1
|
Guan X, Liu Y, Li L, Kwok M, Ding M, Jiang H, Ngai T. Dynamic Assembly of Microgels and Polymers at Non-Aqueous Liquid/Liquid Interfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415642. [PMID: 39921305 PMCID: PMC11967781 DOI: 10.1002/advs.202415642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/18/2025] [Indexed: 02/10/2025]
Abstract
Particle assembly at liquid-liquid interfaces presents a promising bottom-up strategy for creating supramolecular materials with advanced functionalities. However, the significantly lower interfacial tension observed in immiscible organic phases compared to traditional oil-water systems has hindered the effective adsorption and assembly of particles at oil-oil interfaces. In this work, a versatile and effective strategy is presented that utilizes the assembly and jamming of microgels and polymer ligands at non-aqueous liquid-liquid interfaces to create non-aqueous Pickering emulsions and reconfigurable droplet networks. The resulting microgel-polymer complexes form an asymmetric interfacial bilayer with high surface coverage, which effectively minimizes interfacial energy and improves interfacial elasticity. Through a combination of systematic interfacial measurements and molecular dynamics simulations, the underlying mechanisms governing interfacial self-assembly are elucidated. Notably, the stimuli-responsive nature of the microgel-polymer complexes allows for precise control over the interfacial assembly and disassembly by introducing competitive molecules. Furthermore, it is demonstrated that these non-aqueous Pickering emulsions serve as excellent templates for the fabrication of heterogeneous organogels and microgel-based colloidosomes through both covalent and non-covalent crosslinking strategies. This work underscores the potential of non-aqueous interfaces in advancing materials science and opens new avenues for developing multifunctional materials.
Collapse
Affiliation(s)
- Xin Guan
- Department of ChemistryThe Chinese University of Hong KongShatin, N.THong KongChina
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| | - Yang Liu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Lianwei Li
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| | - Man‐Hin Kwok
- Department of ChemistryThe Chinese University of Hong KongShatin, N.THong KongChina
| | - Mingming Ding
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Hang Jiang
- Key Laboratory of Synthetic and Biological ColloidsMinistry of Education & School of Chemical and Material EngineeringJiangnan UniversityWuxi214122China
| | - To Ngai
- Department of ChemistryThe Chinese University of Hong KongShatin, N.THong KongChina
| |
Collapse
|
2
|
Liu L, Meng X, Li M, Chu Z, Tong Z. Regulation of Two-Dimensional Platelet Micelles with Tunable Core Composition Distribution via Coassembly Seeded Growth Approach. ACS Macro Lett 2024; 13:542-549. [PMID: 38629823 DOI: 10.1021/acsmacrolett.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Seeded growth termed "living" crystallization-driven self-assembly (CDSA) has been identified as a powerful method to create one- or two-dimensional nanoparticles. Epitaxial crystallization is usually regarded as the growth mechanism for the formation of uniform micelles. From this perspective, the unimer depositing rate is largely related to the crystallization temperature, which is a key factor to determine the crystallization rate and regulate the core composition distribution among nanoparticles. In the present work, the coassembly of two distinct crystallizable polymers is explored in detail in a one-pot seeded growth protocol. Results have shown that polylactone containing a larger number of methylene groups (-CH2-) in their repeating units such as poly(η-octalactone) (POL) has a faster crystallization rate compared to poly(ε-caprolactone) (PCL) with a smaller number of -CH2- at ambient temperature (25 °C), thus a block or blocky platelet structure with heterogeneous composition distribution is formed. In contrast, when the crystallization temperature decreases to 4 °C, the difference of crystallization rate between both cores become negligible. Consequently, a completely random component distribution within 2D platelets is observed. Moreover, we also reveal that the core component of seed micelles is also paramount for the coassembly seeded growth, and a unique structure of flower-like platelet micelle is created from the coassembly of PCL/POL using POL core-forming seeds. This study on the formation of platelet micelles by one-pot seeded growth using two crystallizable components offers a considerable scope for the design of 2D polymer nanomaterials with a controlled core component distribution.
Collapse
Affiliation(s)
- Liping Liu
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiancheng Meng
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Meili Li
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Zhenyan Chu
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Zaizai Tong
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
3
|
Starvaggi NC, Somodi CB, Barrios EC, Shamberger PJ, Pentzer EB. Microcapsule fabrication by ATRP at the interface of non-aqueous emulsions. Chem Commun (Camb) 2024; 60:4346-4349. [PMID: 38545873 DOI: 10.1039/d4cc00736k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
We present soft-template encapsulation of salt hydrate phase change materials (PCMs) using modified silica particles to both stabilize emulsions and serve as initiators for organocatalyzed photoredox ATRP. The resulting core-shell structures have high core loading and are robust to thermal cycling. Critically, this strategy eliminates the need for a reagent in the core phase, thus preserving purity, and offers the ability to tailor shell composition for desired applications.
Collapse
Affiliation(s)
| | - Chase B Somodi
- Dept. of Materials Science & Engineering, College Station, TX 77843, USA
| | | | | | - Emily B Pentzer
- Dept. of Chemistry, Texas A&M University, College Station, TX 77843, USA.
- Dept. of Materials Science & Engineering, College Station, TX 77843, USA
| |
Collapse
|
4
|
Lak S, Hsieh CM, AlMahbobi L, Wang Y, Chakraborty A, Yu C, Pentzer EB. Printing Composites with Salt Hydrate Phase Change Materials for Thermal Energy Storage. ACS APPLIED ENGINEERING MATERIALS 2023; 1:2279-2287. [PMID: 38356854 PMCID: PMC10862487 DOI: 10.1021/acsaenm.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 02/16/2024]
Abstract
Salt hydrate phase change materials are important in advancing thermal energy storage technologies for the development of renewable energies. At present, their widespread use is limited by undesired undercooling and phase separation, as well as their tendency to corrode container materials. Herein, we report a direct ink writing (DIW) additive manufacturing technique to print noncorrosive salt hydrate composites with thoroughly integrated nucleating agents and thermally conductive additives. First, salt hydrate particles are prepared from nonaqueous Pickering emulsions and then employed as rheological modifiers to formulate thixotropic inks with polymer dispersions in toluene serving as the matrix. These inks are successfully printed at room temperature and cured by solvent evaporation under ambient conditions. The resulting printed and cured composites, containing up to 70 wt % of the salt hydrate, exhibit reliable thermal cyclability for 10 cycles and suppressed undercooling compared to the bulk salt hydrate. Remarkably, the composites consistently maintain their structural integrity and thermal performance throughout the entirety of both the melting and solidification processes. We demonstrate the versatility of this approach by utilizing two salt hydrates, magnesium nitrate hexahydrate (MNH, Tm = 89 °C) and zinc nitrate hexahydrate (ZNH, Tm = 36 °C), to achieve desired thermal characteristics across a wide range of temperatures. Further, we establish that the incorporation of carbon black in these inks enhances the thermal conductivity by at least 33%. This approach consolidates the strengths of additive manufacturing and salt hydrate phase change materials to harness customizable thermal properties, well suited for targeted thermal energy management applications.
Collapse
Affiliation(s)
- Sarah
N. Lak
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Chia-Min Hsieh
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Luma AlMahbobi
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
| | - Yifei Wang
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
| | - Anirban Chakraborty
- Department
of Mechanical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| | - Choongho Yu
- Department
of Mechanical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| | - Emily B. Pentzer
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Chen J, Sun S, Wang Y, Feng W, Luo Y, Li M, Shi S. All-oil Constructs Stabilized by Cellulose Nanocrystal Surfactants. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37247323 DOI: 10.1021/acsami.3c04539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Constructing all-oil systems with desired geometries and responsiveness would produce a new class of reconfigurable materials that can be used for applications that are not compatible with water or aqueous systems, a fascinating goal to achieve but severely limited by the lack of surfactants. Here, we demonstrate an efficient strategy to stabilize oil-oil interfaces by using the co-assembly between the cellulose nanocrystal and amine-functionalized polyhedral oligomeric silsesquioxane (POSS-NH2). Cellulose nanocrystal surfactants (CNCSs) form and assemble in situ at the interface, showing significantly enhanced binding energy and acid-dependent interfacial activity. When CNCSs jam at the interface, a robust assembly with exceptional mechanical properties can be achieved, allowing the 3D printing of all-oil devices on demand. Using CNCSs as emulsifiers, oil-in-oil high internal phase emulsions can be prepared by one-step homogenization and, when used as templates, porous materials that require water-sensitive monomers can be synthesized. These results open a new platform for stabilizing and structuring all-oil systems, providing numerous applications for microreactors, encapsulation, delivery, and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Jie Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuyi Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongkang Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weixiao Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuzheng Luo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Honaryar H, Amirfattahi S, Niroobakhsh Z. Associative Liquid-In-Liquid 3D Printing Techniques for Freeform Fabrication of Soft Matter. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206524. [PMID: 36670057 DOI: 10.1002/smll.202206524] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Shaping soft materials into prescribed 3D complex designs has been challenging yet feasible using various 3D printing technologies. For a broader range of soft matters to be printable, liquid-in-liquid 3D printing techniques have emerged in which an ink phase is printed into 3D constructs within a bath. Most of the attention in this field has been focused on using a support bath with favorable rheology (i.e., shear-thinning behavior) which limits the selection of materials, impeding the broad application of such techniques. However, a growing body of work has begun to leverage the interaction or association of the two involved phases (specifically at the liquid-liquid interface) to fabricate complex constructs from a myriad of soft materials with practical structural, mechanical, optical, magnetic, and communicative properties. This review article has provided an overview of the studies on such associative liquid-in-liquid 3D printing techniques along with their fundamentals, underlying mechanisms, various characterization techniques used for ensuring the structural stability, and practical properties of prints. Also, the future paths with the potential applications are discussed.
Collapse
Affiliation(s)
- Houman Honaryar
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Saba Amirfattahi
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Zahra Niroobakhsh
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| |
Collapse
|
7
|
Lak SN, Ahmed S, Shamberger PJ, Pentzer EB. Encapsulation of hygroscopic liquids via polymer precipitation in non-aqueous emulsions. J Colloid Interface Sci 2022; 628:605-613. [PMID: 36027771 DOI: 10.1016/j.jcis.2022.08.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
HYPOTHESIS Encapsulation of ionic liquids (ILs) and phase change materials (PCMs) can overcome limitations associated with bulk materials, e.g., slow mass transfer rates, high viscosities, or susceptibility to external environment. Single step soft-templated encapsulation methods commonly use interfacial polymerization for shell formation, with a multifunctional monomer in the continuous phase and another in the discontinuous phase, and thus do not give pristine core material. We posit that polymer precipitation onto emulsion droplets in non-aqueous emulsions could produce a robust shell without contamination of the core, ideal for the encapsulation of water-sensitive or water-miscible materials. EXPERIMENTS Solutions of commodity polymers were added to the continuous phase of non-aqueous Pickering emulsions stabilized by alkylated graphene oxide (GO) nanosheets such that the change in solubility of the polymer led to formation of robust shells and the production of capsules that could be isolated. FINDINGS We demonstrate that a polymer precipitation approach can produce capsules with pristine core of the IL 1-ethyl-3-methylimidazolium hexafluorophosphate [Emim][PF6] or the salt hydrate PCM magnesium nitrate hexahydrate (MNH) and shell of nanosheets and polystyrene, poly(methyl methacrylate), or polyethylene. The capsules are approximately 80 wt% [Emim][PF6] or >90 wt% MNH, and the core can undergo multiple cycles of solidification and melting without leakage or destruction. This novel, single-step methodology provides a distinct advantage to access capsules with pristine core composition and is amenable to different core and shell, paving the way for tailoring capsule composition for desired applications.
Collapse
Affiliation(s)
- Sarah N Lak
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States
| | - Sophia Ahmed
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Patrick J Shamberger
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Emily B Pentzer
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States; Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
8
|
Ganta S, Drechsler C, Chen Y, Clever GH. Nonaqueous Emulsion Polycondensation Enabled by a Self-Assembled Cage-like Surfactant. Chemistry 2022; 28:e202104228. [PMID: 35018672 PMCID: PMC9303455 DOI: 10.1002/chem.202104228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 11/30/2022]
Abstract
Nonaqueous emulsions are crucial for a range of applications based on water-sensitive systems such as controlled polymerizations requiring anhydrous reaction conditions and the stabilization of readily hydrolyzable reagents or pharmacologically active components. However, defined molecular surfactants to stabilize such nonaqueous emulsions are scarce. We introduce a self-assembled coordination cage, decorated with cholesterol functionalities, to serve as a molecular surfactant for various oil-in-oil emulsions of immiscible organic solvents. While the positively charged cage forms the amphiphile's polar moiety, the non-polar cholesterol appendices can bend in a common direction to stabilize the emulsion. Templated by the droplets, polycondensation reactions were carried out to produce microstructured polyurethane and polyurea materials of different particle sizes and morphologies. Further, the amphiphilic cage can encapsulate a guest molecule and the resulting host-guest assembly was also examined as a surfactant. In addition, the aggregation behavior of the amphiphilic cage in an aqueous medium was examined.
Collapse
Affiliation(s)
- Sudhakar Ganta
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Straße 644227DortmundGermany
| | - Christoph Drechsler
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Straße 644227DortmundGermany
| | - Yen‐Ting Chen
- Center of Molecular Spectroscopy and Simulation of Solvent-driven Processes (ZEMOS)Ruhr-University Bochum44801BochumGermany
| | - Guido H. Clever
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Straße 644227DortmundGermany
| |
Collapse
|
9
|
Tan J, Ruan S, Zhang M, He H, Song S, Yang B, nie J, Zhang Q. Tailor-made urethane-linked alkyl-celluloses: A Promising Stabilizer for Oil-in-oil Pickering Emulsions. Polym Chem 2022. [DOI: 10.1039/d2py00431c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oil-in-oil emulsions or nonaqueous emulsions are formulated from two immiscible organic solvents, which provide an ideal platform for water-sensitive systems such as readily hydrolyzable reagents and polymerization in anhydrous conditions....
Collapse
|
10
|
Koroleva MY, Yurtov EV. Pickering emulsions: properties, structure, using as colloidosomes and stimuli-responsive emulsions. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Gaur SS, Edgehouse KJ, Klemm A, Wei P, Gurkan B, Pentzer EB. Capsules with polyurea shells and ionic liquid cores for
CO
2
capture. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Samanvaya S. Gaur
- Department of Materials Science and Engineering Texas A&M University College Station Texas USA
| | | | - Aidan Klemm
- Department of Chemical and Biomolecular Engineering Case Western Reserve University Cleveland Ohio USA
| | - Peiran Wei
- Department of Materials Science and Engineering Texas A&M University College Station Texas USA
| | - Burcu Gurkan
- Department of Chemical and Biomolecular Engineering Case Western Reserve University Cleveland Ohio USA
| | - Emily B. Pentzer
- Department of Materials Science and Engineering Texas A&M University College Station Texas USA
- Department of Chemistry Texas A&M University College Station Texas USA
| |
Collapse
|
12
|
Saha S, Chen YT, Ganta S, Gilles M, Holzapfel B, Lill P, Rehage H, Gatsogiannis C, Clever GH. Coordination Cage-Based Emulsifiers: Templated Formation of Metal Oxide Microcapsules Monitored by In Situ LC-TEM. Chemistry 2021; 28:e202103406. [PMID: 34825743 PMCID: PMC9299919 DOI: 10.1002/chem.202103406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 11/10/2022]
Abstract
Metallo‐supramolecular self‐assembly has yielded a plethora of discrete nanosystems, many of which show competence in capturing guests and catalyzing chemical reactions. However, the potential of low‐molecular bottom‐up self‐assemblies in the development of structured inorganic materials has rarely been methodically explored so far. Herein, we present a new type of metallo‐supramolecular surfactant with the ability to stabilize non‐aqueous emulsions for a significant period. The molecular design of the surfactant is based on a heteroleptic coordination cage (CGA‐3; CGA=Cage‐based Gemini Amphiphile), assembled from two pairs of organic building blocks, grouped around two Pd(II) cations. Shape‐complementarity between the differently functionalized components generates discrete amphiphiles with a tailor‐made polarity profile, able to stabilize non‐aqueous emulsions, such as hexadecane‐in‐DMSO. These emulsions were used as a medium for the synthesis of spherical metal oxide microcapsules (titanium oxide, zirconium oxide, and niobium oxide) from soluble, water‐sensitive alkoxide precursors by allowing a controlled dosage of water to the liquid‐liquid phase boundary. Synthesized materials were analyzed by a combination of electron microscopic techniques. In situ liquid cell transmission electron microscopy (LC‐TEM) was utilized for the first time to visualize the dynamics of the emulsion‐templated formation of hollow inorganic titanium oxide and zirconium oxide microspheres.
Collapse
Affiliation(s)
- Subhadeep Saha
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Yen-Ting Chen
- Center of Molecular Spectroscopy and Simulation of Solvent-driven Processes (ZEMOS), Ruhr-University, Bochum, 44801, Bochum, Germany
| | - Sudhakar Ganta
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Markus Gilles
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Björn Holzapfel
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Pascal Lill
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, 44227, Dortmund, Germany
| | - Heinz Rehage
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Christos Gatsogiannis
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, 44227, Dortmund, Germany.,Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms-University Münster, Busso-Peus Str. 10, 48149, Münster, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
13
|
Ren G, Li B, Ren L, Di W, Tian L, Zhang P, Shao W, He J, Sun D. Dynamic Covalent Nanoparticles for Acid-Responsive Nonaqueous Pickering Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6632-6640. [PMID: 34042453 DOI: 10.1021/acs.langmuir.1c00097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Acid-responsive nonaqueous (glycerol in n-decane) Pickering emulsions were prepared using preferentially oil-wetted dynamic covalent silica (SiO2-pDB) nanoparticles as the Pickering emulsifiers. The acid-responsive Pickering emulsifier SiO2-pDB was prepared based on a Schiff base reaction between amino silica (SiO2-NH2) and p-decanoxybenzaldehyde (pDBA). The formation of SiO2-pDB was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and elemental analysis. The preferentially oil-wetted character of SiO2-pDB was indicated by contact angle measurement. Stable nonaqueous Pickering emulsions were prepared using preferentially oil-wetted SiO2-pDB as the Pickering emulsifier. However, after adjusting the nonaqueous Pickering emulsions to an acidic environment, complete phase separation occurred. In the acidic environment, preferentially oil-wetted SiO2-pDB decomposed into hydrophilic SiO2-NH2 and hydrophobic pDBA due to the decomposition of the dynamic imine bond in the SiO2-pDB. Then, the hydrophilic SiO2-NH2 and hydrophobic pDBA desorbed from the two-phase interface, resulting in complete phase separation of the initially stable nonaqueous Pickering emulsions. The acid-responsive nonaqueous Pickering emulsions show great potential in application in water sensitive systems, such as oil-based drilling fluids.
Collapse
Affiliation(s)
- Gaihuan Ren
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Bo Li
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China
| | - Lulu Ren
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Wenwen Di
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Lulu Tian
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China
| | - Pan Zhang
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China
| | - Weili Shao
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China
| | - Jianxin He
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China
| | - Dejun Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, P. R. China
| |
Collapse
|
14
|
Asano I, Sato T. Partition of Block Copolymers in Phase-Separating Polymer Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6268-6277. [PMID: 33982562 DOI: 10.1021/acs.langmuir.1c00704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The distribution of the AB diblock copolymer in a phase-separating solution composed of immiscible A and B homopolymers in a common solvent has been investigated theoretically. We have utilized the mixing Gibbs energy density for the interfacial phase based on mean-field lattice theory to this four-component system. Distributions of the AB diblock copolymer in the A and B homopolymer-rich bulk phases and the interfacial region between the separating bulk phases are calculated as a function of the B-block content, degrees of polymerization of the copolymer and A and B homopolymers, as well as interaction parameters among the A and B monomer units and the solvent. The copolymer prefers to distribute more in the interfacial region rather than separating bulk phases at a higher copolymer degree of polymerization and a higher interaction parameter between A and B monomer units. The theory is also compared with Asano et al.'s experimental results [ Langmuir 2015, 31, 7488-7495] for polystyrene-b-poly(ethylene glycol) copolymer added to the phase-separating solution of polystyrene and poly(ethylene glycol) homopolymers dissolved in chloroform.
Collapse
Affiliation(s)
- Itaru Asano
- Chemicals Research Laboratories, Toray Industries, Inc., 9-1 Oe-cho, Minato-ku, Nagoya 455-8502, Japan
- Department of Macromolecular Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Takahiro Sato
- Department of Macromolecular Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
15
|
Shin H, Lim MY, Oh J, Lee Y, Lee JC. Preparation of bottom-up graphene oxide using citric acid and tannic acid, and its application as a filler for polypropylene nanocomposites. RSC Adv 2021; 11:7663-7671. [PMID: 35423260 PMCID: PMC8695109 DOI: 10.1039/d0ra09856f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/03/2021] [Indexed: 11/21/2022] Open
Abstract
The production of graphene oxide (GO) in large amounts for commercialization in the chemical industry has been limited because harsh and tedious process conditions are required. In this study, a novel carbon nanomaterial called 'bottom-up graphene oxide (BGO)' could be easily prepared for the first time by heat treatment of the mixture of citric acid (CA) and tannic acid (TA) with different weight ratios for the first time. BGO3 prepared using a 50/50 weight ratio of CA/TA was found to have an average lateral size of 250.0 nm and an average thickness of 7.2 nm, and it was further functionalized with cardanol to prepare cardanol functionalized BGO3 (CBGO3) to be used as a filler for the polypropylene (PP) nanocomposite, where cardanol was used to increase the compatibility between BGO3 and PP. The improved mechanical properties and thermal stability of PP nanocomposites containing CBGO3 could be ascribed to the intrinsic mechanical properties of the carbon nanomaterial and the increased compatibility by the attached cardanol on BGO3.
Collapse
Affiliation(s)
- Huiseob Shin
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Min-Young Lim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Jinwoo Oh
- Photo-Electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST) 5. Hwarang-ro 14-gil, Seongbuk-gu Seoul 02792 Republic of Korea
| | - Yonghoon Lee
- Chemical Pilot Bldg., S-OIL TS&D Center 31 Magokjungang 8-ro 1-gil, Gangseo-gu Seoul 07793 Korea
| | - Jong-Chan Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| |
Collapse
|
16
|
Gao Y, Wu X, Qi C. Janus-Like Single-Chain Polymer Nanoparticles as Two-in-One Emulsifiers for Aqueous and Nonaqueous Pickering Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11467-11476. [PMID: 32975954 DOI: 10.1021/acs.langmuir.0c01756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The exploration of Pickering emulsions is very significant owing to their versatile and important applications in many scopes. In this study, synthesis of a novel kind of single-chain polymer nanoparticle (SCPN) and its stabilized Pickering emulsions were demonstrated. To this end, linear-dendritic diblock copolymers consisting of poly((2-dimethylamino) ethyl methacrylate) (PDMAEMA) blocks and four-generation dendritic aliphatic polyester blocks (G4) have been first synthesized by the combination of click chemistry and reversible addition-fragmentation chain transfer (RAFT) polymerization reaction. The subsequent intramolecular cross-linking of the PDMAEMA block of PDMAEMA-b-G4 copolymers in DMF using 1,4-diiodobutane as cross-linkers afforded Janus-like SCPNs that exhibited a cross-linked PDMAEMA head tethered by a short dendritic tail. The molecular weight and distribution together with the structure of polymers were carefully characterized by GPC and NMR spectroscopy. By the employment of the as-synthesized Janus-like SCPNs as Pickering emulsifiers, aqueous and nonaqueous Pickering emulsions including water-in-oil and oil-in-oil as well as ionic liquid-in-oil were generated. Under the same conditions, it was found that the long-term stabilities of Pickering emulsions stabilized by Janus-like SCPNs were superior to those of Pickering emulsions stabilized by their linear quaternized PDMAEMA-b-G4 by CH3I analogous.
Collapse
Affiliation(s)
- Yong Gao
- Key Laboratory of Alternative Technologies for Fine Chemicals Process of Zhejiang Province, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- College of Chemistry and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education; Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Xionghui Wu
- College of Chemistry and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education; Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Chenze Qi
- Key Laboratory of Alternative Technologies for Fine Chemicals Process of Zhejiang Province, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
| |
Collapse
|
17
|
Zia A, Pentzer E, Thickett S, Kempe K. Advances and Opportunities of Oil-in-Oil Emulsions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38845-38861. [PMID: 32805925 DOI: 10.1021/acsami.0c07993] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Emulsions are mixtures of two immiscible liquids in which droplets of one are dispersed in a continuous phase of the other. The most common emulsions are oil-water systems, which have found widespread use across a number of industries, for example, in the cosmetic and food industries, and are also of advanced scientific interest. In addition, the past decade has seen a significant increase in both the design and application of nonaqueous emulsions. This has been primarily driven by developments in understanding the mechanism of effective stabilization of oil-in-oil (o/o) systems, either using block copolymers (BCPs) or solid (Pickering) particles with appropriate surface functionality. These systems, as highlighted in this review, have enabled emergent applications in areas such as pharmaceutical delivery, energy storage, and materials design (e.g., polymerization, monolith, and porous polymer synthesis). These o/o emulsions complement traditional emulsions that utilize an aqueous phase and allow the use of materials incompatible with water. We assess recent advances in the preparation and stabilization of o/o emulsions, focusing on the identity of the stabilizer (BCP or particle), the interplay between stabilizer and oils, and highlighting applications and opportunities associated with o/o emulsions.
Collapse
Affiliation(s)
- Aadarash Zia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology and Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Emily Pentzer
- Department of Chemistry, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77807, United States
| | - Stuart Thickett
- School of Natural Sciences (Chemistry), The University of Tasmania, Hobart, Tasmania 7001 Australia
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology and Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
18
|
Cheon SI, Batista Capaverde Silva L, Ditzler R, Zarzar LD. Particle Stabilization of Oil-Fluorocarbon Interfaces and Effects on Multiphase Oil-in-Water Complex Emulsion Morphology and Reconfigurability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7083-7090. [PMID: 31991080 DOI: 10.1021/acs.langmuir.9b03830] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stabilization of oil-oil interfaces is important for nonaqueous emulsions as well as for multiphase oil-in-water emulsions, with relevance to a variety of fields ranging from emulsion polymerization to sensors and optics. Here, we focus on examining the ability of functionalized silica particles to stabilize interfaces between fluorinated oils and other immiscible oils (such as hydrocarbons and silicones) in nonaqueous emulsions and also on the particles' ability to affect the morphology and reconfigurability of complex, biphasic oil-in-water emulsions. We compare the effectiveness of fluorophilic, lipophilic, and bifunctional fluorophilic-lipophilic coated nanoparticles to stabilize these oil-oil interfaces. Sequential bulk emulsification steps by vortex mixing, or emulsification by microfluidics, can be used to create complex droplets in which particles stabilize the oil-oil interfaces and surfactants stabilize the oil-water interfaces. We examine the influence of particles adsorbed at the internal oil-oil interface in complex droplets to hinder the reconfiguration of these complex emulsions upon addition of aqueous surfactants, creating "metastable" droplets that resist changes in morphology. Such metastable droplets can be triggered to reconfigure when heated above their upper critical solution temperature. Thus, not only do these bifunctional silica particles enable the stabilization of a broad array of oil-fluorocarbon nonaqueous emulsions, but the ability to address the oil-oil interface within complex O/O/W droplets expands the diversity of oil chemical choices available and the accessibility of droplet morphologies and sensitivity.
Collapse
Affiliation(s)
- Seong Ik Cheon
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Leonardo Batista Capaverde Silva
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rachael Ditzler
- Department of Chemistry, Seton Hill University, Greensburg, Pennsylvania 15601, United States
| | - Lauren D Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
19
|
de Leon A, Wei P, Bordera F, Wegierak D, McMillen M, Yan D, Hemmingsen C, Kolios MC, Pentzer EB, Exner AA. Pickering Bubbles as Dual-Modality Ultrasound and Photoacoustic Contrast Agents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22308-22317. [PMID: 32307987 PMCID: PMC8985135 DOI: 10.1021/acsami.0c02091] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Microbubbles (MBs) stabilized by particle surfactants (i.e., Pickering bubbles) have better thermodynamic stability compared to MBs stabilized by small molecules as a result of steric hindrance against coalescence, higher diffusion resistance, and higher particle desorption energy. In addition, the use of particles to stabilize MBs that are typically used as an ultrasound (US) contrast agent can also introduce photoacoustic (PA) properties, thus enabling a highly effective dual-modality US and PA contrast agent. Here, we report the use of partially reduced and functionalized graphene oxide as the sole surfactant to stabilize perfluorocarbon gas bubbles in the preparation of a dual-modality US and PA agent, with high contrast in both imaging modes and without the need for small-molecule or polymer additives. This approach offers an increase in loading of the PA agent without destabilization and increased thickness of the MB shell compared to traditional systems, in which the focus is on adding a PA agent to existing MB formulations.
Collapse
Affiliation(s)
- Al de Leon
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Peiran Wei
- Department of Chemistry and Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Filip Bordera
- Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Dana Wegierak
- Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Madelyn McMillen
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - David Yan
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Christina Hemmingsen
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Michael C Kolios
- Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Emily B Pentzer
- Department of Chemistry and Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
20
|
Luo Q, Pentzer E. Encapsulation of Ionic Liquids for Tailored Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5169-5176. [PMID: 31721558 DOI: 10.1021/acsami.9b16546] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This spotlight article highlights the favorable impact encapsulation of ionic liquids (ILs) has on multiple advanced applications. ILs are molten salts with many attractive properties such as negligible vapor pressure, good thermal stability, and high ionic conductivity; however, their widespread implementation in advanced applications is hampered by their relatively high viscosity, which makes them difficult to handle and results in slow mass transfer rates. The ability to encapsulate IL in a shell holds potential to impact many applications, including separations, gas sequestration, and energy storage and management, given that the capsule structure provides high surface area compared to that of bulk IL and also allows handling of the IL as a solid. Herein, we discuss encapsulation of ILs using different approaches and highlight the contributions from our lab in both capsule preparation and application. Specifically, we have developed the ability to use 2D carbon nanoparticle surfactants and interfacial polymerization to prepare capsules of IL using both IL-in-water and IL-in-oil Pickering emulsions as templates. This facile, one-step method to encapsulate ILs gives structures with beneficial performance in supercapacitors, separations, and CO2 sequestration, as discussed herein. We conclude this spotlight with an outlook on how to improve upon these systems for next-generation applications.
Collapse
Affiliation(s)
- Qinmo Luo
- Department of Chemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Emily Pentzer
- Department of Chemistry, Department of Materials Science and Engineering , Texas A&M University , College Station , Texas 77840 , United States
| |
Collapse
|
21
|
Xue B, Xu T, Li D, Xu J, Li Y, Wang F, Zhu J. A Pickering emulsion of a bifunctional interface prepared from Pd nanoparticles supported on silicane-modified graphene oxide: an efficient catalyst for water-mediated catalytic hydrogenation. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02002k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A Pickering emulsion of bifunctional interface that prepared by Pd nanoparticles supported on silicane-modified graphene oxide exhibited high catalytic performance for hydrogenation of CAL.
Collapse
Affiliation(s)
- Bing Xue
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- PR China
| | - Tongchun Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- PR China
| | - Dongsheng Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- PR China
| | - Jie Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- PR China
| | - Yongxin Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- PR China
| | - Fei Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- PR China
| | - Jie Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- PR China
| |
Collapse
|
22
|
Ku KH, Li J, Yoshinaga K, Swager TM. Dynamically Reconfigurable, Multifunctional Emulsions with Controllable Structure and Movement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1905569. [PMID: 31639256 DOI: 10.1002/adma.201905569] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/05/2019] [Indexed: 05/20/2023]
Abstract
Dynamically reconfigurable oil-in-water (o/w) Pickering emulsions are developed, wherein the assembly of particles (i.e., platinum-on-carbon and iron-on-carbon particles) can be actively controlled by adjusting interfacial tensions. A balanced adsorption of particles and surfactants at the o/w interface allows for the creation of inhomogeneity of the particle distribution on the emulsion surface. Complex Pickering emulsions with highly controllable and reconfigurable morphologies are produced in a single step by exploiting the temperature-sensitive miscibility of hydrocarbon and fluorocarbon liquids. Dynamic adsorption/desorption of (polymer) surfactants afford both shape and configuration transitions of multiple Pickering emulsions and encapsulated core/shell structured can be transformed into a Janus configuration. Finally, to demonstrate the intrinsic catalytic or magnetic properties of the particles provided by carbon bound Pt and Fe nanoparticles, two different systems are investigated. Specifically, the creation of a bimetallic microcapsule with controlled payload release and precise modulation of translational and rotational motions of magnetic emulsions are demonstrated, suggesting potential applications for sensing and smart payload delivery.
Collapse
Affiliation(s)
- Kang Hee Ku
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jie Li
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Kosuke Yoshinaga
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| |
Collapse
|
23
|
Cain JD, Azizi A, Maleski K, Anasori B, Glazer EC, Kim PY, Gogotsi Y, Helms BA, Russell TP, Zettl A. Sculpting Liquids with Two-Dimensional Materials: The Assembly of Ti 3C 2T x MXene Sheets at Liquid-Liquid Interfaces. ACS NANO 2019; 13:12385-12392. [PMID: 31593435 DOI: 10.1021/acsnano.9b05088] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The self-assembly of nanoscale materials at the liquid-liquid interface allows for fabrication of three-dimensionally structured liquids with nearly arbitrary geometries and tailored electronic, optical, and magnetic properties. Two-dimensional (2D) materials are highly anisotropic, with thicknesses on the order of a nanometer and lateral dimensions upward of hundreds of nanometers to micrometers. Controlling the assembly of these materials has direct implications for their properties and performance. We here describe the interfacial assembly and jamming of Ti3C2Tx MXene nanosheets at the oil-water interface. Planar, as well as complex, programmed three-dimensional all-liquid objects are realized. Our approach presents potential for the creation of all-liquid 3D-printed devices for possible applications in all-liquid electrochemical and energy storage devices and electrically active, all-liquid fluidics that exploits the versatile structure, functionality, and reconfigurability of liquids.
Collapse
Affiliation(s)
- Jeffrey D Cain
- Department of Physics , University of California at Berkeley , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Kavli Energy NanoSciences Institute at the University of California at Berkeley and the Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Amin Azizi
- Department of Physics , University of California at Berkeley , Berkeley , California 94720 , United States
- Kavli Energy NanoSciences Institute at the University of California at Berkeley and the Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Kathleen Maleski
- Department of Materials Science & Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
- A.J. Drexel Nanomaterials Institute , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Babak Anasori
- Department of Materials Science & Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
- A.J. Drexel Nanomaterials Institute , Drexel University , Philadelphia , Pennsylvania 19104 , United States
- Integrated Nanosystems Development Institute, Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology , Indiana University-Purdue University Indianapolis , Indianapolis , Indiana 46202 , United States
| | - Emily C Glazer
- Department of Physics , University of California at Berkeley , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Kavli Energy NanoSciences Institute at the University of California at Berkeley and the Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Paul Y Kim
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Yury Gogotsi
- Department of Materials Science & Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
- A.J. Drexel Nanomaterials Institute , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Brett A Helms
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Thomas P Russell
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Department of Polymer Science and Engineering , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Alex Zettl
- Department of Physics , University of California at Berkeley , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Kavli Energy NanoSciences Institute at the University of California at Berkeley and the Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
24
|
Ghosh SK, Böker A. Self‐Assembly of Nanoparticles in 2D and 3D: Recent Advances and Future Trends. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Alexander Böker
- Fraunhofer‐Institut für Angewandte Polymerforschung Geiselbergstraβe 69 14476 Potsdam‐Golm Germany
| |
Collapse
|
25
|
Synthesis of poly(amide-thioether) with tunable hydrophilicity via thiolactone chemistry and its application in oil-in-oil emulsions. J Colloid Interface Sci 2019; 549:201-211. [PMID: 31039456 DOI: 10.1016/j.jcis.2019.04.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 01/17/2023]
Abstract
Oil-in-oil emulsions are ideal systems for water-sensitive reactions such as polymerizations and catalytic reactions, which has received extensive attention in recent years. The application of oil-in-oil emulsions has been developed slowly due to the limited types of surfactants and complicated synthesis process. Herein, we proposed a simple method to prepare poly(amide-thioether)-based surfactant for oil-in-oil emulsions via taking advantage of single-pot multicomponent and click characters of thiolactone chemistry. Using a combination of alkyl amine and acrylamide thiolactone, the aminolysis of thiolctone occurred first, generating thiol group in-situ, and then the generated thiol group would sequentially react with the double bonds of acrylamide to form polythioether in the presence of amine. The hydrophobicity of the surfactant could be effectively adjusted by the chain length of the alkyl amine and thus this polymer could serve as a promising surfactant for oil-in-oil emulsion. Notably, the emulsion types could be switched by changing the chain length of the alkyl amine. In addition, the effects of surfactant loading, volume ratio of oil phases, oil types on the size and stability of oil-in-oil emulsions were further investigated. It was demonstrated that the oil-in-oil emulsion stabilized by poly(amide-thioether)s kept stable after more than five months. Besides, we preliminarily explored the application of the oil-in-oil emulsion to prepare closed cell foam and porous particles via photo-initiated thiol-ene polymerization. It is believed that this super-stable oil-in-oil emulsion could offer more possibilities for highly potential water-sensitive systems.
Collapse
|
26
|
Forth J, Kim PY, Xie G, Liu X, Helms BA, Russell TP. Building Reconfigurable Devices Using Complex Liquid-Fluid Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806370. [PMID: 30828869 DOI: 10.1002/adma.201806370] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Liquid-fluid interfaces provide a platform both for structuring liquids into complex shapes and assembling dimensionally confined, functional nanomaterials. Historically, attention in this area has focused on simple emulsions and foams, in which surface-active materials such as surfactants or colloids stabilize structures against coalescence and alter the mechanical properties of the interface. In recent decades, however, a growing body of work has begun to demonstrate the full potential of the assembly of nanomaterials at liquid-fluid interfaces to generate functionally advanced, biomimetic systems. Here, a broad overview is given, from fundamentals to applications, of the use of liquid-fluid interfaces to generate complex, all-liquid devices with a myriad of potential applications.
Collapse
Affiliation(s)
- Joe Forth
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Paul Y Kim
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Ganhua Xie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Conte Center for Polymer Research, Amherst, MA, 01003, USA
| | - Xubo Liu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Conte Center for Polymer Research, Amherst, MA, 01003, USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| |
Collapse
|
27
|
Edgehouse K, Escamilla M, Wang L, Dent R, Pachuta K, Kendall L, Wei P, Sehirlioglu A, Pentzer E. Stabilization of oil-in-water emulsions with graphene oxide and cobalt oxide nanosheets and preparation of armored polymer particles. J Colloid Interface Sci 2019; 541:269-278. [DOI: 10.1016/j.jcis.2019.01.092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/13/2019] [Accepted: 01/22/2019] [Indexed: 02/05/2023]
|
28
|
Luo Q, Wang Y, Chen Z, Wei P, Yoo E, Pentzer E. Pickering Emulsion-Templated Encapsulation of Ionic Liquids for Contaminant Removal. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9612-9620. [PMID: 30741531 DOI: 10.1021/acsami.8b21881] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ionic liquids (ILs) have received attention for a diverse range of applications, but their liquid nature can make them difficult to handle and process and their high viscosities can lead to suboptimal performance. As such, encapsulated ILs are attractive for their ease of handling and high surface area and have potential for improved performance in energy storage, gas uptake, extractions, and so forth. Herein, we report a facile method to encapsulate a variety of ILs using Pickering emulsions as templates, graphene oxide (GO)-based nanosheets as particle surfactants, and interfacial polymerization for stabilization. The capsules contain up to 80% IL in the core, and the capsule shells are composed of polyurea and GO. We illustrate that capsules can be prepared from IL-in-water or IL-in-oil emulsions and explore the impact of monomer and IL identity, thereby accessing different compositions. The spherical, discrete capsules are characterized by optical microscopy, scanning electron microscopy, infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, and 1H NMR spectroscopy. We illustrate the application of these IL capsules as a column material to remove phenol from oil, demonstrating ≥98% phenol removal after passage of >170 column volumes. This simple method to prepare capsules of IL will find widespread use across diverse applications.
Collapse
Affiliation(s)
- Qinmo Luo
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue Cleveland , Ohio 44106 , United States
| | - Yifei Wang
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue Cleveland , Ohio 44106 , United States
| | - Zehao Chen
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue Cleveland , Ohio 44106 , United States
| | - Peiran Wei
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue Cleveland , Ohio 44106 , United States
| | - Esther Yoo
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue Cleveland , Ohio 44106 , United States
| | - Emily Pentzer
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue Cleveland , Ohio 44106 , United States
| |
Collapse
|
29
|
Luo Q, Wang Y, Yoo E, Wei P, Pentzer E. Ionic Liquid-Containing Pickering Emulsions Stabilized by Graphene Oxide-Based Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10114-10122. [PMID: 30060669 DOI: 10.1021/acs.langmuir.8b02011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Emulsions stabilized by particles (i.e., Pickering emulsions) are complementary to those stabilized by small molecules or polymers and most commonly consist of oil droplets dispersed in a continuous water phase, with particles assembled at the fluid-fluid interface. New particle surfactants and different fluid-fluid interfaces are critical for developing next-generation systems for a number of advanced applications. Herein we report the preparation of IL-containing emulsions stabilized by graphene oxide (GO)-based nanoparticles using the IL [Bmim][PF6]: GO nanosheets stabilize IL-in-water emulsions, and alkylated GO nanosheets (C18-GO) stabilize IL-in-oil emulsions. The impact of particle concentration, fluid-fluid ratio, and addition of acid or base on emulsion formation and stability is studied, with distinct effects for the water and oil systems observed. We then illustrate the broad applicability of GO-based particle surfactants by preparing emulsions with different ILs and preparing inverted emulsions (water-in-IL and oil-in-IL emulsions). The latter systems were accessed by tuning the polarity of GO nanosheets by functionalization with a perfluorinated alkyl chain such that they were dispersible in IL. This work provides insight into the preparation of different IL-containing emulsions and lays a foundation for the architecture of dissimilar materials into composite systems.
Collapse
Affiliation(s)
- Qinmo Luo
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Yifei Wang
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Esther Yoo
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Peiran Wei
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Emily Pentzer
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| |
Collapse
|
30
|
Wei P, Luo Q, Edgehouse KJ, Hemmingsen CM, Rodier BJ, Pentzer EB. 2D Particles at Fluid-Fluid Interfaces: Assembly and Templating of Hybrid Structures for Advanced Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21765-21781. [PMID: 29897230 DOI: 10.1021/acsami.8b07178] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Fluid-fluid interfaces have widespread applications in personal care products, the food industry, oil recovery, mineral processes, etc. and are also important and versatile platforms for generating advanced materials. In Pickering emulsions, particles stabilize the fluid-fluid interface, and their presence reduces the interfacial energy between the two fluids. To date, most Pickering emulsions stabilized by 2D particles make use of clay platelets or GO nanosheets. These systems have been used to template higher order hybrid, functional materials, most commonly, armored polymer particles, capsules, and Janus nanosheets. This review discusses the experimental and computational study of the assembly of sheet-like 2D particles at fluid-fluid interfaces, with an emphasis on the impact of chemical composition, and the use of these assemblies to prepare composite structures of dissimilar materials. The review culminates in a perspective on the future of Pickering emulsions using 2D particle surfactants, including new chemical modification and types of particles as well as the realization of properties and applications not possible with currently accessible systems, such as lubricants, porous structures, delivery, coatings, etc.
Collapse
Affiliation(s)
- Peiran Wei
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Qinmo Luo
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Katelynn J Edgehouse
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Christina M Hemmingsen
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Bradley J Rodier
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Emily B Pentzer
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| |
Collapse
|
31
|
Luo Q, Wei P, Huang Q, Gurkan B, Pentzer EB. Carbon Capsules of Ionic Liquid for Enhanced Performance of Electrochemical Double-Layer Capacitors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16707-16714. [PMID: 29671576 DOI: 10.1021/acsami.8b01285] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ion accessibility, large surface area, and complete wetting of a carbonaceous electrode by the electrolyte are crucial for high-performance electrochemical double-layer capacitors. Herein, we report a facile and scalable method to prepare electrode-electrolyte hybrid materials, where an ionic liquid (IL) electrolyte is encapsulated within a shell of reduced graphene oxide (rGO) nanosheets as the active electrode material (called rGO-IL capsules). These structures were templated using a Pickering emulsion consisting of a dispersed phase of 1-methyl-3-butylimidazolium hexafluorophosphate ([bmim][PF6]) and a continuous water phase; graphene oxide nanosheets were used as the surfactant, and interfacial polymerization yielded polyurea that bound the nanosheets together to form the capsule shell. This method prevents the aggregation and restacking of GO nanosheets and allows wetting of the materials by IL. The chemical composition, thermal properties, morphology, and electrochemical behavior of these new hybrid architectures are fully characterized. Specific capacitances of 80 F g-1 at 18 °C and 127 F g-1 at 60 °C were achieved at a scan rate of 10 mV s-1 for symmetric coin cells of rGO-IL capsules. These architected materials have higher capacitance at low temperature (18 °C) across many scan rates (10-500 mV s-1) compared with analogous cells with the porous carbon YP-50. These results demonstrate a distinct and important methodology to enhance the performance of electrochemical double-layer capacitors by incorporating electrolyte and carbon material together during synthesis.
Collapse
|
32
|
Bai L, Xiang W, Huan S, Rojas OJ. Formulation and Stabilization of Concentrated Edible Oil-in-Water Emulsions Based on Electrostatic Complexes of a Food-Grade Cationic Surfactant (Ethyl Lauroyl Arginate) and Cellulose Nanocrystals. Biomacromolecules 2018; 19:1674-1685. [PMID: 29608856 PMCID: PMC6150653 DOI: 10.1021/acs.biomac.8b00233] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/30/2018] [Indexed: 12/20/2022]
Abstract
We report on high-internal-phase, oil-in-water Pickering emulsions that are stable against coalescence during storage. Viscous, edible oil (sunflower) was emulsified by combining naturally derived cellulose nanocrystals (CNCs) and a food-grade, biobased cationic surfactant obtained from lauric acid and L-arginine (ethyl lauroyl arginate, LAE). The interactions between CNC and LAE were elucidated by isothermal titration calorimetry (ITC) and supplementary techniques. LAE adsorption on CNC surfaces and its effect on nanoparticle electrostatic stabilization, aggregation state, and emulsifying ability was studied and related to the properties of resultant oil-in-water emulsions. Pickering systems with tunable droplet diameter and stability against oil coalescence during long-term storage were controllably achieved depending on LAE loading. The underlying stabilization mechanism was found to depend on the type of complex formed, the LAE structures adsorbed on the cellulose nanoparticles (as unimer or as adsorbed admicelles), the presence of free LAE in the aqueous phase, and the equivalent alkane number of the oil phase (sunflower and dodecane oils were compared). The results extend the potential of CNC in the formulation of high-quality and edible Pickering emulsions. The functional properties imparted by LAE, a highly effective molecule against food pathogens and spoilage organisms, open new opportunities in food, cosmetics, and pharmaceutical applications, where the presence of CNC plays a critical role in achieving synergistic effects with LAE.
Collapse
Affiliation(s)
- Long Bai
- Bio-Based Colloids and Materials,
Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - Wenchao Xiang
- Bio-Based Colloids and Materials,
Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - Siqi Huan
- Bio-Based Colloids and Materials,
Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - Orlando J. Rojas
- Bio-Based Colloids and Materials,
Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16300, FIN-00076 Aalto, Espoo, Finland
| |
Collapse
|
33
|
Rodier BJ, de Leon A, Hemmingsen C, Pentzer E. Polymerizations in oil-in-oil emulsions using 2D nanoparticle surfactants. Polym Chem 2018. [DOI: 10.1039/c7py01819c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Oil-in-oil emulsions are especially attractive for compartmentalized reactions with water-sensitive monomers which cannot be used with traditional oil/water emulsions.
Collapse
Affiliation(s)
- Bradley J. Rodier
- Department of Chemistry
- Case Western Reserve University
- Cleveland
- USA 44106
| | - Al de Leon
- Department of Chemistry
- Case Western Reserve University
- Cleveland
- USA 44106
| | | | - Emily Pentzer
- Department of Chemistry
- Case Western Reserve University
- Cleveland
- USA 44106
| |
Collapse
|