: 10.1101/2025.03.14.643303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Schistosomes are parasitic flatworms that infect more than 200 million people globally. However, there is a shortage of molecular tools that enable the discovery of potential drug targets within schistosomes. Thus, praziquantel has remained the frontline treatment for schistosomiasis despite known liabilities. Here, we have conducted a genome-wide study in S. mansoni using the human druggable genome as a bioinformatic template to identify essential genes within schistosomes bearing similarity to catalogued drug targets. Then, we assessed these candidate targets in silico using a set of unbiased criteria to determine which possess ideal characteristics for a ready-made drug discovery campaign. Following this prioritization, we pursued a parasite p97 ortholog as a bona-fide drug target for the development of therapeutics to treat schistosomiasis. From this effort, we identified a covalent inhibitor series that kills schistosomes through an on-target killing mechanism by disrupting the ubiquitin proteasome system. Fascinatingly, these inhibitors induce a conformational change in the conserved D2 domain P-loop of schistosome p97 upon modification of Cys519. This conformational change reveals an allosteric binding site adjacent to the D2 domain active site reminiscent of the 'DFG' flip in protein kinases. This allosteric binding site can potentially be utilized to generate new classes of species-selective p97 inhibitors. Furthermore, these studies provide a resource for the development of alternative therapeutics for schistosomiasis and a workflow to identify potential drug targets in similar systems with few available molecular tools.
Collapse
Affiliation(s)
- Dylon R Stephens
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ho Yee Joyce Fung
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yan Han
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jue Liang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhe Chen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Joseph Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - James J Collins
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
2
|
Ardini M, Aboagye SY, Petukhova VZ, Kastrati I, Ippoliti R, Thatcher GRJ, Petukhov PA, Williams DL, Angelucci F. The "Doorstop Pocket" In Thioredoxin Reductases─An Unexpected Druggable Regulator of the Catalytic Machinery. J Med Chem 2024; 67:15947-15967. [PMID: 39250602 PMCID: PMC12013724 DOI: 10.1021/acs.jmedchem.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Pyridine nucleotide-disulfide oxidoreductases are underexplored as drug targets, and thioredoxin reductases (TrxRs) stand out as compelling pharmacological targets. Selective TrxR inhibition is challenging primarily due to the reliance on covalent inhibition strategies. Recent studies identified a regulatory and druggable pocket in Schistosoma mansoni thioredoxin glutathione reductase (TGR), a TrxR-like enzyme, and an established drug target for schistosomiasis. This site is termed the "doorstop pocket" because compounds that bind there impede the movement of an aromatic side-chain necessary for the entry and exit of NADPH and NADP+ during enzymatic turnover. This discovery spearheaded the development of new TGR inhibitors with efficacies surpassing those of current schistosomiasis treatment. Targeting the "doorstop pocket" is a promising strategy, as the pocket is present in all members of the pyridine nucleotide-disulfide oxidoreductase family, opening new avenues for exploring therapeutic approaches in diseases where the importance of these enzymes is established, including cancer and inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Matteo Ardini
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Sammy Y. Aboagye
- Dept. of Microbial Pathogens and Immunity, Rush University Medical Center, 60612 Chicago, IL USA
| | - Valentina Z. Petukhova
- Dept. of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 60612 Chicago, IL USA
| | - Irida Kastrati
- Department of Cancer Biology, Loyola University Chicago, 60153 Maywood, IL 60153, USA
| | - Rodolfo Ippoliti
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Gregory R. J. Thatcher
- Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, 85721 Tucson, AZ, USA
| | - Pavel A. Petukhov
- Dept. of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 60612 Chicago, IL USA
| | - David L. Williams
- Dept. of Microbial Pathogens and Immunity, Rush University Medical Center, 60612 Chicago, IL USA
| | - Francesco Angelucci
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
3
|
Ferraro F, Merlino A, Gil J, Pérez-Silanes S, Corvo I, Cabrera M. Flavonoid-Quinoxaline Hybrid Compounds as Cathepsin Inhibitors Against Fascioliasis. ChemMedChem 2024; 19:e202400305. [PMID: 38871654 DOI: 10.1002/cmdc.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Fasciola hepatica is a parasitic trematode that infects livestock animals and humans, causing significant health and economic burdens worldwide. The extensive use of anthelmintic drugs has led to the emergence of resistant parasite strains, posing a threat to treatment success. The complex life cycle of the liver fluke, coupled with limited funding and research interest, have hindered progress in drug discovery. Our group has been working in drug development against this parasite using cathepsin proteases as molecular targets, finding promising compound candidates with in vitro and in vivo efficacy. Here, we evaluated hybrid molecules that combine two chemotypes, chalcones and quinoxaline 1,4-di- N-oxides, previously found to inhibit F. hepatica cathepsin Ls and tested their in vitro activity with the isolated targets and the parasites in culture. These molecules proved to be good cathepsin inhibitors and to kill the juvenile parasites at micromolar concentrations. Also, we performed molecular docking studies to analyze the compounds-cathepsins interface, finding that the best inhibitors interact at the active site cleft and contact the catalytic dyad and residues belonging to the substrate binding pockets. We conclude that the hybrid compounds constitute promising scaffolds for the further development of new fasciolicidal compounds.
Collapse
Affiliation(s)
- Florencia Ferraro
- Laboratorio de I+D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Ruta 3 km 363, Paysandú, 60000, Uruguay
| | - Alicia Merlino
- Laboratorio de Química Teórica y Computacional, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Jorge Gil
- Laboratorio de Reproducción Animal, Producción y Reproducción de Rumiantes, Departamento de Ciencias Biológicas, CENUR Litoral Norte-Facultad de Veterinaria, Universidad de la República, Ruta 3 km 363, Paysandú, 60000, Uruguay
| | - Silvia Pérez-Silanes
- ISTUN Institute of Tropical Health, Department of Pharmaceutical Sciences, Universidad de Navarra, IdiSNA (Navarra Institute for Health Research), Campus Universitario, 31009, Pamplona, Spain
| | - Ileana Corvo
- Laboratorio de I+D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Ruta 3 km 363, Paysandú, 60000, Uruguay
| | - Mauricio Cabrera
- Laboratorio de I+D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Ruta 3 km 363, Paysandú, 60000, Uruguay
| |
Collapse
|
4
|
Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds in Medicinal Chemistry. ChemMedChem 2024; 19:e202400063. [PMID: 38778500 DOI: 10.1002/cmdc.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
The chemical and biological interest in this element and the molecules bearing selenium has been exponentially growing over the years. Selenium, formerly designated as a toxin, becomes a vital trace element for life that appears as selenocysteine and its dimeric form, selenocystine, in the active sites of selenoproteins, which catalyze a wide variety of reactions, including the detoxification of reactive oxygen species and modulation of redox activities. From the point of view of drug developments, organoselenium drugs are isosteres of sulfur-containing and oxygen-containing drugs with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. This statement is the paramount relevance considering the big number of clinically employed compounds bearing sulfur or oxygen atoms in their structures including nucleosides and carbohydrates. Thus, in this article we have focused on the relevant features of the application of selenium in medicinal chemistry. With the increasing interest in selenium chemistry, we have attempted to highlight the most significant published data on this subject, mainly concentrating the analysis on the last years. In consequence, the recent advances of relevant pharmacological organoselenium compounds are discussed.
Collapse
Affiliation(s)
- Carola Gallo-Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos, Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
5
|
Ja’afaru SC, Uzairu A, Bayil I, Sallau MS, Ndukwe GI, Ibrahim MT, Moin AT, Mollah AKMM, Absar N. Unveiling potent inhibitors for schistosomiasis through ligand-based drug design, molecular docking, molecular dynamics simulations and pharmacokinetics predictions. PLoS One 2024; 19:e0302390. [PMID: 38923997 PMCID: PMC11207139 DOI: 10.1371/journal.pone.0302390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 06/28/2024] Open
Abstract
Schistosomiasis is a neglected tropical disease which imposes a considerable and enduring impact on affected regions, leading to persistent morbidity, hindering child development, diminishing productivity, and imposing economic burdens. Due to the emergence of drug resistance and limited management options, there is need to develop additional effective inhibitors for schistosomiasis. In view of this, quantitative structure-activity relationship studies, molecular docking, molecular dynamics simulations, drug-likeness and pharmacokinetics predictions were applied to 39 Schistosoma mansoni Thioredoxin Glutathione Reductase (SmTGR) inhibitors. The chosen QSAR model demonstrated robust statistical parameters, including an R2 of 0.798, R2adj of 0.767, Q2cv of 0.681, LOF of 0.930, R2test of 0.776, and cR2p of 0.746, confirming its reliability. The most active derivative (compound 40) was identified as a lead candidate for the development of new potential non-covalent inhibitors through ligand-based design. Subsequently, 12 novel compounds (40a-40l) were designed with enhanced anti-schistosomiasis activity and binding affinity. Molecular docking studies revealed strong and stable interactions, including hydrogen bonding, between the designed compounds and the target receptor. Molecular dynamics simulations over 100 nanoseconds and MM-PBSA free binding energy (ΔGbind) calculations validated the stability of the two best-designed molecules. Furthermore, drug-likeness and pharmacokinetics prediction analyses affirmed the potential of these designed compounds, suggesting their promise as innovative agents for the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Saudatu Chinade Ja’afaru
- Department of Chemistry Ahmadu Bello University Zaria, Zaria, Nigeria
- Department of Chemistry, Aliko Dangote University of Science and Technology, Wudil, Kano, Nigeria
| | - Adamu Uzairu
- Department of Chemistry Ahmadu Bello University Zaria, Zaria, Nigeria
| | - Imren Bayil
- Department of Bioinformatics and Computational Biology, Gaziantep University, Gaziantep, Turkey
| | | | | | | | - Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | | | - Nurul Absar
- Department of Biochemistry and Biotechnology, Faculty of Basic Medical and Pharmaceutical Sciences, University of Science & Technology Chittagong, Khulshi, Chittagong, Bangladesh
| |
Collapse
|
6
|
Hillebrand L, Liang XJ, Serafim RAM, Gehringer M. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. J Med Chem 2024; 67:7668-7758. [PMID: 38711345 DOI: 10.1021/acs.jmedchem.3c01825] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covalent inhibitors and other types of covalent modalities have seen a revival in the past two decades, with a variety of new targeted covalent drugs having been approved in recent years. A key feature of such molecules is an intrinsically reactive group, typically a weak electrophile, which enables the irreversible or reversible formation of a covalent bond with a specific amino acid of the target protein. This reactive group, often called the "warhead", is a critical determinant of the ligand's activity, selectivity, and general biological properties. In 2019, we summarized emerging and re-emerging warhead chemistries to target cysteine and other amino acids (Gehringer, M.; Laufer, S. A. J. Med. Chem. 2019, 62, 5673-5724; DOI: 10.1021/acs.jmedchem.8b01153). Since then, the field has rapidly evolved. Here we discuss the progress on covalent warheads made since our last Perspective and their application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Laura Hillebrand
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Xiaojun Julia Liang
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
7
|
de Souza Neto LR, Montoya BO, Brandão-Neto J, Verma A, Bowyer S, Moreira-Filho JT, Dantas RF, Neves BJ, Andrade CH, von Delft F, Owens RJ, Furnham N, Silva-Jr FP. Fragment library screening by X-ray crystallography and binding site analysis on thioredoxin glutathione reductase of Schistosoma mansoni. Sci Rep 2024; 14:1582. [PMID: 38238498 PMCID: PMC10796382 DOI: 10.1038/s41598-024-52018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
Schistosomiasis is caused by parasites of the genus Schistosoma, which infect more than 200 million people. Praziquantel (PZQ) has been the main drug for controlling schistosomiasis for over four decades, but despite that it is ineffective against juvenile worms and size and taste issues with its pharmaceutical forms impose challenges for treating school-aged children. It is also important to note that PZQ resistant strains can be generated in laboratory conditions and observed in the field, hence its extensive use in mass drug administration programs raises concerns about resistance, highlighting the need to search for new schistosomicidal drugs. Schistosomes survival relies on the redox enzyme thioredoxin glutathione reductase (TGR), a validated target for the development of new anti-schistosomal drugs. Here we report a high-throughput fragment screening campaign of 768 compounds against S. mansoni TGR (SmTGR) using X-ray crystallography. We observed 49 binding events involving 35 distinct molecular fragments which were found to be distributed across 16 binding sites. Most sites are described for the first time within SmTGR, a noteworthy exception being the "doorstop pocket" near the NADPH binding site. We have compared results from hotspots and pocket druggability analysis of SmTGR with the experimental binding sites found in this work, with our results indicating only limited coincidence between experimental and computational results. Finally, we discuss that binding sites at the doorstop/NADPH binding site and in the SmTGR dimer interface, should be prioritized for developing SmTGR inhibitors as new antischistosomal drugs.
Collapse
Affiliation(s)
- Lauro Ribeiro de Souza Neto
- LaBECFar - Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Bogar Omar Montoya
- LaBECFar - Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - José Brandão-Neto
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Harwell, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Harwell, UK
| | - Anil Verma
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sebastian Bowyer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - José Teófilo Moreira-Filho
- LabMol - Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Rafael Ferreira Dantas
- LaBECFar - Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Bruno Junior Neves
- Laboratory of Cheminformatics, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Carolina Horta Andrade
- LabMol - Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
- CRAFT - Center for Research and Advancement of Fragments and Molecular Targets, University of São Paulo, São Paulo, Brazil
| | - Frank von Delft
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Harwell, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Harwell, UK
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Raymond J Owens
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Structural Biology, Rosalind Franklin Institute, Harwell, UK.
| | - Nicholas Furnham
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| | - Floriano Paes Silva-Jr
- LaBECFar - Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Wu X, Krishna Sudhakar H, Alcock LJ, Lau YH. Mannich Base PIP-199 Is a Chemically Unstable Pan-Assay Interference Compound. J Med Chem 2023; 66:11271-11281. [PMID: 37555818 DOI: 10.1021/acs.jmedchem.3c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Mannich base PIP-199 is the only reported small-molecule inhibitor of the Fanconi anemia complementation group M-RecQ-mediated genome instability protein (FANCM-RMI), a protein-protein interaction that governs genome instability in the genetic disorders Fanconi anemia and Bloom's syndrome. PIP-199 and analogues with the same indole-derived Mannich base scaffold have been used as tool compounds in diverse biological studies. We report the first published synthesis of PIP-199 and its analogues, demonstrating that PIP-199 immediately decomposes in common aqueous buffers and some organic solvents. Neither PIP-199 nor its more hydrolytically stable analogues show any observable activity in binding and competitive biophysical assays for FANCM-RMI. We conclude that PIP-199 is not an effective tool compound for biological studies and that apparent cellular activity likely arises from the nonspecific toxicity of breakdown products. More generally, apparent inhibitors that share this Mannich scaffold potentially represent a new family of pan-assay interference compounds (PAINS) that should be thoroughly assessed for aqueous stability prior to use in biological studies.
Collapse
Affiliation(s)
- Xinyi Wu
- School of Chemistry, The University of Sydney, Eastern Avenue, Camperdown, NSW 2006, Australia
| | | | - Lisa J Alcock
- School of Chemistry, The University of Sydney, Eastern Avenue, Camperdown, NSW 2006, Australia
| | - Yu Heng Lau
- School of Chemistry, The University of Sydney, Eastern Avenue, Camperdown, NSW 2006, Australia
| |
Collapse
|
9
|
Petukhova VZ, Aboagye SY, Ardini M, Lullo RP, Fata F, Byrne ME, Gabriele F, Martin LM, Harding LNM, Gone V, Dangi B, Lantvit DD, Nikolic D, Ippoliti R, Effantin G, Ling WL, Johnson JJ, Thatcher GRJ, Angelucci F, Williams DL, Petukhov PA. Non-covalent inhibitors of thioredoxin glutathione reductase with schistosomicidal activity in vivo. Nat Commun 2023; 14:3737. [PMID: 37349300 PMCID: PMC10287695 DOI: 10.1038/s41467-023-39444-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Only praziquantel is available for treating schistosomiasis, a disease affecting more than 200 million people. Praziquantel-resistant worms have been selected for in the lab and low cure rates from mass drug administration programs suggest that resistance is evolving in the field. Thioredoxin glutathione reductase (TGR) is essential for schistosome survival and a validated drug target. TGR inhibitors identified to date are irreversible and/or covalent inhibitors with unacceptable off-target effects. In this work, we identify noncovalent TGR inhibitors with efficacy against schistosome infections in mice, meeting the criteria for lead progression indicated by WHO. Comparisons with previous in vivo studies with praziquantel suggests that these inhibitors outperform the drug of choice for schistosomiasis against juvenile worms.
Collapse
Grants
- R33 AI127635 NIAID NIH HHS
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (Division of Intramural Research of the NIAID)
- Oncomelania hupensis subsp. hupensis, Chinese strain, infected with S. japonicum, Chinese strain, and Biomphalaria glabrata, strain NMRI, infected with S. mansoni, strain NMRI, were provided by the NIAID Schistosomiasis Resource Center for distribution through BEI Resources, NIAID, NIH. We are grateful to Dr. Guy Schoehn (Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Grenoble, France), Prof. Beatrice Vallone (Sapienza University of Rome, Italy) and Dr. Linda C. Montemiglio (IBPM, National Research Council, Italy) for helpful discussions of the cryo-EM studies. We acknowledge the Elettra-Sincrotrone Trieste (Italy) for support in X-ray data collections and the European Synchrotron Radiation Facility for provision of microscope time on CM01. The study was funded in part by US NIH/NIAID R33AI127635 to F.A., P.A.P., G.R.T. and D.L.W. This work benefited from access to Research Resources Centre and UICentre at University of Illinois at Chicago and used the platforms of the Grenoble Instruct-ERIC center (ISBG; UAR 3518 CNRS-CEA-UGA-EMBL) within the Grenoble Partnership for Structural Biology (PSB), supported by FRISBI (ANR-10-INBS-0005-02) and GRAL, financed within the University Grenoble Alpes graduate school (Ecoles Universitaires de Recherche) CBH-EUR-GS (ANR-17-EURE-0003). The IBS Electron Microscope facility is supported by the Auvergne Rhône-Alpes Region, the Fonds Feder, the Fondation pour la Recherche Médicale and GIS-IBiSA. The IBS acknowledges integration into the Interdisciplinary Research Institute of Grenoble (IRIG, CEA). M.A. has been supported by MIUR - Ministero dell'Istruzione Ministero dell'Università e della Ricerca (Ministry of Education, University and Research) under the national project FSE/FESR - PON Ricerca e Innovazione 2014-2020 (N° AIM1887574, CUP: E18H19000350007). We acknowledge OpenEye/Cadence for providing us with an academic license for the software used in these studies.
Collapse
Affiliation(s)
- Valentina Z Petukhova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Sammy Y Aboagye
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Matteo Ardini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rachel P Lullo
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Francesca Fata
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Margaret E Byrne
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Federica Gabriele
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Lucy M Martin
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Luke N M Harding
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Vamshikrishna Gone
- UICentre, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Bikash Dangi
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Daniel D Lantvit
- UICentre, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Dejan Nikolic
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Grégory Effantin
- University of Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France
| | - Wai Li Ling
- University of Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France
| | - Jeremy J Johnson
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Gregory R J Thatcher
- Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - David L Williams
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA.
| | - Pavel A Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
10
|
Gencheva R, Cheng Q, Arnér ESJ. Thioredoxin reductase selenoproteins from different organisms as potential drug targets for treatment of human diseases. Free Radic Biol Med 2022; 190:320-338. [PMID: 35987423 DOI: 10.1016/j.freeradbiomed.2022.07.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/25/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022]
Abstract
Human thioredoxin reductase (TrxR) is a selenoprotein with a central role in cellular redox homeostasis, utilizing a highly reactive and solvent-exposed selenocysteine (Sec) residue in its active site. Pharmacological modulation of TrxR can be obtained with several classes of small compounds showing different mechanisms of action, but most often dependent upon interactions with its Sec residue. The clinical implications of TrxR modulation as mediated by small compounds have been studied in diverse diseases, from rheumatoid arthritis and ischemia to cancer and parasitic infections. The possible involvement of TrxR in these diseases was in some cases serendipitously discovered, by finding that existing clinically used drugs are also TrxR inhibitors. Inhibiting isoforms of human TrxR is, however, not the only strategy for human disease treatment, as some pathogenic parasites also depend upon Sec-containing TrxR variants, including S. mansoni, B. malayi or O. volvulus. Inhibiting parasite TrxR has been shown to selectively kill parasites and can thus become a promising treatment strategy, especially in the context of quickly emerging resistance towards other drugs. Here we have summarized the basis for the targeting of selenoprotein TrxR variants with small molecules for therapeutic purposes in different human disease contexts. We discuss how Sec engagement appears to be an indispensable part of treatment efficacy and how some therapeutically promising compounds have been evaluated in preclinical or clinical studies. Several research questions remain before a wider application of selenoprotein TrxR inhibition as a first-line treatment strategy might be developed. These include further mechanistic studies of downstream effects that may mediate treatment efficacy, identification of isoform-specific enzyme inhibition patterns for some given therapeutic compounds, and the further elucidation of cell-specific effects in disease contexts such as in the tumor microenvironment or in host-parasite interactions, and which of these effects may be dependent upon the specific targeting of Sec in distinct TrxR isoforms.
Collapse
Affiliation(s)
- Radosveta Gencheva
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden; Department of Selenoprotein Research, National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary.
| |
Collapse
|
11
|
Hassan MM, Sedighi A, Olaoye OO, Häberli C, Merz A, Ramos-Morales E, de Araujo ED, Romier C, Jung M, Keiser J, Gunning PT. Phenotypic Screening of Histone Deacetylase (HDAC) Inhibitors against Schistosoma mansoni. ChemMedChem 2022; 17:e202100622. [PMID: 35983937 DOI: 10.1002/cmdc.202100622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 07/17/2022] [Indexed: 11/09/2022]
Abstract
Schistosomiasis is a prevalent yet neglected tropical parasitic disease caused by the Schistosoma genus of blood flukes. Praziquantel is the only currently available treatment, hence drug resistance poses a major threat. Recently, histone deacetylase 8 (HDAC8) selective inhibitors have been proposed as a viable treatment for schistosomiasis. Herein, we report the phenotypic screening of a focused library of small molecules of varying HDAC isozyme-inhibition profiles, including eight HDAC8 inhibitors with >10-fold selectivity in comparable functional inhibition assays and IC50 values against HDAC8<100 nM. HDAC8-selective inhibitors showed the lowest potency against Schistosoma mansoni newly transformed schistosomula (NTS). Pan-HDAC inhibitors MMH258, MMH259, and MMH373, as assessed by functional inhibition assays, with minimal or no-observed hHDAC8 and SmHDAC8 activities, were active against both NTS (MMH258, IC50 =1.5 μM; MMH259, IC50 =2.3 μM) and adult S. mansoni (MMH258, IC50 =2.1 μM; MMH373, IC50 =3.4 μM). Our results indicate that neither hHDAC8 nor SmHDAC8 activity were directly correlated to their NTS and adult S. mansoni activities.
Collapse
Affiliation(s)
- Muhammad Murtaza Hassan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Abootaleb Sedighi
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Olasunkanmi O Olaoye
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Cécile Häberli
- Swiss Tropical and Public Health Institute, 4123, Allschwil, Switzerland.,University of Basel, 4003, Basel, Switzerland
| | - Annika Merz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Elizabeth Ramos-Morales
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67400, Illkirch, France.,Department of Integrated Structural Biology IGBMC, 1 rue Laurent Fries, B.P. 10142, 67404, Illkirch Cedex, France
| | - Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada
| | - Christophe Romier
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67400, Illkirch, France.,Department of Integrated Structural Biology IGBMC, 1 rue Laurent Fries, B.P. 10142, 67404, Illkirch Cedex, France
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, 4123, Allschwil, Switzerland.,University of Basel, 4003, Basel, Switzerland
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
12
|
A Hybrid of Amodiaquine and Primaquine Linked by Gold(I) Is a Multistage Antimalarial Agent Targeting Heme Detoxification and Thiol Redox Homeostasis. Pharmaceutics 2022; 14:pharmaceutics14061251. [PMID: 35745823 PMCID: PMC9229949 DOI: 10.3390/pharmaceutics14061251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Hybrid-based drugs linked through a transition metal constitute an emerging concept for Plasmodium intervention. To advance the drug design concept and enhance the therapeutic potential of this class of drugs, we developed a novel hybrid composed of quinolinic ligands amodiaquine (AQ) and primaquine (PQ) linked by gold(I), named [AuAQPQ]PF6. This compound demonstrated potent and efficacious antiplasmodial activity against multiple stages of the Plasmodium life cycle. The source of this activity was thoroughly investigated by comparing parasite susceptibility to the hybrid's components, the annotation of structure-activity relationships and studies of the mechanism of action. The activity of [AuAQPQ]PF6 for the parasite's asexual blood stages was influenced by the presence of AQ, while its activity against gametocytes and pre-erythrocytic parasites was influenced by both quinolinic components. Moreover, the coordination of ligands to gold(I) was found to be essential for the enhancement of potency, as suggested by the observation that a combination of quinolinic ligands does not reproduce the antimalarial potency and efficacy as observed for the metallic hybrid. Our results indicate that this gold(I) hybrid compound presents a dual mechanism of action by inhibiting the beta-hematin formation and enzymatic activity of thioredoxin reductases. Overall, our findings support the potential of transition metals as a dual chemical linker and an antiplasmodial payload for the development of hybrid-based drugs.
Collapse
|
13
|
Evolutionary Adaptations of Parasitic Flatworms to Different Oxygen Tensions. Antioxidants (Basel) 2022; 11:antiox11061102. [PMID: 35739999 PMCID: PMC9220675 DOI: 10.3390/antiox11061102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022] Open
Abstract
During the evolution of the Earth, the increase in the atmospheric concentration of oxygen gave rise to the development of organisms with aerobic metabolism, which utilized this molecule as the ultimate electron acceptor, whereas other organisms maintained an anaerobic metabolism. Platyhelminthes exhibit both aerobic and anaerobic metabolism depending on the availability of oxygen in their environment and/or due to differential oxygen tensions during certain stages of their life cycle. As these organisms do not have a circulatory system, gas exchange occurs by the passive diffusion through their body wall. Consequently, the flatworms developed several adaptations related to the oxygen gradient that is established between the aerobic tegument and the cellular parenchyma that is mostly anaerobic. Because of the aerobic metabolism, hydrogen peroxide (H2O2) is produced in abundance. Catalase usually scavenges H2O2 in mammals; however, this enzyme is absent in parasitic platyhelminths. Thus, the architecture of the antioxidant systems is different, depending primarily on the superoxide dismutase, glutathione peroxidase, and peroxiredoxin enzymes represented mainly in the tegument. Here, we discuss the adaptations that parasitic flatworms have developed to be able to transit from the different metabolic conditions to those they are exposed to during their life cycle.
Collapse
|
14
|
Fata F, Gencheva R, Cheng Q, Lullo R, Ardini M, Silvestri I, Gabriele F, Ippoliti R, Bulman CA, Sakanari JA, Williams DL, Arnér ESJ, Angelucci F. Biochemical and structural characterizations of thioredoxin reductase selenoproteins of the parasitic filarial nematodes Brugia malayi and Onchocerca volvulus. Redox Biol 2022; 51:102278. [PMID: 35276442 PMCID: PMC8914392 DOI: 10.1016/j.redox.2022.102278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 01/21/2023] Open
Abstract
Enzymes in the thiol redox systems of microbial pathogens are promising targets for drug development. In this study we characterized the thioredoxin reductase (TrxR) selenoproteins from Brugia malayi and Onchocerca volvulus, filarial nematode parasites and causative agents of lymphatic filariasis and onchocerciasis, respectively. The two filarial enzymes showed similar turnover numbers and affinities for different thioredoxin (Trx) proteins, but with a clear preference for the autologous Trx. Human TrxR1 (hTrxR1) had a high and similar specific activity versus the human and filarial Trxs, suggesting that, in vivo, hTrxR1 could possibly be the reducing agent of parasite Trxs once they are released into the host. Both filarial TrxRs were efficiently inhibited by auranofin and by a recently described inhibitor of human TrxR1 (TRi-1), but not as efficiently by the alternative compound TRi-2. The enzyme from B. malayi was structurally characterized also in complex with NADPH and auranofin, producing the first crystallographic structure of a nematode TrxR. The protein represents an unusual fusion of a mammalian-type TrxR protein architecture with an N-terminal glutaredoxin-like (Grx) domain lacking typical Grx motifs. Unlike thioredoxin glutathione reductases (TGRs) found in platyhelminths and mammals, which are also Grx-TrxR domain fusion proteins, the TrxRs from the filarial nematodes lacked glutathione disulfide reductase and Grx activities. The structural determinations revealed that the Grx domain of TrxR from B. malayi contains a cysteine (C22), conserved in TrxRs from clade IIIc nematodes, that directly interacts with the C-terminal cysteine-selenocysteine motif of the homo-dimeric subunit. Interestingly, despite this finding we found that altering C22 by mutation to serine did not affect enzyme catalysis. Thus, although the function of the Grx domain in these filarial TrxRs remains to be determined, the results obtained provide insights on key properties of this important family of selenoprotein flavoenzymes that are potential drug targets for treatment of filariasis.
Collapse
Affiliation(s)
- Francesca Fata
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | - Radosveta Gencheva
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Rachel Lullo
- Dept. of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Matteo Ardini
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | - Ilaria Silvestri
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | - Federica Gabriele
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | - Rodolfo Ippoliti
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | - Christina A Bulman
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Judy A Sakanari
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - David L Williams
- Dept. of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden; Department of Selenoprotein Research, National Institute of Oncology, 1122, Budapest, Hungary
| | - Francesco Angelucci
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy.
| |
Collapse
|
15
|
Barthels F, Meyr J, Hammerschmidt SJ, Marciniak T, Räder HJ, Ziebuhr W, Engels B, Schirmeister T. 2-Sulfonylpyrimidines as Privileged Warheads for the Development of S. aureus Sortase A Inhibitors. Front Mol Biosci 2022; 8:804970. [PMID: 35047562 PMCID: PMC8763382 DOI: 10.3389/fmolb.2021.804970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus aureus is one of the most frequent causes of nosocomial and community-acquired infections, with emerging multiresistant isolates causing a significant burden to public health systems. We identified 2-sulfonylpyrimidines as a new class of potent inhibitors against S. aureus sortase A acting by covalent modification of the active site cysteine 184. Series of derivatives were synthesized to derive structure-activity relationship (SAR) with the most potent compounds displaying low micromolar KI values. Studies on the inhibition selectivity of homologous cysteine proteases showed that 2-sulfonylpyrimidines reacted efficiently with protonated cysteine residues as found in sortase A, though surprisingly, no reaction occurred with the more nucleophilic cysteine residue from imidazolinium-thiolate dyads of cathepsin-like proteases. By means of enzymatic and chemical kinetics as well as quantum chemical calculations, it could be rationalized that the SNAr reaction between protonated cysteine residues and 2-sulfonylpyrimidines proceeds in a concerted fashion, and the mechanism involves a ternary transition state with a conjugated base. Molecular docking and enzyme inhibition at variable pH values allowed us to hypothesize that in sortase A this base is represented by the catalytic histidine 120, which could be substantiated by QM model calculation with 4-methylimidazole as histidine analog.
Collapse
Affiliation(s)
- Fabian Barthels
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Jessica Meyr
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Stefan J Hammerschmidt
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Tessa Marciniak
- Institute for Molecular Infection Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | | | - Wilma Ziebuhr
- Institute for Molecular Infection Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Bernd Engels
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Tanja Schirmeister
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
16
|
First In Silico Screening of Insect Molecules for Identification of Novel Anti-Parasitic Compounds. Pharmaceuticals (Basel) 2022; 15:ph15020119. [PMID: 35215232 PMCID: PMC8877563 DOI: 10.3390/ph15020119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Schistosomiasis is a neglected tropical disease caused by blood flukes of the genus Schistosoma. In silico screenings of compounds for the identification of novel anti-parasitic drug candidates have received considerable attention in recent years, including the screening of natural compounds. For the first time, we investigated molecules from insects, a rather neglected source in drug discovery, in an in silico screening approach to find novel antischistosomal compounds. Based on the Dictionary of Natural Products (DNP), we created a library of 1327 insect compounds suitable for molecular docking. A structure-based virtual screening against the crystal structure of a known druggable target in Schistosoma mansoni, the thioredoxin glutathione reductase (SmTGR), was performed. The top ten compounds predominantly originated from beetles and were predicted to interact particularly with amino acids in the doorstop pocket of SmTGR. For one compound from a jewel beetle, buprestin H, we tested and confirmed antischistosomal activity against adult and juvenile parasites in vitro. At concentrations with anti-parasitic activity, we could also exclude any unspecific cytotoxic activity against human HepG2 cells. This study highlights the potential of insect molecules for the identification of novel antischistosomal compounds. Our library of insect-derived molecules could serve not only as basis for future in silico screenings against additional target proteins of schistosomes, but also of other parasites.
Collapse
|
17
|
Selenium and protozoan parasitic infections: selenocompounds and selenoproteins potential. Parasitol Res 2022; 121:49-62. [PMID: 34993638 PMCID: PMC8735723 DOI: 10.1007/s00436-021-07400-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022]
Abstract
The current drug treatments against protozoan parasitic diseases including Chagas, malaria, leishmaniasis, and toxoplasmosis represent good examples of drug resistance mechanisms and have shown diverse side effects. Therefore, the identification of novel therapeutic strategies and drug compounds against such life-threatening diseases is urgent. According to the successful usage of selenium (Se) compounds-based therapy against some diseases, this therapeutic strategy has been recently further underlined against these parasitic diseases by targeting different parasite´s essential pathways. On the other hand, due to the important functions played by parasite selenoproteins in their biology (such as modulating the host immune response), they can be also considered as a novel therapeutic strategy by designing specific inhibitors against these important proteins. In addition, the immunomodulatory potentiality of these compounds to trigger T helper type 1 (Th1) cells and cytokine-mediated immune response for the substantial induction of proinflammatory cytokines, thus, Se, selenoproteins, and parasite selenoproteins could be further investigated to find possible vaccine antigens. Herein, we collect and present the results of some studies regarding Se-based therapy against protozoan parasitic diseases and highlight relevant information and some viewpoints that might be insightful to advance toward more effective studies in the future.
Collapse
|
18
|
Fata F, Silvestri I, Ardini M, Ippoliti R, Di Leandro L, Demitri N, Polentarutti M, Di Matteo A, Lyu H, Thatcher GR, Petukhov PA, Williams DL, Angelucci F. Probing the Surface of a Parasite Drug Target Thioredoxin Glutathione Reductase Using Small Molecule Fragments. ACS Infect Dis 2021; 7:1932-1944. [PMID: 33950676 DOI: 10.1021/acsinfecdis.0c00909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fragment screening is a powerful drug discovery approach particularly useful for enzymes difficult to inhibit selectively, such as the thiol/selenol-dependent thioredoxin reductases (TrxRs), which are essential and druggable in several infectious diseases. Several known inhibitors are reactive electrophiles targeting the selenocysteine-containing C-terminus and thus often suffering from off-target reactivity in vivo. The lack of structural information on the interaction modalities of the C-terminus-targeting inhibitors, due to the high mobility of this domain and the lack of alternative druggable sites, prevents the development of selective inhibitors for TrxRs. In this work, fragments selected from actives identified in a large screen carried out against Thioredoxin Glutathione Reductase from Schistosoma mansoni (SmTGR) were probed by X-ray crystallography. SmTGR is one of the most promising drug targets for schistosomiasis, a devastating, neglected disease. Utilizing a multicrystal method to analyze electron density maps, structural analysis, and functional studies, three binding sites were characterized in SmTGR: two sites are close to or partially superposable with the NADPH binding site, while the third one is found between two symmetry related SmTGR subunits of the crystal lattice. Surprisingly, one compound bound to this latter site stabilizes, through allosteric effects mediated by the so-called guiding bar residues, the crucial redox active C-terminus of SmTGR, making it finally visible at high resolution. These results further promote fragments as small molecule probes for investigating functional aspects of the target protein, exemplified by the allosteric effect on the C-terminus, and providing fundamental chemical information exploitable in drug discovery.
Collapse
Affiliation(s)
- Francesca Fata
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Ilaria Silvestri
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Matteo Ardini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Luana Di Leandro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Nicola Demitri
- Elettra − Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza − Trieste, Italy
| | - Maurizio Polentarutti
- Elettra − Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza − Trieste, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biochemical Sciences “A Rossi Fanelli” - Sapienza University of Rome, 00185 Rome, Italy
| | - Haining Lyu
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Gregory R.J. Thatcher
- Department of Pharmacology & Toxicology, College of Pharmacy, the University of Arizona, Tucson, Arizona 85721, United States
| | - Pavel A. Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - David L. Williams
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
19
|
Qokoyi NK, Masamba P, Kappo AP. Proteins as Targets in Anti-Schistosomal Drug Discovery and Vaccine Development. Vaccines (Basel) 2021; 9:762. [PMID: 34358178 PMCID: PMC8310332 DOI: 10.3390/vaccines9070762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/23/2023] Open
Abstract
Proteins hardly function in isolation; they form complexes with other proteins or molecules to mediate cell signaling and control cellular processes in various organisms. Protein interactions control mechanisms that lead to normal and/or disease states. The use of competitive small molecule inhibitors to disrupt disease-relevant protein-protein interactions (PPIs) holds great promise for the development of new drugs. Schistosome invasion of the human host involves a variety of cross-species protein interactions. The pathogen expresses specific proteins that not only facilitate the breach of physical and biochemical barriers present in skin, but also evade the immune system and digestion of human hemoglobin, allowing for survival in the host for years. However, only a small number of specific protein interactions between the host and parasite have been functionally characterized; thus, in-depth understanding of the molecular mechanisms of these interactions is a key component in the development of new treatment methods. Efforts are now focused on developing a schistosomiasis vaccine, as a proposed better strategy used either alone or in combination with Praziquantel to control and eliminate this disease. This review will highlight protein interactions in schistosomes that can be targeted by specific PPI inhibitors for the design of an alternative treatment to Praziquantel.
Collapse
Affiliation(s)
| | | | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Kingsway Campus, University of Johannesburg, Auckland Park 2006, South Africa; (N.K.Q.); (P.M.)
| |
Collapse
|
20
|
Moreira-Filho JT, Silva AC, Dantas RF, Gomes BF, Souza Neto LR, Brandao-Neto J, Owens RJ, Furnham N, Neves BJ, Silva-Junior FP, Andrade CH. Schistosomiasis Drug Discovery in the Era of Automation and Artificial Intelligence. Front Immunol 2021; 12:642383. [PMID: 34135888 PMCID: PMC8203334 DOI: 10.3389/fimmu.2021.642383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis is a parasitic disease caused by trematode worms of the genus Schistosoma and affects over 200 million people worldwide. The control and treatment of this neglected tropical disease is based on a single drug, praziquantel, which raises concerns about the development of drug resistance. This, and the lack of efficacy of praziquantel against juvenile worms, highlights the urgency for new antischistosomal therapies. In this review we focus on innovative approaches to the identification of antischistosomal drug candidates, including the use of automated assays, fragment-based screening, computer-aided and artificial intelligence-based computational methods. We highlight the current developments that may contribute to optimizing research outputs and lead to more effective drugs for this highly prevalent disease, in a more cost-effective drug discovery endeavor.
Collapse
Affiliation(s)
- José T. Moreira-Filho
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Arthur C. Silva
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Rafael F. Dantas
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Barbara F. Gomes
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lauro R. Souza Neto
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Didcot, United Kingdom
- Research Complex at Harwell, Didcot, United Kingdom
| | - Raymond J. Owens
- The Rosalind Franklin Institute, Harwell, United Kingdom
- Division of Structural Biology, The Wellcome Centre for Human Genetic, University of Oxford, Oxford, United Kingdom
| | - Nicholas Furnham
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bruno J. Neves
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Floriano P. Silva-Junior
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina H. Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| |
Collapse
|
21
|
Çalışkan B, Öztürk Kesebir A, Demir Y, Akyol Salman İ. The effect of brimonidine and proparacaine on metabolic enzymes: Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase. Biotechnol Appl Biochem 2021; 69:281-288. [PMID: 33438819 DOI: 10.1002/bab.2107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022]
Abstract
Oxidative stress is to upregulate the pentose phosphate pathway (PPP). The PPP consists of two functional branches, glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconaste dehydrogenase (6PGD). Glutathione reductase (GR) has a significant role in catalyzing an oxidized glutathione form into a reduced form. The purpose of this study is to investigate the effects of brimonidine and proparacaine on the activity of 6PGD, G6PD, and GR enzymes purified from human erythrocytes. Brimonidine displayed considerable inhibition profile against G6PD with IC50 value and KI constant of 29.93 ± 3.56 and 48.46 ± 0.66 μM, respectively. On the other hand, proparacaine had no inhibitory effect against G6PD. KI values were found to be 66.06 ± 0.78 and 811.50 ± 11.13 μM for brimonidine and proparacaine, respectively, for 6PGD. KI values were found to be 144.10 ± 2.01 and 1,654.00 ± 26.29 μM for brimonidine and proparacaine, respectively, for GR. Herein, also in silico molecular docking studies were performed between drugs and enzymes.
Collapse
Affiliation(s)
- Büşra Çalışkan
- Department of Ophthalmology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Arzu Öztürk Kesebir
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - İlknur Akyol Salman
- Department of Ophthalmology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
22
|
Ardini M, Bellelli A, Williams DL, Di Leandro L, Giansanti F, Cimini A, Ippoliti R, Angelucci F. Taking Advantage of the Morpheein Behavior of Peroxiredoxin in Bionanotechnology. Bioconjug Chem 2021; 32:43-62. [PMID: 33411522 PMCID: PMC8023583 DOI: 10.1021/acs.bioconjchem.0c00621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
Morpheeins
are proteins that reversibly assemble into different
oligomers, whose architectures are governed by conformational changes
of the subunits. This property could be utilized in bionanotechnology
where the building of nanometric and new high-ordered structures is
required. By capitalizing on the adaptability of morpheeins to create
patterned structures and exploiting their inborn affinity toward inorganic
and living matter, “bottom-up” creation of nanostructures
could be achieved using a single protein building block, which may
be useful as such or as scaffolds for more complex materials. Peroxiredoxins
represent the paradigm of a morpheein that can be applied to bionanotechnology.
This review describes the structural and functional transitions that
peroxiredoxins undergo to form high-order oligomers, e.g., rings,
tubes, particles, and catenanes, and reports on the chemical and genetic
engineering approaches to employ them in the generation of responsive
nanostructures and nanodevices. The usefulness of the morpheeins’
behavior is emphasized, supporting their use in future applications.
Collapse
Affiliation(s)
- Matteo Ardini
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Andrea Bellelli
- Department of Biochemical Sciences "A. Rossi Fanelli", University of Roma "Sapienza", Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - David L Williams
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Luana Di Leandro
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Francesco Giansanti
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Francesco Angelucci
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| |
Collapse
|
23
|
Eissa MM, El-Azzouni MZ, El-Khordagui LK, Abdel Bary A, El-Moslemany RM, Abdel Salam SA. Single oral fixed-dose praziquantel-miltefosine nanocombination for effective control of experimental schistosomiasis mansoni. Parasit Vectors 2020; 13:474. [PMID: 32933556 PMCID: PMC7493353 DOI: 10.1186/s13071-020-04346-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022] Open
Abstract
Background The control of schistosomiasis has been centered to date on a single drug, praziquantel, with shortcomings including treatment failure, reinfection, and emergence of drug resistance. Drug repurposing, combination therapy or nanotechnology were explored to improve antischistosomal treatment. The aim of the present study was to utilize a novel combination of the three strategies to improve the therapeutic profile of praziquantel. This was based on a fixed-dose nanocombination of praziquantel and miltefosine, an antischistosomal repurposing candidate, co-loaded at reduced doses into lipid nanocapsules, for single dose oral therapy. Methods Two nanocombinations were prepared to provide 250 mg praziquantel-20 mg miltefosine/kg (higher fixed-dose) or 125 mg praziquantel-10 mg miltefosine/kg (lower fixed-dose), respectively. Their antischistosomal efficacy in comparison with a non-treated control and their praziquantel or miltefosine singly loaded counterparts was assessed in murine schistosomiasis mansoni. A single oral dose of either formulation was administered on the initial day of infection, and on days 21 and 42 post-infection. Scanning electron microscopic, parasitological, and histopathological studies were used for assessment. Preclinical data were subjected to analysis of variance and Tukeyʼs post-hoc test for pairwise comparisons. Results Lipid nanocapsules (~ 58 nm) showed high entrapment efficiency of both drugs (> 97%). Compared to singly loaded praziquantel-lipid nanocapsules, the higher nanocombination dose showed a significant increase in antischistosomal efficacy in terms of statistically significant decrease in mean worm burden, particularly against invasive and juvenile worms, and amelioration of hepatic granulomas (P ≤ 0.05). In addition, scanning electron microscopy examination showed extensive dorsal tegumental damage with noticeable deposition of nanostructures. Conclusions The therapeutic profile of praziquantel could be improved by a novel multiple approach integrating drug repurposing, combination therapy and nanotechnology. Multistage activity and amelioration of liver pathology could be achieved by a new praziquantel-miltefosine fixed-dose nanocombination providing 250 mg praziquantel-20 mg miltefosine/kg. To the best of our knowledge, this is the first report of a fixed-dose nano-based combinatorial therapy for schistosomiasis mansoni. Further studies are needed to document the nanocombination safety and explore its prophylactic activity and potential to hinder the onset of resistance to the drug components.![]()
Collapse
Affiliation(s)
- Maha M Eissa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mervat Z El-Azzouni
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Labiba K El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Amany Abdel Bary
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sara A Abdel Salam
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
24
|
Busker S, Page B, Arnér ESJ. To inhibit TrxR1 is to inactivate STAT3-Inhibition of TrxR1 enzymatic function by STAT3 small molecule inhibitors. Redox Biol 2020; 36:101646. [PMID: 32863208 PMCID: PMC7378686 DOI: 10.1016/j.redox.2020.101646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/03/2020] [Accepted: 07/11/2020] [Indexed: 01/05/2023] Open
Abstract
The transcription factor STAT3 plays a key role in cancer and immunity, being widely explored as a potential drug target for the development of novel immunomodulatory or anticancer therapeutics. The mechanisms of small molecule-derived inhibition of STAT3 appear, however, to be more complex than initially perceived. Our recent discovery, that some novel STAT3 inhibitors were bona fide inhibitors of the cytosolic selenoprotein oxidoreductase TrxR1 (TXNRD1), led us to explore the effects of a wide array of previously described STAT3 inhibitors on TrxR1 function. We found that 17 out of 23 tested STAT3 small molecule inhibitors indeed inhibited purified TrxR1 at the reported concentrations yielding STAT3 inhibition. All tested compounds were electrophilic as shown by direct reactivities with GSH, and several were found to also be redox cycling substrates of TrxR1. Ten compounds previously shown to inhibit STAT3 were here found to irreversibly inhibit cellular TrxR1 activity (Auranofin, Stattic, 5,15-DPP, Galiellalactone, LLL12, Napabucasin, BP1-102, STA-21, S3I-201 and Degrasyn (WP1130)). Our findings suggest that targeting of TrxR1 may be a common feature for many small molecules that inhibit cellular STAT3 function. It is possible that prevention of STAT3 activation in cells by several small molecules classified as STAT3 inhibitors can be a downstream event following TrxR1 inhibition. Therefore, the relationship between TrxR1 and STAT3 should be considered when studying inhibition of either of these promising drug targets.
Collapse
Affiliation(s)
- Sander Busker
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Brent Page
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institutet, Stockholm, Sweden; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Department of Selenoprotein Research, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
25
|
Tripathi T, Chetri PB. Potent Inhibitors of Thioredoxin Glutathione Reductase: Grail of Anti-Schistosome Drug within Reach? ACS Infect Dis 2020; 6:893-895. [PMID: 32159329 DOI: 10.1021/acsinfecdis.0c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Species of the blood fluke Schistosoma are responsible for schistosomiasis, the second most common parasitic disease, which is prevalent particularly in poor communities. Under redox pressure, schistosomes survive in mammalian hosts with the help of thioredoxin glutathione reductase, which is an essential selenoenzyme. A recent study identified compounds with extremely potent antischistosome activity. Most importantly, certain compounds were active against all major schistosomes across different life cycle stages, where even praziquantel, the drug of choice, fails. The data offer compounds that exceed WHO standards for leads for schistosomiasis therapy activity. The work may serve as the basis for the development of new antischistosome compounds.
Collapse
Affiliation(s)
- Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Umshing, Shillong 793022, Meghalaya, India
| | - Purna B Chetri
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Umshing, Shillong 793022, Meghalaya, India
| |
Collapse
|
26
|
Dziwornu GA, Attram HD, Gachuhi S, Chibale K. Chemotherapy for human schistosomiasis: how far have we come? What's new? Where do we go from here? RSC Med Chem 2020; 11:455-490. [PMID: 33479649 PMCID: PMC7593896 DOI: 10.1039/d0md00062k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/22/2020] [Indexed: 01/11/2023] Open
Abstract
Globally, schistosomiasis threatens more than 700 million lives, mostly children, in poor localities of tropical and sub-tropical areas with morbidity due to acute and chronic pathological manifestations of the disease. After a century since the first antimonial-based drugs were introduced to treat the disease, anti-schistosomiasis drug development is again at a bottleneck with only one drug, praziquantel, available for treatment purposes. This review focuses on promising chemotypes as potential starting points in a drug discovery effort to meet the urgent need for new schistosomicides.
Collapse
Affiliation(s)
- Godwin Akpeko Dziwornu
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
| | - Henrietta Dede Attram
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
| | - Samuel Gachuhi
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
| | - Kelly Chibale
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
- Drug Discovery and Development Centre (H3D) , University of Cape Town , Rondebosch 7701 , South Africa
- Institute of Infectious Disease and Molecular Medicine , University of Cape Town , Rondebosch 7701 , South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit , University of Cape Town , Rondebosch 7701 , South Africa
| |
Collapse
|
27
|
Silvestri I, Lyu H, Fata F, Banta PR, Mattei B, Ippoliti R, Bellelli A, Pitari G, Ardini M, Petukhova V, Thatcher GRJ, Petukhov PA, Williams DL, Angelucci F. Ectopic suicide inhibition of thioredoxin glutathione reductase. Free Radic Biol Med 2020; 147:200-211. [PMID: 31870799 PMCID: PMC7583042 DOI: 10.1016/j.freeradbiomed.2019.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
Selective suicide inhibitors represent a seductively attractive approach for inactivation of therapeutically relevant enzymes since they are generally devoid of off-target toxicity in vivo. While most suicide inhibitors are converted to reactive species at enzyme active sites, theoretically bioactivation can also occur in ectopic (secondary) sites that have no known function. Here, we report an example of such an "ectopic suicide inhibition", an unprecedented bioactivation mechanism of a suicide inhibitor carried out by a non-catalytic site of thioredoxin glutathione reductase (TGR). TGR is a promising drug target to treat schistosomiasis, a devastating human parasitic disease. Utilizing hits selected from a high throughput screening campaign, time-resolved X-ray crystallography, molecular dynamics, mass spectrometry, molecular modeling, protein mutagenesis and functional studies, we find that 2-naphtholmethylamino derivatives bound to this novel ectopic site of Schistosoma mansoni (Sm)TGR are transformed to covalent modifiers and react with its mobile selenocysteine-containing C-terminal arm. In particular, one 2-naphtholmethylamino compound is able to specifically induce the pro-oxidant activity in the inhibited enzyme. Since some 2-naphtholmethylamino analogues show worm killing activity and the ectopic site is not conserved in human orthologues, a general approach to development of novel and selective anti-parasitic therapeutics against schistosoma is proposed.
Collapse
Affiliation(s)
- Ilaria Silvestri
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Haining Lyu
- Dept. of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Francesca Fata
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Paul R Banta
- Dept. of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Benedetta Mattei
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Rodolfo Ippoliti
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Andrea Bellelli
- Dept. of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Giuseppina Pitari
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Matteo Ardini
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Valentina Petukhova
- Dept. of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Gregory R J Thatcher
- Dept. of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Pavel A Petukhov
- Dept. of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| | - David L Williams
- Dept. of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA.
| | - Francesco Angelucci
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Italy.
| |
Collapse
|