1
|
Jung E, Rizzo A, Ryu H, Cho M, Choi TL. Controlled polymerization of levoglucosenone-derived enynes to give bio-based polymers with tunable degradation rates and high glass transition temperatures. Chem Sci 2025; 16:8435-8442. [PMID: 40225180 PMCID: PMC11986836 DOI: 10.1039/d5sc00630a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
In recent years, pollution from plastic waste has intensified the demand for sustainable polymers. Hence, biomass-derived degradable polymers offer a promising solution. For example, levoglucosenone, a readily available biomass product from cellulose pyrolysis, is an attractive building block for polymer synthesis. However, the metathesis polymerization of levoglucosenone-derived monomers has been difficult to control due to poor monomer reactivity, requiring an unstable but reactive ruthenium catalyst (C793). To facilitate the polymerization, we introduced a cascade motif to successfully demonstrate controlled polymerization of levoglucosenone-derived enynes using a commercially available 3rd-generation Grubbs catalyst. This living polymerization also enabled block copolymer synthesis. Furthermore, the degradation rates of these polymers can be adjusted over 2 orders of magnitude through monomer structural modifications. Notably, we observed higher glass transition temperatures of 152-198 °C by varying structural parameters.
Collapse
Affiliation(s)
- Eunsong Jung
- Department of Materials, ETH Zürich Zürich 8093 Switzerland
| | - Antonio Rizzo
- Department of Chemistry, the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong 999077 P. R. China
| | - Hanseul Ryu
- Department of Materials, ETH Zürich Zürich 8093 Switzerland
| | - Minyoung Cho
- Department of Materials, ETH Zürich Zürich 8093 Switzerland
| | - Tae-Lim Choi
- Department of Materials, ETH Zürich Zürich 8093 Switzerland
| |
Collapse
|
2
|
Zhang N, Dong L, Wang Y, Wang X, Wen Y, Lu X, Dong Y, You W. Elucidating the backbone degradation mechanism of poly(7-oxa-2,3-diazanorbornene). Chem Commun (Camb) 2024; 60:13714-13717. [PMID: 39494486 DOI: 10.1039/d4cc04484c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Our recent study introduced a novel class of polymers, poly(7-oxa-2,3-diazanorbornene), characterized by synthetic accessibility and the capacity for living polymerization and degradation even under pH = 7.4 buffered conditions. In this work, our research delves into the polymer's degradation behavior, revealing a detailed mechanism of degradation under both acidic and neutral pH environments.
Collapse
Affiliation(s)
- Na Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Lianqiang Dong
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Inter-face and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Xiaoyang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Yixing Wen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Inter-face and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueguang Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Inter-face and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanchen Dong
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Inter-face and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei You
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Song D, Koo B, Kang H, Seo K, Kim C. Chiral Acetal-Based Stereo-Controlled Degradable Polymer Synthesis. Chemistry 2024; 30:e202402064. [PMID: 38923725 DOI: 10.1002/chem.202402064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
The precise synthesis of chiral polymers remains a significant challenge in polymer chemistry, particularly for applications in advanced biomedical and electronic materials. The development of degradable polymers is important for eco-friendly and advanced materials. Here, we introduce a stereo-controlled degradable polymer via cascade enyne metathesis polymerization and enantioselective acetal synthesis through Pd-catalyzed asymmetric hydroamination. This approach allows for the creation of chiral acetal-based polymers with controlled stereochemistry and degradability, highlighting their potential for use in drug delivery and electronic applications. This concept article reviews the background, development, and potential applications of these stereo-controlled degradable polymers.
Collapse
Affiliation(s)
- Dayong Song
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Bonwoo Koo
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Houng Kang
- Department of Chemistry Education, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Kyeongdeok Seo
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Choeljae Kim
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| |
Collapse
|
4
|
Zhang M, Choi W, Kim M, Choi J, Zang X, Ren Y, Chen H, Tsukruk V, Peng J, Liu Y, Kim DH, Lin Z. Recent Advances in Environmentally Friendly Dual-crosslinking Polymer Networks. Angew Chem Int Ed Engl 2024; 63:e202318035. [PMID: 38586975 DOI: 10.1002/anie.202318035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 04/09/2024]
Abstract
Environmentally friendly crosslinked polymer networks feature degradable covalent or non-covalent bonds, with many of them manifesting dynamic characteristics. These attributes enable convenient degradation, facile reprocessibility, and self-healing capabilities. However, the inherent instability of these crosslinking bonds often compromises the mechanical properties of polymer networks, limiting their practical applications. In this context, environmentally friendly dual-crosslinking polymer networks (denoted EF-DCPNs) have emerged as promising alternatives to address this challenge. These materials effectively balance the need for high mechanical properties with the ability to degrade, recycle, and/or self-heal. Despite their promising potential, investigations into EF-DCPNs remain in their nascent stages, and several gaps and limitations persist. This Review provides a comprehensive overview of the synthesis, properties, and applications of recent progress in EF-DCPNs. Firstly, synthetic routes to a rich variety of EF-DCPNs possessing two distinct types of dynamic bonds (i.e., imine, disulfide, ester, hydrogen bond, coordination bond, and other bonds) are introduced. Subsequently, complex structure- and dynamic nature-dependent mechanical, thermal, and electrical properties of EF-DCPNs are discussed, followed by their exemplary applications in electronics and biotechnology. Finally, future research directions in this rapidly evolving field are outlined.
Collapse
Affiliation(s)
- Mingyue Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Woosung Choi
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Minju Kim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Jinyoung Choi
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Xuerui Zang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yujing Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Han Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Vladimir Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Juan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yijiang Liu
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, Hunan Province, 411105, China
| | - Dong Ha Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| |
Collapse
|
5
|
An T, Ryu H, Choi TL. Living Alternating Ring-Opening Metathesis Copolymerization of 2,3-Dihydrofuran to Provide Completely Degradable Polymers. Angew Chem Int Ed Engl 2023; 62:e202309632. [PMID: 37789610 DOI: 10.1002/anie.202309632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023]
Abstract
2,3-Dihydrofuran (DHF) has recently been gaining significant attention as a comonomer in metathesis polymerization, thanks to its ability to provide the resultant polymer backbones with stimuli-responsive degradability. In this report, we present living alternating copolymerization of DHF with less reactive endo-tricyclo[4.2.2.02,5 ]deca-3,9-dienes (TDs) and endo-oxonorbornenes (oxoNBs). By carefully controlling the reactivity of both the Ru initiators and the monomers, we have achieved outstanding A, B-alternation (up to 98 %) under near stoichiometric DHF loading conditions. Notably, we have also found that the use of a more sterically hindered Ru initiator helps to attain polymer backbones with higher DHF incorporation and superior A, B-alternation. While preserving the living characteristics of DHF copolymerization, as evidenced by controlled molecular weights (up to 73.9 kDa), narrow dispersities (down to 1.05), and block copolymer formation, our DHF copolymers could be broken down to a single repeat unit level under acidic conditions. 1 H NMR analysis of the model copolymer revealed that after 24 hours of degradation, up to 80 % of the initial polymer was transformed into a single small molecule product, and after purification, up to 66 % of the degradation product was retrieved. This study provides a versatile approach to improve the alternation and degradability of DHF copolymers.
Collapse
Affiliation(s)
- Taeyang An
- Department of Chemistry, Seoul National University, 08826, Seoul, Republic of Korea
| | - Hanseul Ryu
- Department of Chemistry, Seoul National University, 08826, Seoul, Republic of Korea
| | - Tae-Lim Choi
- Department of Materials, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
6
|
Koo B, Kim C. Synthesis of Stereocontrolled Degradable Polymer by Living Cascade Enyne Metathesis Polymerization. Angew Chem Int Ed Engl 2023; 62:e202312399. [PMID: 37737689 DOI: 10.1002/anie.202312399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
A stereocontrolled degradable polymer was synthesized via living cascade enyne metathesis polymerization. Highly stereodefined N,O-acetal-containing enyne monomers were prepared using the Pd-catalyzed hydroamination of alkoxyallenes and ring-closing metathesis. The resulting chiral polymer exhibited a narrow dispersity window. Block copolymers were prepared not only by sequentially adding nondegradable and degradable monomers but also by using enantiomerically different monomers to produce stereocontrolled blocks. Owing to the hydrolyzable N,O-acetal moiety in the backbone structure, the resulting polymer could degrade under acidic conditions generated using various acid concentrations to control the degradation. Additionally, the aza-Diels-Alder reaction modified the polymer without losing the stereochemistry.
Collapse
Affiliation(s)
- Bonwoo Koo
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, 28644, Cheongju, Republic of Korea
| | - Cheoljae Kim
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, 28644, Cheongju, Republic of Korea
| |
Collapse
|
7
|
Liang Y, Sullivan HL, Carrow K, Mesfin JM, Korpanty J, Worthington K, Luo C, Christman KL, Gianneschi NC. Inflammation-Responsive Micellar Nanoparticles from Degradable Polyphosphoramidates for Targeted Delivery to Myocardial Infarction. J Am Chem Soc 2023; 145:11185-11194. [PMID: 37184379 PMCID: PMC11467961 DOI: 10.1021/jacs.3c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Nanoparticles that undergo a localized morphology change to target areas of inflammation have been previously developed but are limited by their lack of biodegradability. In this paper, we describe a low-ring-strain cyclic olefin monomer, 1,3-dimethyl-2-phenoxy-1,3,4,7-tetrahydro-1,3,2-diazaphosphepine 2-oxide (MePTDO), that rapidly polymerizes via ring-opening metathesis polymerization at room temperature to generate well-defined degradable polyphosphoramidates with high monomer conversion (>84%). Efficient MePTDO copolymerizations with norbornene-based monomers are demonstrated, including a norbornenyl monomer functionalized with a peptide substrate for inflammation-associated matrix metalloproteinases (MMPs). The resulting amphiphilic peptide brush copolymers self-assembled in aqueous solution to generate micellar nanoparticles (30 nm in diameter) which exhibit excellent cyto- and hemocompatibility and undergo MMP-induced assembly into micron-scale aggregates. As MMPs are upregulated in the heart postmyocardial infarction (MI), the MMP-responsive micelles were applied to target and accumulate in the infarcted heart following intravenous administration in a rat model of MI. These particles displayed a distinct biodistribution and clearance pattern in comparison to nondegradable analogues. Specifically, accumulation at the site of MI competed with elimination predominantly through the kidney rather than the liver. Together, these results suggest this as a promising new biodegradable platform for inflammation targeted delivery.
Collapse
Affiliation(s)
- Yifei Liang
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly L Sullivan
- Shu Chien-Gene Lay Department of Bioengineering and the Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California 92037, United States
| | - Kendal Carrow
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Joshua M Mesfin
- Shu Chien-Gene Lay Department of Bioengineering and the Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California 92037, United States
| | - Joanna Korpanty
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Kendra Worthington
- Shu Chien-Gene Lay Department of Bioengineering and the Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California 92037, United States
| | - Colin Luo
- Shu Chien-Gene Lay Department of Bioengineering and the Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California 92037, United States
| | - Karen L Christman
- Shu Chien-Gene Lay Department of Bioengineering and the Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California 92037, United States
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92037, United States
| |
Collapse
|
8
|
Tashiro K, Akiyama M, Kashiwagi K, Okazoe T. The Fluorocarbene Exploit: Enforcing Alternation in Ring-Opening Metathesis Polymerization. J Am Chem Soc 2023; 145:2941-2950. [PMID: 36701256 DOI: 10.1021/jacs.2c11373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fluoroalkenes are known to be notoriously reluctant substrates for olefin metathesis due to the generation of thermodynamically stable Fischer-type fluorocarbene intermediates, which invariably fail to undergo further reaction. In the present disclosure, we find that fluorine substitution on the sp2 carbon also strictly suppresses homopolymerization of norbornene derivatives (NBEs), and this can be harnessed to achieve alternating ring-opening metathesis polymerization (ROMP) with an appropriately electron-rich comonomer. Dihydrofuran (DHF) is thereby shown to undergo alternating ROMP with fluorinated norbornenes, the perfectly alternating structure of the resulting copolymer having been unambiguously elucidated by 1H, 19F, and 13C NMR analyses. Furthermore, we find that the degradability of the resultant copolymers in acidic media via hydrolysis of enol ether moieties in the backbone can be predictably modulated by the number of fluorine atoms present in the NBE comonomer, affording an opportunity to engage with the desirable physical properties of fluorinated polymers while limiting their attendant environmental degradability issues.
Collapse
Affiliation(s)
- Kaoru Tashiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Midori Akiyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kimiaki Kashiwagi
- AGC Inc., Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takashi Okazoe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.,AGC Inc., Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
9
|
Xu J, Hadjichristidis N. Heteroatom-containing degradable polymers by ring-opening metathesis polymerization. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
10
|
Mandal A, Mandal I, Kilbinger AFM. Catalytic Living Ring-Opening Metathesis Polymerization Using Vinyl Ethers as Effective Chain-Transfer Agents. Angew Chem Int Ed Engl 2023; 62:e202211842. [PMID: 36445835 DOI: 10.1002/anie.202211842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
A catalytic living ring-opening metathesis copolymerization (ROMP) method is described that relies on a degenerative, reversible and regioselective exchange of propagating Fischer-carbenes. All characteristics of a living polymerization such as narrow dispersity, excellent molar mass control and the ability to form block copolymers are achieved by this method. The method allows the use of up to 200 times less ruthenium complex than traditional living ROMP. We demonstrate the synthesis of ROMP-ROMP diblock copolymers, ATRP from a ROMP macro-initiator and living ROMP from a PEG-based macro chain transfer agent. The cost-effective, sustainable and environmentally friendly synthesis of degradable polymers and block copolymers enabled by this strategy will find various applications in biomedicine, materials science, and technology.
Collapse
Affiliation(s)
- Ankita Mandal
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Indradip Mandal
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Andreas F M Kilbinger
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| |
Collapse
|
11
|
Lou J, Mooney DJ. Chemical strategies to engineer hydrogels for cell culture. Nat Rev Chem 2022; 6:726-744. [PMID: 37117490 DOI: 10.1038/s41570-022-00420-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 12/12/2022]
Abstract
Two-dimensional and three-dimensional cell culture systems are widely used for biological studies, and are the basis of the organoid, tissue engineering and organ-on-chip research fields in applications such as disease modelling and drug screening. The natural extracellular matrix of tissues, a complex scaffold with varying chemical and mechanical properties, has a critical role in regulating important cellular functions such as spreading, migration, proliferation and differentiation, as well as tissue morphogenesis. Hydrogels are biomaterials that are used in cell culture systems to imitate critical features of a natural extracellular matrix. Chemical strategies to synthesize and tailor the properties of these hydrogels in a controlled manner, and manipulate their biological functions in situ, have been developed. In this Review, we provide the rational design criteria for predictably engineering hydrogels to mimic the properties of the natural extracellular matrix. We highlight the advances in using biocompatible strategies to engineer hydrogels for cell culture along with recent developments to dynamically control the cellular environment by exploiting stimuli-responsive chemistries. Finally, future opportunities to engineer hydrogels are discussed, in which the development of novel chemical methods will probably have an important role.
Collapse
|
12
|
Mandal A, Mandal I, Kilbinger AFM. Catalytic Syntheses of Degradable Polymers via Ring-Opening Metathesis Copolymerization Using Vinyl Ethers as Chain Transfer Agents. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ankita Mandal
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Indradip Mandal
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Andreas F. M. Kilbinger
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| |
Collapse
|
13
|
Pal S, Mandal I, Kilbinger AFM. Controlled Alternating Metathesis Copolymerization of Terminal Alkynes. ACS Macro Lett 2022; 11:847-853. [PMID: 35736023 DOI: 10.1021/acsmacrolett.2c00258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Terminal alkynes display high reactivity toward Ru-carbene metathesis catalysts. However, the formation of a less reactive bulky carbene hinders their homopolymerization. Simultaneously, the higher reactivity of alkynes does not allow efficient cross propagation with sterically less-hindered cycloalkene monomers, resulting in inefficient copolymerization. Nonetheless, terminal alkynes undergo rapid cross-metathesis with vinyl ethers. Therefore, an efficient cross propagation can be achieved with terminal alkynes and cyclic enol ether monomers. Here, we show that terminal alkyne derivatives can be copolymerized in an alternating fashion with 2,3-dihydrofuran using Grubbs' third generation catalyst (G3). A linear relationship of the number-average molecular weight versus monomer to initiator ratio and block copolymer synthesis confirmed a controlled copolymerization. The SEC and NMR analyses of the synthesized copolymers confirmed the excellent control over molecular weight and exclusive alternating nature of the copolymer. The regioselective chain transfer of G3 to vinyl ether and the high reactivity of the Fischer-type Ru carbene toward terminal alkynes was also exploited for polymer conjugation. Finally, the presence of an acid labile backbone functionality in the synthesized alternating copolymers allowed complete degradation of the copolymer within a short time interval which was confirmed by SEC analyses.
Collapse
Affiliation(s)
- Subhajit Pal
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Indradip Mandal
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Andreas F M Kilbinger
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| |
Collapse
|
14
|
Quach PK, Hsu JH, Keresztes I, Fors BP, Lambert TH. Metal-Free Ring-Opening Metathesis Polymerization with Hydrazonium Initiators. Angew Chem Int Ed Engl 2022; 61:e202203344. [PMID: 35302707 DOI: 10.1002/anie.202203344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 12/13/2022]
Abstract
The ring-opening metathesis polymerization (ROMP) of cyclopropenes using hydrazonium initiators is described. The initiators, which are formed by the condensation of 2,3-diazabicyclo[2.2.2]octane and an aldehyde, polymerize cyclopropene monomers by a sequence of [3+2] cycloaddition and cycloreversion reactions. This process generates short chain polyolefins (Mn ≤9.4 kg mol-1 ) with relatively low dispersities (Đ≤1.4). The optimized conditions showed efficiency comparable to that achieved with Grubbs' 2nd generation catalyst for the polymerization of 3-methyl-3-phenylcyclopropene. A positive correlation between monomer to initiator ratio and degree of polymerization was revealed through NMR spectroscopy.
Collapse
Affiliation(s)
- Phong K Quach
- Department of Chemistry and Chemical Biology, Cornell University, 122 Baker Laboratory, Ithaca, NY 14853, USA
| | - Jesse H Hsu
- Department of Chemistry and Chemical Biology, Cornell University, 122 Baker Laboratory, Ithaca, NY 14853, USA
| | - Ivan Keresztes
- Department of Chemistry and Chemical Biology, Cornell University, 122 Baker Laboratory, Ithaca, NY 14853, USA
| | - Brett P Fors
- Department of Chemistry and Chemical Biology, Cornell University, 122 Baker Laboratory, Ithaca, NY 14853, USA
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University, 122 Baker Laboratory, Ithaca, NY 14853, USA
| |
Collapse
|
15
|
Sui X, Gutekunst WR. Cascade Alternating Metathesis Cyclopolymerization of Diynes and Dihydrofuran. ACS Macro Lett 2022; 11:630-635. [PMID: 35570817 DOI: 10.1021/acsmacrolett.2c00140] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ruthenium alkoxymethylidene complexes have recently come into view as competent species for metathesis copolymerization reactions when coupled with appropriate comonomer targets. Here, we explore the ability of Fischer-type carbenes to participate in cascade alternating metathesis cyclopolymerization (CAMC) through facile terminal alkyne addition. The combination of diyne monomers and an equal feed ratio of low-strain dihydrofuran leads to a controlled chain-growth copolymerization with high degrees of alternation (>97% alternating diads) and produces degradable polymer materials with low dispersities and targetable molecular weights. When combined with enyne monomers, this method is amenable to the synthesis of alternating diblock copolymers that can be fully degraded to short oligomer fragments under aqueous acidic conditions. This work furthers the potential for the generation of functional metathesis materials via Fischer-type ruthenium alkylidenes.
Collapse
Affiliation(s)
- Xuelin Sui
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Will R. Gutekunst
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
16
|
Quach PK, Hsu JH, Keresztes I, Fors BP, Lambert TH. Metal–Free Ring–Opening Metathesis Polymerization with Hydrazonium Initiators. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Phong K Quach
- Cornell University Chemistry and Chemical Biology 14853 Ithaca UNITED STATES
| | - Jesse H Hsu
- Cornell University Chemistry and Chemical Biology 14853 Ithaca UNITED STATES
| | - Ivan Keresztes
- Cornell University Chemistry and Chemical Biology 14853 Ithaca UNITED STATES
| | - Brett P Fors
- Cornell University Chemistry and Chemical Biology 14853 Ithaca UNITED STATES
| | - Tristan Hayes Lambert
- Cornell University Department of Chemistry & Chemical Biology Baker Laboratory 14853 Ithaca UNITED STATES
| |
Collapse
|
17
|
Shi C, Clarke RW, McGraw ML, Chen EYX. Closing the "One Monomer-Two Polymers-One Monomer" Loop via Orthogonal (De)polymerization of a Lactone/Olefin Hybrid. J Am Chem Soc 2022; 144:2264-2275. [PMID: 35084829 DOI: 10.1021/jacs.1c12278] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two well-known low-ceiling-temperature (LCT) monomers, γ-butyrolactone (γ-BL) toward ring-opening polymerization (ROP) to polyester and cyclohexene toward ring-opening metathesis polymerization (ROMP) to poly(cyclic olefin), are notoriously "nonpolymerizable". Here we present a strategy to render not only polymerizability of both the γ-BL and cyclohexene sites, orthogonally, but also complete and orthogonal depolymerization, through creating an LCT/LCT hybrid, bicyclic lactone/olefin (BiL=). This hybrid monomer undergoes orthogonal polymerization between ROP and ROMP, depending on the catalyst employed, affording two totally different classes of polymeric materials from this single monomer: polyester P(BiL=)ROP via ROP and functionalized poly(cyclic olefin) P(BiL=)ROMP via ROMP. Intriguingly, both P(BiL=)ROP and P(BiL=)ROMP are thermally robust but chemically recyclable under mild conditions (25-40 °C), in the presence of a catalyst, to recover cleanly the same monomer via chain unzipping and scission, respectively. In the ROP, topological and stereochemical controls have been achieved and the structures characterized. Furthermore, the intact functional group during the orthogonal polymerization (i.e., the double bond in ROP and the lactone in ROMP) is utilized for postfunctionalization for tuning materials' thermal and mechanical performances. The impressive depolymerization orthogonality further endows selective depolymerization of both the ROP/ROMP copolymer and the physical blend composites into the same starting monomer.
Collapse
Affiliation(s)
- Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Ryan W Clarke
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Michael L McGraw
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
18
|
Koo B, Kim D, Song DY, Han WJ, Kim D, Park JW, Kim M, Kim C. The formation of photodegradable nitrophenylene polymers via ring-opening metathesis polymerization. Polym Chem 2022. [DOI: 10.1039/d2py00684g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photodegradable nitrophenylene polymer was prepared via ring-opening metathesis polymerization (ROMP). The resulting polymer was degraded in the presence of UVA light without any chemical additives within 1 hour.
Collapse
Affiliation(s)
- Bonwoo Koo
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Dopil Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Da Yong Song
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Woo Joo Han
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Jae Woo Park
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Cheoljae Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
19
|
Kimura T, Kuroda K, Kubota H, Ouchi M. Metal-Catalyzed Switching Degradation of Vinyl Polymers via Introduction of an "In-Chain" Carbon-Halogen Bond as the Trigger. ACS Macro Lett 2021; 10:1535-1539. [PMID: 35549134 DOI: 10.1021/acsmacrolett.1c00601] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work, we achieved switching degradation of vinyl polymers made of a carbon-carbon bonded backbone. Crucial in this strategy was a small feed of methyl α-chloroacrylate (MCA) as the comonomer in radical polymerization of methyl methacrylate (MMA) so that the carbon-halogen bonds were introduced as the triggers for degradation. The "in-chain" trigger was activated by a one-electron redox metal catalyst as the chemical stimulus to generate the carbon-centered radical species, and subsequently, the neighboring carbon-carbon bond was cleaved via an electron transfer of the radical species giving the terminal olefin. Particularly, an iron complex (FeCl2) in conjunction with tributylamine (n-Bu3N) was effective as the chemical stimulus to allow the switching degradation, where the molecular weight was gradually decreased over time. The switching feature was confirmed by some control experiments.
Collapse
Affiliation(s)
- Taichi Kimura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Keita Kuroda
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroyuki Kubota
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
20
|
Yang Y, Yu K, Liu S, Yan J, Lai H, Xing F, Xiao P. Radical Ring-Opening Single Unit Monomer Insertion: An Approach to Degradable and Biocompatible Sequence-Defined Oligomers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yili Yang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou 510632, China
| | - Keman Yu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou 510632, China
| | - Shan Liu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou 510632, China
| | - Jieyu Yan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou 510632, China
| | - Haiwang Lai
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou 510632, China
| | - Feiyue Xing
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Pu Xiao
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
21
|
A versatile approach for the synthesis of degradable polymers via controlled ring-opening metathesis copolymerization. Nat Chem 2021; 14:53-58. [PMID: 34795434 DOI: 10.1038/s41557-021-00810-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022]
Abstract
Norbornene derivatives (NBEs) are common monomers for living ring-opening metathesis polymerization and yield polymers with low dispersities and diverse functionalities. However, the all-carbon backbone of poly-NBEs is non-degradable. Here we report a method to synthesize degradable polymers by copolymerizing 2,3-dihydrofuran with NBEs. 2,3-Dihydrofuran rapidly reacts with Grubbs catalyst to form a thermodynamically stable Ru Fischer carbene-the only detectable active Ru species during copolymerization-and the addition of NBEs becomes rate determining. This reactivity attenuates the NBE homoaddition and allows uniform incorporation of acid-degradable enol ether linkages throughout the copolymers, which enables complete polymer degradation while maintaining the favourable characteristics of living ring-opening metathesis polymerization. Copolymerization of 2,3-dihydrofuran with NBEs gives low dispersity polymers with tunable solubility, glass transition temperature and mechanical properties. These polymers can be fully degraded into small molecule or oligomeric species under mildly acidic conditions. This method can be readily adapted to traditional ring-opening metathesis polymerization of widely used NBEs to synthesize easily degradable polymers with tunable properties for various applications and for environmental sustainability.
Collapse
|
22
|
Huang B, Wei M, Vargo E, Qian Y, Xu T, Toste FD. Backbone-Photodegradable Polymers by Incorporating Acylsilane Monomers via Ring-Opening Metathesis Polymerization. J Am Chem Soc 2021; 143:17920-17925. [PMID: 34677051 DOI: 10.1021/jacs.1c06836] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Materials capable of degradation upon exposure to light hold promise in a diverse range of applications including biomedical devices and smart coatings. Despite the rapid access to macromolecules with diverse compositions and architectures enabled by ring-opening metathesis polymerization (ROMP), a general strategy to introduce facile photodegradability into these polymers is lacking. Here, we report copolymers synthesized via ROMP that can be degraded by cleaving the backbone in both solution and solid states under irradiation with a 52 W, 390 nm Kessil LED to generate heterotelechelic low-molecular-weight fragments. To the best of our knowledge, this work represents the first instance of the incorporation of acylsilanes into a polymer backbone. Mechanistic investigation of the degradation process supports the intermediacy of an α-siloxy carbene, formed via a 1,2-photo Brook rearrangement, which undergoes insertion into water followed by cleavage of the resulting hemiacetal.
Collapse
Affiliation(s)
- Banruo Huang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkley, Berkeley, California 94720, United States
| | - Mufeng Wei
- Department of Chemistry, University of California, Berkley, Berkeley, California 94720, United States
| | - Emma Vargo
- Department of Materials Science & Engineering, University of California, Berkley, Berkeley, California 94720, United States
| | - Yiwen Qian
- Department of Materials Science & Engineering, University of California, Berkley, Berkeley, California 94720, United States
| | - Ting Xu
- Department of Chemistry, University of California, Berkley, Berkeley, California 94720, United States.,Department of Materials Science & Engineering, University of California, Berkley, Berkeley, California 94720, United States.,Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - F Dean Toste
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkley, Berkeley, California 94720, United States
| |
Collapse
|
23
|
Lai H, Ouchi M. Backbone-Degradable Polymers via Radical Copolymerizations of Pentafluorophenyl Methacrylate with Cyclic Ketene Acetal: Pendant Modification and Efficient Degradation by Alternating-Rich Sequence. ACS Macro Lett 2021; 10:1223-1228. [PMID: 35549050 DOI: 10.1021/acsmacrolett.1c00513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work deals with syntheses of backbone-degradable polymers via the radical copolymerization of pentafluorophenyl methacrylate (PFMA) with 5,6-benzo-2-methylene-1,3-dioxepane (BMDO), which undergoes ring-opening propagation to afford an ester-bonded backbone. The combination of the electron-deficient methacrylate with the electron-rich cyclic monomer allowed high crossover copolymerization, and the electronic effect was clarified by the comparison with the copolymerization of methyl methacrylate (MMA) and BMDO. The PFMA units of the resultant copolymer underwent quantitative alcoholysis or aminolysis transformation into methacrylate or methacrylamide units along with the pendant functionalization. The alternating-rich sequence was achieved by feeding an excess ratio of BMDO, which was supported by MALDI-TOF-MS of the copolymer obtained by the RAFT copolymerization. The methanolysis-transformed copolymer carrying MMA units was decomposed under basic condition, and the degradation efficiency was superior to that of the copolymer obtained via radical copolymerization of MMA with BMDO because of the alternating-rich sequence.
Collapse
Affiliation(s)
- Haiwang Lai
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
24
|
Abstract
The development of degradable polymers has commanded significant attention over the past half century. Approaches have predominantly relied on ring-opening polymerization of cyclic esters (e.g., lactones, lactides) and N-carboxyanhydrides, as well as radical ring-opening polymerizations of cyclic ketene acetals. In recent years, there has been a significant effort applied to expand the family of degradable polymers accessible via olefin metathesis polymerization. Given the excellent functional group tolerance of olefin metathesis polymerization reactions generally, a broad range of conceivable degradable moieties can be incorporated into appropriate monomers and thus into polymer backbones. This approach has proven particularly versatile in synthesizing a broad spectrum of degradable polymers including poly(ester), poly(amino acid), poly(acetal), poly(carbonate), poly(phosphoester), poly(phosphoramidate), poly(enol ether), poly(azobenzene), poly(disulfide), poly(sulfonate ester), poly(silyl ether), and poly(oxazinone) among others. In this review, we will highlight the main olefin metathesis polymerization strategies that have been used to access degradable polymers, including (i) acyclic diene metathesis polymerization, (ii) entropy-driven and (iii) enthalpy-driven ring-opening metathesis polymerization, as well as (iv) cascade enyne metathesis polymerization. In addition, the livingness or control of polymerization reactions via different strategies are highlighted and compared. Potential applications, challenges and future perspectives of this new library of degradable polyolefins are discussed. It is clear from recent and accelerating developments in this field that olefin metathesis polymerization represents a powerful synthetic tool towards degradable polymers with novel structures and properties inaccessible by other polymerization approaches.
Collapse
Affiliation(s)
- Hao Sun
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Yifei Liang
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Matthew P. Thompson
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Nathan C. Gianneschi
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science & Engineering,
Department of Biomedical Engineering, Department of Pharmacology, Chemistry of Life
Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
25
|
Youn G, Sampson NS. Substituent Effects Provide Access to Tetrasubstituted Ring-Opening Olefin Metathesis of Bicyclo[4.2.0]oct-6-enes. ACS ORGANIC & INORGANIC AU 2021; 1:29-36. [PMID: 34693402 PMCID: PMC8529632 DOI: 10.1021/acsorginorgau.1c00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 01/20/2023]
Abstract
Herein, we report the origin of unexpected reactivity of bicyclo[4.2.0]oct-6-ene substrates containing an α,β-unsaturated amide moiety in ruthenium-catalyzed alternating ring-opening metathesis polymerization reactions. Specifically, compared with control substrates bearing an ester, alkyl ketone, nitrile, or tertiary amide substituent, α,β-unsaturated substrates with a weakly acidic proton showed increased rates of ring-opening metathesis mediated by Grubbs-type ruthenium catalysts. 1H NMR and IR spectral analyses indicated that deprotonation of the α,β-unsaturated amide substrates resulted in stronger coordination of the carbonyl group to the ruthenium metal center. Principal component analysis identified ring strain and the electron density on the carbonyl oxygen (based on structures optimized by means of ωB97X-D/6311+G(2df,2p) calculations) as the two key contributors to fast ring-opening metathesis of the bicyclo[4.2.0]oct-6-enes; whereas the dipole moment, conjugation, and energy of the highest occupied molecular orbital had little to no effect on the reaction rate. We conclude that alternating ring-opening metathesis polymerization reactions of bicyclo[4.2.0]oct-6-enes with unstrained cycloalkenes require an ionizable proton for efficient generation of alternating polymers.
Collapse
|
26
|
Kamali Shahri SM, Sharifi S, Mahmoudi M. Interdependency of influential parameters in therapeutic nanomedicine. Expert Opin Drug Deliv 2021; 18:1379-1394. [PMID: 33887999 DOI: 10.1080/17425247.2021.1921732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction:Current challenges to successful clinical translation of therapeutic nanomedicine have discouraged many stakeholders, including patients. Significant effort has been devoted to uncovering the reasons behind the less-than-expected success, beyond failures or ineffectiveness, of therapeutic nanomedicine products (e.g. cancer nanomedicine). Until we understand and address the factors that limit the safety and efficacy of NPs, both individually and in combination, successful clinical development will lag.Areas covered:This review highlights the critical roles of interdependent factors affecting the safety and therapeutic efficacy of therapeutic NPs for drug delivery applications.Expert opinion:Deep analysis of the current nanomedical literature reveals ahistory of unanticipated complexity by awide range of stakeholders including researchers. In the manufacture of nanomedicines themselves, there have been persistent difficulties with reproducibility and batch-to-batch variation. The unanticipated complexity and interdependency of nano-bio parameters has delayed our recognition of important factors affecting the safety and therapeutic efficacy of nanomedicine products. These missteps have had many factors including our lack of understanding of the interdependency of various factors affecting the biological identity and fate of NPs and biased interpretation of data. All these issues could raise significant concern regarding the reproducibility- or even the validity- of past publications that in turn formed the basis of many clinical trials of therapeutic nanomedicines. Therefore, the individual and combined effects of previously overlooked factors on the safety and therapeutic efficacy of NPs need to be fully considered in nanomedicine reports and product development.
Collapse
Affiliation(s)
- Seyed Mehdi Kamali Shahri
- Department of Radiology and Precision Health Program, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Shahriar Sharifi
- Department of Radiology and Precision Health Program, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
27
|
Pal S, Alizadeh M, Kong P, Kilbinger AFM. Oxanorbornenes: promising new single addition monomers for the metathesis polymerization. Chem Sci 2021; 12:6705-6711. [PMID: 34040745 PMCID: PMC8133030 DOI: 10.1039/d1sc00036e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
Higher ring-opening metathesis propagation rates of exo-norbornene derivatives over endo derivatives are well established in the literature. Here, we report for the first time that endo-isomers of oxanorbornene derivatives show higher reactivity towards ring-opening metathesis with Grubbs' 3rd generation catalyst (G3) than the corresponding exo-isomers. A very high selectivity for the reaction of G3 with endo over the exo-isomers could be shown. Furthermore, single molecular addition of the endo-isomers with G3 was observed. On the other hand, pure exo-monomers could successfully be homopolymerized. Mixtures of exo- and endo- monomers, however, prevented the homopolymerization of the exo-monomer. Such mixtures could successfully be copolymerized with cycloalkenes, resulting in alternating copolymers. An oxanorbornadiene derivative could be shown to undergo single addition reactions, exploited in the preparation of mono-end functional ROMP polymers. These could be selectively derivatized via endgroup selective thiol-ene click reactions. A thiol and alcohol end functional ROMP polymer was synthesized, and the efficient end functionalization was confirmed by 1H NMR spectroscopy and MALDI-ToF spectrometry.
Collapse
Affiliation(s)
- Subhajit Pal
- Department of Chemistry, University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Mahshid Alizadeh
- Department of Chemistry, University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Phally Kong
- Department of Chemistry, University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Andreas F M Kilbinger
- Department of Chemistry, University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| |
Collapse
|
28
|
Elling BR, Su JK, Xia Y. Polymerization of Cyclopropenes: Taming the Strain for the Synthesis of Controlled and Sequence-Regulated Polymers. Acc Chem Res 2021; 54:356-365. [PMID: 33371668 DOI: 10.1021/acs.accounts.0c00638] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cyclopropenes (CPEs) are highly strained cyclic olefins, yet there are surprisingly limited examples leveraging their high strain energy for polymerization. In the past, attempts had been made to polymerize CPEs via cationic and insertion polymerization, but side reactions often gave uncontrolled polymers with mixed backbone structures. Ring-opening metathesis polymerization (ROMP) represents an ideal strategy for polymerizing CPEs to access new types of polymers. The proximity of substituents to the olefin in the small framework of CPEs offers a modular handle to tune the kinetic barrier to propagation by the modulation of the substituents. While the first few studies focused on the homopolymerization of simple alkyl or phenyl disubstituted CPEs, we recently explored the metathesis of a wide range of CPEs with different substituents using Grubbs catalysts and discovered surprising and diverse reactivities that are contingent on the positions, sterics, and electronics of substituents. The observed reactivities ranged from living homopolymerization to catalyst deactivation to single addition to the catalyst without homopropagation. In particular, the exclusively single addition reactivity found in two families of CPEs, with either bis(methanol ester) or phenyl and methanol ester substituents at the allylic position, is unusual for any monomer and perhaps counterintuitive for highly strained cycles. These single-addition CPEs could, however, be copolymerized with low-strain cyclic olefins to generate perfectly alternating copolymers with controlled molecular weights and low dispersity and to introduce degradable backbone linkages. A single equivalent (relative to the active chain end) of such CPEs could also be added to the active chain end of living ROMP polymers to install functional terminal groups or during living ROMP to place single units of functional moieties or side chains at any desired chain locations in narrow-disperse homopolymers and block copolymers. This account summarizes the polymerization of CPEs with a focus on our journey to uncover the rich and unique metathesis reactivities of CPEs and their utility in synthesizing well-controlled and sequence-regulated polymers. It provides the first collective structure-metathesis reactivity relationships for CPEs in the context of polymer chemistry and an understanding of the interactions between the catalyst and the substituents of appended ring-opened CPEs. It may become clear from this Account that the exploration of strained cycles in polymer chemistry can be quite fruitful in discovering new chemistry and accessing new types of polymer materials.
Collapse
Affiliation(s)
- Benjamin R. Elling
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jessica K. Su
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yan Xia
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
29
|
Rizzo A, Peterson GI, Bhaumik A, Kang C, Choi T. Sugar‐Based Polymers from
d
‐Xylose: Living Cascade Polymerization, Tunable Degradation, and Small Molecule Release. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Antonio Rizzo
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Gregory I. Peterson
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Atanu Bhaumik
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Cheol Kang
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Tae‐Lim Choi
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
30
|
Zhang Z, Gao Y, Chen S, Wang J. Transition-Metal-Catalyzed Polymerization of Cyclopropenes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Shen M, Vijjamarri S, Cao H, Solis K, Robertson ML. Degradability, thermal stability, and high thermal properties in spiro polycycloacetals partially derived from lignin. Polym Chem 2021. [DOI: 10.1039/d1py01017d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spiro polycycloacetals were synthesized from vanillin and syringaldehyde, along with high-performance co-monomers, exhibiting high glass transition temperatures and thermal stabilities, and rapid rates of hydrolysis in acidic solutions.
Collapse
Affiliation(s)
- Minjie Shen
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Srikanth Vijjamarri
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Hongda Cao
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Karla Solis
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Megan L. Robertson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
32
|
Rizzo A, Peterson GI, Bhaumik A, Kang C, Choi TL. Sugar-Based Polymers from d-Xylose: Living Cascade Polymerization, Tunable Degradation, and Small Molecule Release. Angew Chem Int Ed Engl 2020; 60:849-855. [PMID: 33067845 DOI: 10.1002/anie.202012544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Indexed: 11/08/2022]
Abstract
Enyne monomers derived from D-xylose underwent living cascade polymerizations to prepare new polymers with a ring-opened sugar and degradable linkage incorporated into every repeat unit of the backbone. Polymerizations were well-controlled and had living character, which enabled the preparation of high molecular weight polymers with narrow molecular weight dispersity values and a block copolymer. By tuning the type of acid-sensitive linkage (hemi-aminal ether, acetal, or ether functional groups), we could change the degradation profile of the polymer and the identity of the resulting degradation products. For instance, the large difference in degradation rates between hemi-aminal ether and ether-based polymers enabled the sequential degradation of a block copolymer. Furthermore, we exploited the generation of furan-based degradation products, from an acetal-based polymer, to achieve the release of covalently bound reporter molecules upon degradation.
Collapse
Affiliation(s)
- Antonio Rizzo
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gregory I Peterson
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Atanu Bhaumik
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheol Kang
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
33
|
Sui X, Zhang T, Pabarue AB, Fu L, Gutekunst WR. Alternating Cascade Metathesis Polymerization of Enynes and Cyclic Enol Ethers with Active Ruthenium Fischer Carbenes. J Am Chem Soc 2020; 142:12942-12947. [PMID: 32662989 PMCID: PMC7466819 DOI: 10.1021/jacs.0c06045] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ruthenium alkoxymethylidene complexes have rarely been demonstrated as active species in metathesis reactions and are frequently regarded as inert. Herein, we highlight the ability of these Fischer-type carbenes to participate in cascade alternating ring-opening metathesis polymerization through their efficient alkyne addition reactions. When enyne monomers are combined with low-strain cyclic vinyl ethers, a controlled chain-growth copolymerization occurs that exhibits high degrees of alternation (>90% alternating diads) and produces degradable poly(vinyl ether) materials with low dispersities and targetable molecular weights. This new method is amenable to the synthesis of alternating diblock polymers that can be degraded to small-molecule fragments under aqueous acidic conditions. This work furthers the potential of Fischer-type ruthenium alkylidenes in polymerization strategies and presents new avenues for the generation of functional metathesis materials.
Collapse
Affiliation(s)
- Xuelin Sui
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Tianqi Zhang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Alec B Pabarue
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Liangbing Fu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Will R Gutekunst
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
34
|
Boadi FO, Zhang J, Yu X, Bhatia S, Sampson NS. Alternating Ring-Opening Metathesis Polymerization Provides Easy Access to Functional and Fully Degradable Polymers. Macromolecules 2020; 53:5857-5868. [PMID: 33776145 PMCID: PMC7993654 DOI: 10.1021/acs.macromol.0c01051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polymers with hydrolyzable groups in their backbones have numerous potential applications in biomedicine, lithography, energy storage and electronics. In this study, acetal and ester functionalities were incorporated into the backbones of copolymers by means of alternating ring-opening metathesis polymerization catalyzed by third-generation Grubbs ruthenium catalyst. Specifically, combining large-ring (7-10 atoms) cyclic acetal or lactone monomers with bicyclo[4.2.0]oct-1(8)-ene-8-carboxamide monomers provided perfectly alternating copolymers with acetal or ester functionality in the backbones and low to moderate molecular weight distribution (Đ M = 1.2-1.6). Copolymers containing ester and acetal backbones hydrolyzed to significant extent under basic condition (pH 13) and acidic conditions (pH ≤ 5) respectively to yield the expected by-products within 30 hours at moderate temperature. Unlike the copolymer with all-carbon backbone, copolymers with heteroatom-containing backbone exhibited viscoelastic behavior with crossover frequency which decreases as the size of the R group on the acetal increases. In contrast, the glass transition temperature (T g) decreases as the size of the R group decreases. The rate of hydrolysis of the acetal copolymers was also dependent on the R group. Thus, ruthenium-catalyzed alternating ring-opening metathesis copolymerization provides heterofunctional copolymers whose degradation rates, glass transition temperatures, and viscoelastic moduli can be controlled.
Collapse
Affiliation(s)
- Francis O. Boadi
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400
| | - Jingling Zhang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794-2275
| | - Xiaoxi Yu
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400
| | - Surita Bhatia
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400
| |
Collapse
|