1
|
Yang H, Wang Y, Yao L, Wang J, Chen H. Antifouling Polymer Coatings for Bioactive Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6471-6496. [PMID: 40030123 DOI: 10.1021/acs.langmuir.4c04859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Bioactive surfaces play a pivotal role in biomedical applications by enabling precise biological interactions through immobilized functional molecules. However, their performance is often hindered by nonspecific protein adsorption and cell adhesion. Antifouling polymer coatings have emerged as an effective solution, creating hydration barriers to preserve functionality and reduce biofouling. This review provides an overview of the recent advances in the development of antifouling polymer coatings for bioactive surfaces, with particular focus on nonionic polymers, such as polyethylene glycol (PEG), and zwitterionic polymers like poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC). Among them, zwitterionic polymers, with their unique charge-balanced structures, exhibit exceptional hydration, protein resistance, and stability, making them particularly promising for biomedical applications. In addition, key applications of these bioactive surfaces, including their use in anticoagulant materials, antibacterial coatings, and biosensor interfaces, are also discussed. The discussion concludes with an address of the field's challenges and future directions, highlighting the need for innovative materials that balance antifouling properties, biocompatibility, and long-term stability for both clinical and industrial use. This review aims to review the latest advancements in antifouling polymer coatings for bioactive surfaces and provide insights into optimizing multifunctional bioactive surfaces to meet the evolving and dynamic demands of the biomedical field.
Collapse
Affiliation(s)
- He Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yichen Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Lihua Yao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jinghong Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Biosurf Biotech Co., Ltd., Suzhou 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Biosurf Biotech Co., Ltd., Suzhou 215123, P. R. China
| |
Collapse
|
2
|
Chen B, Liu J. Advancements in Hydrogel-Based Therapies for Ovarian Cancer: A Review. Cell Biochem Biophys 2025; 83:87-108. [PMID: 39190214 DOI: 10.1007/s12013-024-01483-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Ovarian cancer, the most deadly gynecologic malignancy, is often resistant to conventional antitumor therapy due to various factors such as severe side effects, unexpected recurrence, and significant tissue damage. The limitations of current treatments and the resistance of invasive tumor cells contribute to these challenges. Hydrogel therapy has recently emerged as a potential treatment option for ovarian cancer, offering advantages such as controllability, biocompatibility, high drug loading capacity, prolonged drug release, and responsiveness to specific stimuli. Hence, the utilization of biodegradable hydrogels as carriers for chemotherapeutic agents has emerged as a significant concern in the field. Injectable hydrogel-based drug delivery systems, in particular, have demonstrated superior efficacy compared to traditional systemic chemotherapy for cancer treatment. The pliability of hydrogel therapy allows for access to anatomical regions that may be challenging for surgical intervention. This review article examines recent advancements in the application of hydrogels for diagnosing and treating ovarian cancer, while also proposing a novel direction for the use of hydrogel technology in this context. The objective of this article is to offer a novel point of reference and serve as a source of inspiration for the advancement of more precise and individualized cancer therapies.
Collapse
Affiliation(s)
- Biqing Chen
- Harbin Medical University, Harbin, Heilongjiang, China.
| | - Jiaqi Liu
- Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Smook LA, de Beer S. Molecular Design Strategies to Enhance the Electroresponse of Polyelectrolyte Brushes: Effects of Charge Fraction and Chain Length Dispersity. Macromolecules 2025; 58:1185-1195. [PMID: 39958485 PMCID: PMC11823628 DOI: 10.1021/acs.macromol.4c02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/13/2024] [Accepted: 01/17/2025] [Indexed: 02/18/2025]
Abstract
Polyelectrolyte brushes are functional surface coatings that react to external stimuli. The response of these brushes in electric fields is nearly immediate as the field acts directly on the charges in the polyion, while the response to bulk stimuli such as temperature, acidity, and ionic composition is intrinsically capped by transport limitations. However, the response of fully charged brushes is limited because large field strengths are required to achieve a response. This limits the application of these brushes to architectures such as small pores or nanojunctions because small biases can generate large field strengths over small distances. Here, we propose a design strategy that enhances the response and lowers the field strength required in these applications. Our coarse-grained simulations highlight two approaches to increase the electroresponse of polyelectrolyte brushes: dispersity in the chain length enhances the electroresponse and a reduction in the number of charged monomers does the same. With these approaches, we increase the relative brush height variation from only 28% to as much as 227% since in partially charged brushes, more chains need to respond to screen the imposed field and the longer chains in disperse brushes can reorganize over large distances. Additionally, we find that disperse brushes show a stratified response where short chains collapse first and long chains stretch first because this stratification minimizes the change in conformational energy. We envision that our insights will enable the application of electroresponsive polyelectrolyte brushes in larger architectures or in small architectures using smaller biases, which could enable a stimulus-responsive pore size modulation that could be used for filtration and molecular separations.
Collapse
Affiliation(s)
- Leon A. Smook
- Department of Molecules and
Materials, MESA+ Institute, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Department of Molecules and
Materials, MESA+ Institute, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
4
|
Tian Y, Lv H, Ju Y, Hao J, Cui J. Zwitterionic Poly(ethylene glycol) Nanoparticles Minimize Protein Adsorption and Immunogenicity for Improved Biological Fate. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6125-6133. [PMID: 39824773 DOI: 10.1021/acsami.4c20890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
We report the assembly of poly(ethylene glycol) nanoparticles (PEG NPs) and optimize their surface chemistry to minimize the formation of protein coronas and immunogenicity for improved biodistribution. PEG NPs cross-linked with disulfide bonds are synthesized utilizing zeolitic imidazolate framework-8 NPs as the templates, which are subsequently modified with PEG molecules with different end groups (carboxyl, methoxy, or amino) to vary the surface chemistry. Among the modifications, the amino and residual carboxyl groups form a pair of zwitterionic structures on the surface of PEG NPs, which minimize the adsorption of proteins (e.g., immunoglobulin, complement proteins) and maximize the blood circulation time. The influence of preexisting PEG antibodies in mice on the pharmacokinetics of zwitterionic PEG NPs is negligible, which demonstrates the resistance of anti-PEG antibodies and inhibition of the accelerated blood clearance phenomenon. This research highlights the importance of the surface chemistry of PEGylated NPs in the design of delivery systems and reveals their translational potential for cancer therapy.
Collapse
Affiliation(s)
- Yuan Tian
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Huiyuan Lv
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yi Ju
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
5
|
Audourenc J, Baldo H, Coronas M, Flaud V, Ramonda M, Labour MN, Soussan L, Thami T, Li S. Development of Functionalized Polylactide Thin Films Using Poly(methylhydrogenosiloxane) Sol-Gel Process with Improved Antifouling Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22887-22897. [PMID: 39423360 DOI: 10.1021/acs.langmuir.4c02975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Biobased polylactide (PLA) films were modified with low reticulate polysiloxane gel acting as a scalable platform for the hydrophilization of polymeric film surface. The PLA thin film was first coated with poly(methylhydrogenosiloxane) (PMHS) by the sol-gel transition via the condensation of diethoxymethylsilane (DH) and triethoxysilane (TH) using trifluoromethanesulfonic acid as a catalyst. Then, hydrosilylation of Si-H bonds in the presence of Karstedt's catalyst allowed the covalent grafting of hydrophilic alkene-containing molecules, i.e., triethylene glycol monomethyl allyl (TEGMEA) and a new zwitterionic allylcarboxybetaine (ACB) synthesized for the first time by the quaternization of dimethyl allyl amine (DMAA) with β-propiolactone. PMHS coating on the PLA film was evidenced by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The observation by atomic force microscopy (AFM) revealed a homogeneous coating with low roughness (RMS = 0.29 nm). The hydrophilicity of functionalized PLA films was determined by water contact angle (WCA) measurements using the captive bubble method. A large increase in wettability properties was observed for both grafting with TEGMEA (WCA = 38°) and ACB (WCA = 42°) in comparison with the native PLA film (WCA = 80°). Moreover, the biocompatibility and antifouling efficiency of functionalized PLA films were evaluated by protein adsorption, bacterial adhesion, and cytotoxicity tests. The results indicate that the grafting of the two types of hydrophilic compounds does not affect the biocompatibility of PLA while significantly reducing protein adsorption and bacterial adhesion, thus showing the great potential of this surface functionalization strategy for applications in the medical field.
Collapse
Affiliation(s)
- Jules Audourenc
- Institut Européen des Membranes, IEM, CNRS, ENSCM, Université de Montpellier, 34095 Montpellier, France
| | - Héloïse Baldo
- Institut Européen des Membranes, IEM, CNRS, ENSCM, Université de Montpellier, 34095 Montpellier, France
| | - Maximilien Coronas
- Institut Européen des Membranes, IEM, CNRS, ENSCM, Université de Montpellier, 34095 Montpellier, France
| | - Valérie Flaud
- Institut Charles Gerhardt de Montpellier, ICGM, CNRS, ENSCM, Université de Montpellier, 34293 Montpellier, France
| | - Michel Ramonda
- Centrale de Technologie en Micro et nanoélectronique, CTM, Université de Montpellier, 34090 Montpellier, France
| | - Marie-Noëlle Labour
- Institut Charles Gerhardt de Montpellier, ICGM, CNRS, ENSCM, Université de Montpellier, 34293 Montpellier, France
| | - Laurence Soussan
- Institut Européen des Membranes, IEM, CNRS, ENSCM, Université de Montpellier, 34095 Montpellier, France
| | - Thierry Thami
- Institut Européen des Membranes, IEM, CNRS, ENSCM, Université de Montpellier, 34095 Montpellier, France
| | - Suming Li
- Institut Européen des Membranes, IEM, CNRS, ENSCM, Université de Montpellier, 34095 Montpellier, France
| |
Collapse
|
6
|
Tian X, Yuan Y. Impacts of polyethylene glycol (PEG) dispersity on protein adsorption, pharmacokinetics, and biodistribution of PEGylated gold nanoparticles. RSC Adv 2024; 14:20757-20764. [PMID: 38952930 PMCID: PMC11216039 DOI: 10.1039/d4ra03153a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/06/2024] [Indexed: 07/03/2024] Open
Abstract
PEGylated gold nanoparticles (PEG-AuNPs) are widely used in drug delivery, imaging and diagnostics, therapeutics, and biosensing. However, the effect of PEG dispersity on the molecular weight (M W) distribution of PEG grafted onto AuNP surfaces has been rarely reported. This study investigates the effect of PEG dispersity on the M W distribution of PEG grafted onto AuNP surfaces and its subsequent impact on protein adsorption and pharmacokinetics, by modifying AuNPs with monodisperse PEG methyl ether thiols (mPEG n -HS, n = 36, 45) and traditional polydisperse mPEG2k-SH (M W = 1900). Polydisperse PEG-AuNPs favor the enrichment of lower M W PEG fractions on their surface due to the steric hindrance effect, which leads to increased protein adsorption. In contrast, monodisperse PEG-AuNPs have a uniform length of PEG outlayer, exhibiting markedly lower yet constant protein adsorption. Pharmacokinetics analysis in tumor-bearing mice demonstrated that monodisperse PEG-AuNPs possess a significantly prolonged blood circulation half-life and enhanced tumor accumulation compared with their polydisperse counterpart. These findings underscore the critical, yet often underestimated, impacts of PEG dispersity on the in vitro and in vivo behavior of PEG-AuNPs, highlighting the role of monodisperse PEG in enhancing therapeutic nanoparticle performance.
Collapse
Affiliation(s)
- Xinsheng Tian
- Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University Hangzhou 310018 China
- Biomatrik Inc. 501 Changsheng South Road, Nanhu Jiaxing 314001 China
| | - Yumin Yuan
- Biomatrik Inc. 501 Changsheng South Road, Nanhu Jiaxing 314001 China
| |
Collapse
|
7
|
Pavón C, Benetti EM, Lorandi F. Polymer Brushes on Nanoparticles for Controlling the Interaction with Protein-Rich Physiological Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11843-11857. [PMID: 38787578 DOI: 10.1021/acs.langmuir.4c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The interaction of nanoparticles (NPs) with biological environments triggers the formation of a protein corona (PC), which significantly influences their behavior in vivo. This review explores the evolving understanding of PC formation, focusing on the opportunity for decreasing or suppressing protein-NP interactions by macromolecular engineering of NP shells. The functionalization of NPs with a dense, hydrated polymer brush shell is a powerful strategy for imparting stealth properties in order to elude recognition by the immune system. While poly(ethylene glycol) (PEG) has been extensively used for this purpose, concerns regarding its stability and immunogenicity have prompted the exploration of alternative polymers. The stealth properties of brush shells can be enhanced by tailoring functionalities and structural parameters, including the molar mass, grafting density, and polymer topology. Determining correlations between these parameters and biopassivity has enabled us to obtain polymer-grafted NPs with high colloidal stability and prolonged circulation time in biological media.
Collapse
Affiliation(s)
- Carlos Pavón
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Edmondo M Benetti
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Francesca Lorandi
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
8
|
Li S, Ma Y, Cui J, Caruso F, Ju Y. Engineering poly(ethylene glycol) particles for targeted drug delivery. Chem Commun (Camb) 2024; 60:2591-2604. [PMID: 38285062 DOI: 10.1039/d3cc06098e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Poly(ethylene glycol) (PEG) is considered to be the "gold standard" among the stealth polymers employed for drug delivery. Using PEG to modify or engineer particles has thus gained increasing interest because of the ability to prolong blood circulation time and reduce nonspecific biodistribution of particles in vivo, owing to the low fouling and stealth properties of PEG. In addition, endowing PEG-based particles with targeting and drug-loading properties is essential to achieve enhanced drug accumulation at target sites in vivo. In this feature article, we focus on recent work on the synthesis of PEG particles, in which PEG is the main component in the particles. We highlight different synthesis methods used to generate PEG particles, the influence of the physiochemical properties of PEG particles on their stealth and targeting properties, and the application of PEG particles in targeted drug delivery.
Collapse
Affiliation(s)
- Shiyao Li
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Ju
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
9
|
Zhao K, Li M, Zhang P, Cui J. Sticktight-inspired PEGylation for low-fouling coatings. Chem Commun (Camb) 2022; 58:13735-13738. [PMID: 36415979 DOI: 10.1039/d2cc04938d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Polyethylene glycol (PEG) has been widely used for modifying surfaces to reduce non-specific interactions with biomolecules, microorganisms, and cells. Herein, we report a sticktight-inspired PEGylation strategy to fabricate low-fouling coatings. The influence of PEG molecular architectures on the PEG density and biological adhesion were studied. Notably, an increase in the number of arms resulted in improved surface PEGylation and an improved antifouling ability against the adhesion of proteins, mammalian cells and bacteria. The molecular architecture-dependent PEGylation strategy is an attractive approach for developing advanced low-fouling coatings.
Collapse
Affiliation(s)
- Kaijie Zhao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
| | - Mengqi Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
- Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
10
|
Hu J, Liu S. Emerging Trends of Discrete Poly(ethylene glycol) in Biomedical Applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Gao Z, Li X, Zhao K, Geng H, Zhang P, Ju Y, Huda P, Howard CB, Thurecht KJ, Ashokkumar M, Hao J, Cui J. Confined microemulsion sono-polymerization of poly(ethylene glycol) nanoparticles for targeted delivery. Chem Commun (Camb) 2022; 58:7777-7780. [PMID: 35731091 DOI: 10.1039/d2cc01874h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Confined sono-polymerization is developed to prepare poly(ethylene glycol) nanoparticles within water-in-oil microemulsion, followed by post-functionalization with a bispecific antibody (anti HER2 and anti PEG) for targeted delivery of photosensitizers (i.e., indocyanine green). The nanoparticles could specifically target to breast cancer cells (i.e., SKBR3) that overexpress HER2 receptors for the inhibition of cancer cell growth under 808 nm laser irradiation. This study highlights a facile and controllable method to fabricate therapeutic nanoparticles capable of targeted delivery.
Collapse
Affiliation(s)
- Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Jinan, Shandong 250100, China. .,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaoyu Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Jinan, Shandong 250100, China.
| | - Kaijie Zhao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Jinan, Shandong 250100, China.
| | - Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Jinan, Shandong 250100, China.
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Jinan, Shandong 250100, China.
| | - Yi Ju
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Pie Huda
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia.,Centre for Advanced Imaging and ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia.,Centre for Advanced Imaging and ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Jinan, Shandong 250100, China.
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Jinan, Shandong 250100, China. .,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
12
|
Ren J, Andrikopoulos N, Velonia K, Tang H, Cai R, Ding F, Ke PC, Chen C. Chemical and Biophysical Signatures of the Protein Corona in Nanomedicine. J Am Chem Soc 2022; 144:9184-9205. [PMID: 35536591 DOI: 10.1021/jacs.2c02277] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An inconvenient hurdle in the practice of nanomedicine is the protein corona, a spontaneous collection of biomolecular species by nanoparticles in living systems. The protein corona is dynamic in composition and may entail improved water suspendability and compromised delivery and targeting to the nanoparticles. How much of this nonspecific protein ensemble is determined by the chemistry of the nanoparticle core and its surface functionalization, and how much of this entity is dictated by the biological environments that vary spatiotemporally in vivo? How do we "live with" and exploit the protein corona without significantly sacrificing the efficacy of nanomedicines in diagnosing and curing human diseases? This article discusses the chemical and biophysical signatures of the protein corona and ponders challenges ahead for the field of nanomedicine.
Collapse
Affiliation(s)
- Jiayu Ren
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nicholas Andrikopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Kelly Velonia
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Pu Chun Ke
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.,Nanomedicine Center, The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou 510700, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Nanomedicine Center, The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou 510700, China
| |
Collapse
|
13
|
Kruk T, Bzowska M, Hinz A, Szuwarzyński M, Szczepanowicz K. Control of Specific/Nonspecific Protein Adsorption: Functionalization of Polyelectrolyte Multilayer Films as a Potential Coating for Biosensors. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7629. [PMID: 34947226 PMCID: PMC8706203 DOI: 10.3390/ma14247629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 01/23/2023]
Abstract
Control of nonspecific/specific protein adsorption is the main goal in the design of novel biomaterials, implants, drug delivery systems, and sensors. The specific functionalization of biomaterials can be achieved by proper surface modification. One of the important strategies is covering the materials with functional coatings. Therefore, our work aimed to functionalize multilayer coating to control nonspecific/specific protein adsorption. The polyelectrolyte coating was formed using a layer-by-layer technique (LbL) with biocompatible polyelectrolytes poly-L-lysine hydrobromide (PLL) and poly-L-glutamic acid (PGA). Nonspecific protein adsorption was minimized/eliminated by pegylation of multilayer films, which was achieved by adsorption of pegylated polycations (PLL-g-PEG). The influence of poly (ethylene glycol) chain length on eliminating nonspecific protein adsorption was confirmed. Moreover, to achieve specific protein adsorption, the multilayer film was also functionalized by immobilization of antibodies via a streptavidin bridge. The functional coatings were tested, and the adsorption of the following proteins confirmed the ability to control nonspecific/specific adsorption: human serum albumin (HSA), fibrinogen (FIB), fetal bovine serum (FBS), carcinoembryonic antigen human (CEA) monitored by quartz crystal microbalance with dissipation (QCM-D). AFM imaging of unmodified and modified multilayer surfaces was also performed. Functional multilayer films are believed to have the potential as a novel platform for biotechnological applications, such as biosensors and nanocarriers for drug delivery systems.
Collapse
Affiliation(s)
- Tomasz Kruk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Monika Bzowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, PL-30348 Krakow, Poland; (M.B.); (A.H.)
| | - Alicja Hinz
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, PL-30348 Krakow, Poland; (M.B.); (A.H.)
| | - Michał Szuwarzyński
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, PL-30059 Krakow, Poland;
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| |
Collapse
|
14
|
Song J, Ju Y, Amarasena TH, Lin Z, Mettu S, Zhou J, Rahim MA, Ang CS, Cortez-Jugo C, Kent SJ, Caruso F. Influence of Poly(ethylene glycol) Molecular Architecture on Particle Assembly and Ex Vivo Particle-Immune Cell Interactions in Human Blood. ACS NANO 2021; 15:10025-10038. [PMID: 34009935 DOI: 10.1021/acsnano.1c01642] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Poly(ethylene glycol) (PEG) is widely used in particle assembly to impart biocompatibility and stealth-like properties in vivo for diverse biomedical applications. Previous studies have examined the effect of PEG molecular weight and PEG coating density on the biological fate of various particles; however, there are few studies that detail the fundamental role of PEG molecular architecture in particle engineering and bio-nano interactions. Herein, we engineered PEG particles using a mesoporous silica (MS) templating method and investigated how the PEG building block architecture impacted the physicochemical properties (e.g., surface chemistry and mechanical characteristics) of the PEG particles and subsequently modulated particle-immune cell interactions in human blood. Varying the PEG architecture from 3-arm to 4-arm, 6-arm, and 8-arm generated PEG particles with a denser, stiffer structure, with increasing elastic modulus from 1.5 to 14.9 kPa, inducing an increasing level of immune cell association (from 15% for 3-arm to 45% for 8-arm) with monocytes. In contrast, the precursor PEG particles with the template intact (MS@PEG) were stiffer and generally displayed higher levels of immune cell association but showed the opposite trend-immune cell association decreased with increasing PEG arm numbers. Proteomics analysis demonstrated that the biomolecular corona that formed on the PEG particles minimally influenced particle-immune cell interactions, whereas the MS@PEG particle-cell interactions correlated with the composition of the corona that was abundant in histidine-rich glycoproteins. Our work highlights the role of PEG architecture in the design of stealth PEG-based particles, thus providing a link between the synthetic nature of particles and their biological behavior in blood.
Collapse
Affiliation(s)
- Jiaying Song
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Thakshila H Amarasena
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhixing Lin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Srinivas Mettu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiajing Zhou
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Md Arifur Rahim
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ching-Seng Ang
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christina Cortez-Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stephen J Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
15
|
Self-assembly, pH-responsibility and controlled release of doxorubicin of PDEAEMA-PEG-PDEAEMA triblock copolymers: effects of PEG length. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Aksakal R, Mertens C, Soete M, Badi N, Du Prez F. Applications of Discrete Synthetic Macromolecules in Life and Materials Science: Recent and Future Trends. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004038. [PMID: 33747749 PMCID: PMC7967060 DOI: 10.1002/advs.202004038] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/22/2020] [Indexed: 05/19/2023]
Abstract
In the last decade, the field of sequence-defined polymers and related ultraprecise, monodisperse synthetic macromolecules has grown exponentially. In the early stage, mainly articles or reviews dedicated to the development of synthetic routes toward their preparation have been published. Nowadays, those synthetic methodologies, combined with the elucidation of the structure-property relationships, allow envisioning many promising applications. Consequently, in the past 3 years, application-oriented papers based on discrete synthetic macromolecules emerged. Hence, material science applications such as macromolecular data storage and encryption, self-assembly of discrete structures and foldamers have been the object of many fascinating studies. Moreover, in the area of life sciences, such structures have also been the focus of numerous research studies. Here, it is aimed to highlight these recent applications and to give the reader a critical overview of the future trends in this area of research.
Collapse
Affiliation(s)
- Resat Aksakal
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| | - Chiel Mertens
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| | - Matthieu Soete
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| | - Nezha Badi
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| | - Filip Du Prez
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| |
Collapse
|