1
|
Lin KT, Muneer G, Huang PR, Chen CS, Chen YJ. Mass Spectrometry-Based Proteomics for Next-Generation Precision Oncology. MASS SPECTROMETRY REVIEWS 2025. [PMID: 40269546 DOI: 10.1002/mas.21932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Cancer is the leading cause of death worldwide characterized by patient heterogeneity and complex tumor microenvironment. While the genomics-based testing has transformed modern medicine, the challenge of diverse clinical outcomes highlights unmet needs for precision oncology. As functional molecules regulating cellular processes, proteins hold great promise as biomarkers and drug targets. Mass spectrometry (MS)-based clinical proteomics has illuminated the molecular features of cancers and facilitated discovery of biomarkers or therapeutic targets, paving the way for innovative strategies that enhance the precision of personalized treatment. In this article, we introduced the tools and current achievements of MS-based proteomics, choice of discovery and targeted MS from discovery to validation phases, profiling sensitivity from bulk samples to single-cell level and tissue to liquid biopsy specimens, current regulatory landscape of MS-based protein laboratory-developed tests (LDTs). The challenges, success and future perspectives in translating research MS assay into clinical applications are also discussed. With well-designed validation studies to demonstrate clinical benefits and meet the regulatory requirements for both analytical and clinical performance, the future of MS-based assays is promising with numerous opportunities to improve cancer diagnosis, treatment, and monitoring.
Collapse
Affiliation(s)
- Kuen-Tyng Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Gul Muneer
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Ciao-Syuan Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Zemaitis KJ, Paša-Tolić L. Challenges in Spatial Metabolomics and Proteomics for Functional Tissue Unit and Single-Cell Resolution. Semin Nephrol 2025:151583. [PMID: 40263091 DOI: 10.1016/j.semnephrol.2025.151583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
In the last decade, advanced developments of mass spectrometry-based assays have made spatial measurements of hundreds of metabolites and thousands of proteins not only possible, but routine. The information obtained from such mass spectrometry imaging experiments traces metabolic events and helps decipher feedback loops across anatomical regions, connecting genetic and metabolic networks that define phenotypes. Herein we overview developments in the field over the past decade, highlighting several case studies demonstrating direct measurement of metabolites, proteins, and proteoforms from thinly sliced tissues at the level of functional tissue units, approaching single-cell levels. Much of this work is feasible due to multidisciplinary team science, and we offer brief perspectives on paths forward and the challenges that persist with adoption and application of these spatial omics techniques at the single-cell level on mammalian kidneys. Data analysis and reanalysis still pose issues that plague spatial omics, but many mass spectrometry imaging platforms are commercially available. With greater harmonization across platforms and rigorous quality control, greater adoption of these platforms will undoubtedly provide major insights in complex diseases. Semin Nephrol 36:x-xx © 20xx Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
- Kevin J Zemaitis
- Analytical Chemistry Staff Scientist, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ljiliana Paša-Tolić
- Chemistry Laboratory Fellow and Lead Scientist for Visual Proteomics, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| |
Collapse
|
3
|
Zemaitis KJ, Fulcher JM, Kumar R, Degnan DJ, Lewis LA, Liao YC, Veličković M, Williams SM, Moore RJ, Bramer LM, Veličković D, Zhu Y, Zhou M, Paša-Tolić L. Spatial top-down proteomics for the functional characterization of human kidney. Clin Proteomics 2025; 22:9. [PMID: 40045235 PMCID: PMC11881370 DOI: 10.1186/s12014-025-09531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/04/2024] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND The Human Proteome Project has credibly detected nearly 93% of the roughly 20,000 proteins which are predicted by the human genome. However, the proteome is enigmatic, where alterations in amino acid sequences from polymorphisms and alternative splicing, errors in translation, and post-translational modifications result in a proteome depth estimated at several million unique proteoforms. Recently mass spectrometry has been demonstrated in several landmark efforts mapping the human proteoform landscape in bulk analyses. Herein, we developed an integrated workflow for characterizing proteoforms from human tissue in a spatially resolved manner by coupling laser capture microdissection, nanoliter-scale sample preparation, and mass spectrometry imaging. RESULTS Using healthy human kidney sections as the case study, we focused our analyses on the major functional tissue units including glomeruli, tubules, and medullary rays. After laser capture microdissection, these isolated functional tissue units were processed with microPOTS (microdroplet processing in one-pot for trace samples) for sensitive top-down proteomics measurement. This provided a quantitative database of 616 proteoforms that was further leveraged as a library for mass spectrometry imaging with near-cellular spatial resolution over the entire section. Notably, several mitochondrial proteoforms were found to be differentially abundant between glomeruli and convoluted tubules, and further spatial contextualization was provided by mass spectrometry imaging confirming unique differences identified by microPOTS, and further expanding the field-of-view for unique distributions such as enhanced abundance of a truncated form (1-74) of ubiquitin within cortical regions. CONCLUSIONS We developed an integrated workflow to directly identify proteoforms and reveal their spatial distributions. Of the 20 differentially abundant proteoforms identified as discriminate between tubules and glomeruli by microPOTS, the vast majority of tubular proteoforms were of mitochondrial origin (8 of 10) while discriminate proteoforms in glomeruli were primarily hemoglobin subunits (9 of 10). These trends were also identified within ion images demonstrating spatially resolved characterization of proteoforms that has the potential to reshape discovery-based proteomics because the proteoforms are the ultimate effector of cellular functions. Applications of this technology have the potential to unravel etiology and pathophysiology of disease states, informing on biologically active proteoforms, which remodel the proteomic landscape in chronic and acute disorders.
Collapse
Affiliation(s)
- Kevin J Zemaitis
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - James M Fulcher
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Rashmi Kumar
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - David J Degnan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Logan A Lewis
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Yen-Chen Liao
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Marija Veličković
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Sarah M Williams
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Dušan Veličković
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ying Zhu
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Proteomic and Genomic Technologies, San Francisco, CA, 94080, USA
| | - Mowei Zhou
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
4
|
Zhang Y, Lu Z, Guo J, Wang Q, Zhang X, Yang H, Li X. Advanced Carriers for Precise Delivery and Therapeutic Mechanisms of Traditional Chinese Medicines: Integrating Spatial Multi-Omics and Delivery Visualization. Adv Healthc Mater 2025; 14:e2403698. [PMID: 39828637 DOI: 10.1002/adhm.202403698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/01/2024] [Indexed: 01/22/2025]
Abstract
The complex composition of traditional Chinese medicines (TCMs) has posed challenges for in-depth study and global application, despite their abundance of bioactive compounds that make them valuable resources for disease treatment. To overcome these obstacles, it is essential to modernize TCMs by focusing on precise disease treatment. This involves elucidating the structure-activity relationships within their complex compositions, ensuring accurate in vivo delivery, and monitoring the delivery process. This review discusses the research progress of TCMs in precision disease treatment from three perspectives: spatial multi-omics technology for precision therapeutic activity, carrier systems for precise in vivo delivery, and medical imaging technology for visualizing the delivery process. The aim is to establish a novel research paradigm that advances the precision therapy of TCMs.
Collapse
Affiliation(s)
- Yusheng Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Zhiguo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process, Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process, Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, P. R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process, Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongjun Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100029, P. R. China
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| |
Collapse
|
5
|
Dutta S, Pang M, Coughlin GM, Gudavalli S, Roukes ML, Chou TF, Gradinaru V. Molecularly-guided spatial proteomics captures single-cell identity and heterogeneity of the nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637505. [PMID: 39990460 PMCID: PMC11844393 DOI: 10.1101/2025.02.10.637505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Single-cell proteomics is an emerging field with significant potential to characterize heterogeneity within biological tissues. It offers complementary insights to single-cell transcriptomics by revealing unbiased proteomic changes downstream of the transcriptome. Recent advancements have focused on enhancing proteome coverage and depth, mostly in cultured cell lines, and a few recent studies have explored the potential of analyzing tissue micro-samples but were limited to homogenous peripheral tissues. In this current work, we utilize the power of spatial single cell-proteomics through immunostaining-guided laser capture microdissection (LCM) coupled with LC-MS to investigate the heterogenous central nervous system. We used this method to compare neuronal populations from cortex and substantia nigra, two brain regions associated with motor and cognitive function and various neurological disorders. Moreover, we used the technique to understand the neuroimmune changes associated with stab wound injury. Finally, we focus our application on the peripheral nervous system, where we compare the proteome of the myenteric plexus cell ganglion to the nerve bundle. This study demonstrates the utility of spatial single-cell proteomics in neuroscience research toward understanding fundamental biology and the molecular drivers of neurological conditions.
Collapse
Affiliation(s)
- Sayan Dutta
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Marion Pang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Gerard M. Coughlin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Sirisha Gudavalli
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Michael L. Roukes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| |
Collapse
|
6
|
Papoušková B, Fryčák P, Gregar F, Lemr K, Pluháček T. Remote Deep-Ultraviolet Laser Ablation in Connection with Electrospray Ionization-Atmospheric Pressure Chemical Ionization (rDUVLAESCI): A Novel Dual Ionization Source for Molecular Mass Spectrometry. Anal Chem 2025; 97:2062-2069. [PMID: 39838881 PMCID: PMC11800187 DOI: 10.1021/acs.analchem.4c04392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/30/2024] [Accepted: 01/10/2025] [Indexed: 01/23/2025]
Abstract
A novel remote deep ultraviolet laser ablation inlet connected to a dual electrospray ionization-atmospheric pressure chemical ionization (rDUVLAESCI) source is presented. This system allows for the simultaneous and spatial acquisition of mass spectrometry (MS) data for organic molecules with diverse polarities and molecular weights. Deep 193 nm UV laser ablation was used to sample analytes from dried spots for molecular MS analysis precisely. Furthermore, molecular MS imaging (MSI) with a variable laser spot size down to 3 μm was demonstrated. The complementary ionization modes generated mass spectra with sufficient analyte signals, detecting a broad range of molecules from polar compounds like caffeine and PEG 600, to nonpolar analytes, such as anthracene and wax esters, all within a single analytical run. Detection limits were found in the tens of attomoles per ablated/desorbed pixel. The powerful capabilities of the fully automated rDUVLAESCI dual source were demonstrated by visualizing the spatial distribution of new psychoactive substances on latent fingerprints. MSI for both sebum components and psychoactive substances revealed a connection between the chemical evidence and biometrical information. The rDUVLAESCI-MSI enabled the unambiguous identification of individuals, even using partially overlapped latent fingerprints. This unique rDUVLAESCI approach, with its remote laser ablation unit, improved spatial resolution and analyte coverage, particularly for nonpolar compounds.
Collapse
Affiliation(s)
- Barbora Papoušková
- Department of Analytical Chemistry,
Faculty of Science, Palacký University
Olomouc, 17. Listopadu
12, 77146 Olomouc, Czech Republic
| | - Petr Fryčák
- Department of Analytical Chemistry,
Faculty of Science, Palacký University
Olomouc, 17. Listopadu
12, 77146 Olomouc, Czech Republic
| | - Filip Gregar
- Department of Analytical Chemistry,
Faculty of Science, Palacký University
Olomouc, 17. Listopadu
12, 77146 Olomouc, Czech Republic
| | - Karel Lemr
- Department of Analytical Chemistry,
Faculty of Science, Palacký University
Olomouc, 17. Listopadu
12, 77146 Olomouc, Czech Republic
| | - Tomáš Pluháček
- Department of Analytical Chemistry,
Faculty of Science, Palacký University
Olomouc, 17. Listopadu
12, 77146 Olomouc, Czech Republic
| |
Collapse
|
7
|
Lin HJL, Webber KGI, Nwosu AJ, Kelly RT. Review and Practical Guide for Getting Started With Single-Cell Proteomics. Proteomics 2025; 25:e202400021. [PMID: 39548896 PMCID: PMC11994847 DOI: 10.1002/pmic.202400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 11/18/2024]
Abstract
Single-cell proteomics (SCP) has advanced significantly in recent years, with new tools specifically designed for the preparation and analysis of single cells now commercially available to researchers. The field is sufficiently mature to be broadly accessible to any lab capable of isolating single cells and performing bulk-scale proteomic analyses. In this review, we highlight recent work in the SCP field that has significantly lowered the barrier to entry, thus providing a practical guide for those who are newly entering the SCP field. We outline the fundamental principles and report multiple paths to accomplish the key steps of a successful SCP experiment including sample preparation, separation, and mass spectrometry data acquisition and analysis. We recommend that researchers start with a label-free SCP workflow, as achieving high-quality and quantitatively accurate results is more straightforward than label-based multiplexed strategies. By leveraging these accessible means, researchers can confidently perform SCP experiments and make meaningful discoveries at the single-cell level.
Collapse
Affiliation(s)
- Hsien-Jung L Lin
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Kei G I Webber
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Andikan J Nwosu
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Ryan T Kelly
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
8
|
Kwon Y, Fulcher JM, Paša-Tolić L, Qian WJ. Spatial Proteomics towards cellular Resolution. Expert Rev Proteomics 2024:1-10. [PMID: 39710940 DOI: 10.1080/14789450.2024.2445809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Spatial biology is an emerging interdisciplinary field facilitating biological discoveries through the use of spatial omics technologies. Recent advancements in spatial transcriptomics, spatial genomics (e.g. genetic mutations and epigenetic marks), multiplexed immunofluorescence, and spatial metabolomics/lipidomics have enabled high-resolution spatial profiling of gene expression, genetic variation, protein expression, and metabolites/lipids profiles in tissue. These developments contribute to a deeper understanding of the spatial organization within tissue microenvironments at the molecular level. AREAS COVERED This report provides an overview of the untargeted, bottom-up mass spectrometry (MS)-based spatial proteomics workflow. It highlights recent progress in tissue dissection, sample processing, bioinformatics, and liquid chromatography (LC)-MS technologies that are advancing spatial proteomics toward cellular resolution. EXPERT OPINION The field of untargeted MS-based spatial proteomics is rapidly evolving and holds great promise. To fully realize the potential of spatial proteomics, it is critical to advance data analysis and develop automated and intelligent tissue dissection at the cellular or subcellular level, along with high-throughput LC-MS analyses of thousands of samples. Achieving these goals will necessitate significant advancements in tissue dissection technologies, LC-MS instrumentation, and computational tools.
Collapse
Affiliation(s)
- Yumi Kwon
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - James M Fulcher
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
9
|
Egbejiogu BC, Donnarumma F, Murray KK. Infrared Laser Ablation and Capture of Formalin-Fixed Paraffin-Embedded Tissue. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39494617 DOI: 10.1021/jasms.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue is a ubiquitous and invaluable resource for biomedical research and clinical applications. However, FFPE tissue proteomics is challenging due to protein cross-linking and chemical modification. Laser ablation sampling allows precise removal of material from tissue sections with high spatial control and reproducibility for offline proteomics by liquid chromatography coupled with tandem mass spectrometry. In this work, we used a pulsed mid-infrared laser for microsampling of rat liver tissue for subsequent identification and quantification of proteins. It was found that more proteins were identified by FFPE tissue laser ablation sampling compared to fresh frozen (FF) tissue laser ablation sampling and that more proteins were identified by laser ablation than by manual dissection of FFPE tissue. In contrast to previous studies, no loss of hydrophilic proteins due to residual cross-linking was observed. The efficient capture of proteins by laser ablation microsampling is attributed to efficient laser breakup of the tissue which facilitates downstream processing of the proteins.
Collapse
Affiliation(s)
- Blessing C Egbejiogu
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
10
|
Mun DG, Bhat FA, Joshi N, Sandoval L, Ding H, Jain A, Peterson JA, Kang T, Pujari GP, Tomlinson JL, Budhraja R, Zenka RM, Kannan N, Kipp BR, Dasari S, Gaspar-Maia A, Smoot RL, Kandasamy RK, Pandey A. Diversity of post-translational modifications and cell signaling revealed by single cell and single organelle mass spectrometry. Commun Biol 2024; 7:884. [PMID: 39030393 PMCID: PMC11271535 DOI: 10.1038/s42003-024-06579-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
The rapid evolution of mass spectrometry-based single-cell proteomics now enables the cataloging of several thousand proteins from single cells. We investigated whether we could discover cellular heterogeneity beyond proteome, encompassing post-translational modifications (PTM), protein-protein interaction, and variants. By optimizing the mass spectrometry data interpretation strategy to enable the detection of PTMs and variants, we have generated a high-definition dataset of single-cell and nuclear proteomic-states. The data demonstrate the heterogeneity of cell-states and signaling dependencies at the single-cell level and reveal epigenetic drug-induced changes in single nuclei. This approach enables the exploration of previously uncharted single-cell and organellar proteomes revealing molecular characteristics that are inaccessible through RNA profiling.
Collapse
Affiliation(s)
- Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Firdous A Bhat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Neha Joshi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Leticia Sandoval
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Husheng Ding
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Anu Jain
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Taewook Kang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ganesh P Pujari
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Roman M Zenka
- Proteomics Core, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nagarajan Kannan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Surendra Dasari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Alexandre Gaspar-Maia
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Rory L Smoot
- Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Richard K Kandasamy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
11
|
Zemaitis KJ, Fulcher JM, Kumar R, Degnan DJ, Lewis LA, Liao YC, Veličković M, Williams SM, Moore RJ, Bramer LM, Veličković D, Zhu Y, Zhou M, Paša-Tolić L. Spatial top-down proteomics for the functional characterization of human kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580062. [PMID: 38405958 PMCID: PMC10888776 DOI: 10.1101/2024.02.13.580062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Background The Human Proteome Project has credibly detected nearly 93% of the roughly 20,000 proteins which are predicted by the human genome. However, the proteome is enigmatic, where alterations in amino acid sequences from polymorphisms and alternative splicing, errors in translation, and post-translational modifications result in a proteome depth estimated at several million unique proteoforms. Recently mass spectrometry has been demonstrated in several landmark efforts mapping the human proteoform landscape in bulk analyses. Herein, we developed an integrated workflow for characterizing proteoforms from human tissue in a spatially resolved manner by coupling laser capture microdissection, nanoliter-scale sample preparation, and mass spectrometry imaging. Results Using healthy human kidney sections as the case study, we focused our analyses on the major functional tissue units including glomeruli, tubules, and medullary rays. After laser capture microdissection, these isolated functional tissue units were processed with microPOTS (microdroplet processing in one-pot for trace samples) for sensitive top-down proteomics measurement. This provided a quantitative database of 616 proteoforms that was further leveraged as a library for mass spectrometry imaging with near-cellular spatial resolution over the entire section. Notably, several mitochondrial proteoforms were found to be differentially abundant between glomeruli and convoluted tubules, and further spatial contextualization was provided by mass spectrometry imaging confirming unique differences identified by microPOTS, and further expanding the field-of-view for unique distributions such as enhanced abundance of a truncated form (1-74) of ubiquitin within cortical regions. Conclusions We developed an integrated workflow to directly identify proteoforms and reveal their spatial distributions. Where of the 20 differentially abundant proteoforms identified as discriminate between tubules and glomeruli by microPOTS, the vast majority of tubular proteoforms were of mitochondrial origin (8 of 10) where discriminate proteoforms in glomeruli were primarily hemoglobin subunits (9 of 10). These trends were also identified within ion images demonstrating spatially resolved characterization of proteoforms that has the potential to reshape discovery-based proteomics because the proteoforms are the ultimate effector of cellular functions. Applications of this technology have the potential to unravel etiology and pathophysiology of disease states, informing on biologically active proteoforms, which remodel the proteomic landscape in chronic and acute disorders.
Collapse
Affiliation(s)
- Kevin J. Zemaitis
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - James M. Fulcher
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Rashmi Kumar
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - David J. Degnan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Logan A. Lewis
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Yen-Chen Liao
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Marija Veličković
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Sarah M. Williams
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Ronald J. Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Lisa M. Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Dušan Veličković
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Ying Zhu
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Mowei Zhou
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| |
Collapse
|
12
|
Truong T, Kelly RT. What's new in single-cell proteomics. Curr Opin Biotechnol 2024; 86:103077. [PMID: 38359605 PMCID: PMC11068367 DOI: 10.1016/j.copbio.2024.103077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
In recent years, single-cell proteomics (SCP) has advanced significantly, enabling the analysis of thousands of proteins within single mammalian cells. This progress is driven by advances in experimental design, with maturing label-free and multiplexed methods, optimized sample preparation, and innovations in separation techniques, including ultra-low-flow nanoLC. These factors collectively contribute to improved sensitivity, throughput, and reproducibility. Cutting-edge mass spectrometry platforms and data acquisition approaches continue to play a critical role in enhancing data quality. Furthermore, the exploration of spatial proteomics with single-cell resolution offers significant promise for understanding cellular interactions, giving rise to various phenotypes. SCP has far-reaching applications in cancer research, biomarker discovery, and developmental biology. Here, we provide a critical review of recent advances in the field of SCP.
Collapse
Affiliation(s)
- Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States.
| |
Collapse
|