1
|
Ge S, Zhu YM, Xu XP, Zi Y, Ji SJ. Palladium-catalyzed cascade cyclization of isocyanides with di-( o-iodophenyl)sulfonylguanidines: access to heterocyclic fused quinazolines. Chem Commun (Camb) 2024; 60:14613-14616. [PMID: 39564650 DOI: 10.1039/d4cc04084h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
A palladium-catalyzed cascade cyclization reaction of di-o-iodophenyl sulfonylguanidines with isocyanides for the efficient and selective synthesis of 5- or 6-membered heterocyclic fused quinazolines has been developed. Diverse functional groups are well tolerated, and this method has been successfully applied to a larger scale synthesis.
Collapse
Affiliation(s)
- Shen Ge
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.
| | - Yi-Ming Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.
- Innovation Center for Chemical Science, Soochow University, Suzhou 215123, P. R. China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
2
|
Ewieda SY, Hassan RA, Ahmed EM, Abdou AM, Hassan MSA. Synthesis, COX-2 inhibition, anti-inflammatory activity, molecular docking, and histopathological studies of new pyridazine derivatives. Bioorg Chem 2024; 150:107623. [PMID: 39002251 DOI: 10.1016/j.bioorg.2024.107623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Five new pyridazine scaffolds were synthesized and assessed for their inhibitory potential against both cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) compared with indomethacin and celecoxib. The majority of the synthesized compounds demonstrated a definite preference for COX-2 over COX-1 inhibition. Compounds 4c and 6b exhibited enhanced potency towards COX-2 enzyme with IC50 values of 0.26 and 0.18 µM, respectively, compared to celecoxib with IC50 = 0.35 µM. The selectivity index (SI) of compound 6b was 6.33, more than that of indomethacin (SI = 0.50), indicating the most predominant COX-2 inhibitory activity. Consequently, the in vivo anti-inflammatory activity of compound 6b was comparable to that of indomethacin and celecoxib and no ulcerative effect was detected upon the oral administration of compound 6b, as indicated by the histopathological examination. Moreover, compound 6b decreased serum plasma PEG2 and IL-1β. To rationalize the selectivity and potency of COX-2 inhibition, a molecular docking study of compound 6b into the COX-2 active site was carried out. The COX-2 inhibition and selectivity of compound 6b can be attributed to its ability to enter the side pocket of the COX-2 enzyme and interact with the essential amino acid His90. Together, these findings suggested that compound 6b is a promising lead for the possible design of COX-2 inhibitors that could be employed as safe and effective anti-inflammatory drugs.
Collapse
Affiliation(s)
- Sara Y Ewieda
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Eman M Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Amr M Abdou
- Department of Microbiology and Immunology, National Research Centre, Dokki, Giza 12622, Egypt
| | - Marwa S A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
3
|
Rocha S, Silva J, Silva VLM, Silva AMS, Corvo ML, Freitas M, Fernandes E. Pyrazoles have a multifaceted anti-inflammatory effect targeting prostaglandin E 2, cyclooxygenases and leukocytes' oxidative burst. Int J Biochem Cell Biol 2024; 172:106599. [PMID: 38797495 DOI: 10.1016/j.biocel.2024.106599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Elevated levels of prostaglandin E2 have been implicated in the pathophysiology of various diseases. Anti-inflammatory drugs that act through the inhibition of cyclooxygenase enzymatic activity, thereby leading to the suppression of prostaglandin E2, are often associated with several side effects due to their non-specific inhibition of cyclooxygenase enzymes. Consequently, the targeted suppression of prostaglandin E2 production with innovative molecules and/or mechanisms emerges as a compelling therapeutic strategy for the treatment of inflammatory-related diseases. Therefore, in this study, a systematic analysis of 28 pyrazole derivatives was conducted to explore their potential mechanisms for reducing prostaglandin E2 levels. In this context, the evaluation of these derivatives extended to examining their capacity to reduce prostaglandin E2in vitro in human whole blood, inhibit cyclooxygenase-1 and cyclooxygenase-2 enzymes, modulate cyclooxygenase-2 expression, and suppress oxidative burst in human leukocytes. The results enabled the establishment of significant structure-activity relationships, elucidating key determinants for their activities. In particular, the 4-styryl group on the pyrazole moiety and the presence of chloro substitutions were identified as key determinants. Pyrazole 8 demonstrated the capacity to reduce prostaglandin E2 levels by downregulating cyclooxygenase-2 expression, and pyrazole-1,2,3-triazole 18 emerged as a dual-acting agent, inhibiting human leukocytes' oxidative burst and cyclooxygenase-2 activity. Furthermore, pyrazole 26 demonstrated effective reduction of prostaglandin E2 levels through selective cyclooxygenase-1 inhibition. These results underscore the multifaceted anti-inflammatory potential of pyrazoles, providing new insights into the substitutions and structural frameworks that are beneficial for the studied activity.
Collapse
Affiliation(s)
- Sónia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Jorge Silva
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Vera L M Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Artur M S Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - M Luísa Corvo
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon 1649-003, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal.
| |
Collapse
|
4
|
Al-Wahaibi L, El-Emam AA, S. M. Abdelbaky M, Garcia-Granda S, Maurya A, Pal M, Siddiqui Z, Shukla R, Pathak SK, Srivastava R, Shukla VK, Prasad O, Sinha L. Structural Characterization, Spectroscopic Profile, Molecular Docking, ADMET Properties, Molecular Dynamics Simulation Studies, and Molecular Mechanics Generalized Born Surface Area Analysis of 5-(Adamantan-1-yl)-4-butyl-2,4-dihydro-3 H-1,2,4-triazole-3-thione as a Potential COX Inhibitor. ACS OMEGA 2024; 9:26651-26672. [PMID: 38911725 PMCID: PMC11191079 DOI: 10.1021/acsomega.4c03512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Employing a synergistic combination of theoretical density functional theory (DFT) and experimental techniques, we conducted a comprehensive analysis elucidating the structural and pharmacological attributes of 5-(adamantan-1-yl)-4-butyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (5A4BT) as a potent COX inhibitor. The X-ray crystallographic data of 5A4BT showed the pivotal role played by weak interactions, notably π-π and C-H-π interactions, alongside hydrogen bonding, in orchestrating the intricate supramolecular architectures within the crystalline lattice. A quantitative analysis of the arrangement of the crystal structure, as well as both inter- and intramolecular interactions, was conducted using Hirshfeld surfaces and 2D fingerprint plots. Additionally, a comprehensive examination of the IR spectra was undertaken, employing both experimental methods and theoretical DFT techniques, to elucidate the vibrational characteristics of the compound. The strength of intermolecular N-H···S hydrogen bonding and charge transfer within the system was assessed through natural bonding orbital analysis. Moreover, Bader's atoms in molecules theory was employed to estimate the strength of intermolecular hydrogen bonds, revealing strong interactions within the 5A4BT dimer. The title compound exhibited binding affinities of -6.4 and -6.5 kcal/mol for COX1 (PDB 3KK6) and COX2 (1CX2) target proteins, respectively. For the first time, predictions regarding ADMET properties, drug-likeness, and toxicity, including favorable bioavailability, along with 100 ns molecular dynamics simulations, binding free energy, and energy decomposition per residue in the binding cavity of the protein from molecular mechanics generalized born surface area approach, collectively indicate the potential of 5A4BT as a nonselective COX inhibitor.
Collapse
Affiliation(s)
- Lamya
H. Al-Wahaibi
- Department
of Chemistry, College of Sciences, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ali A. El-Emam
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed S. M. Abdelbaky
- Department
of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, Oviedo 33006, Spain
| | - Santiago Garcia-Granda
- Department
of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, Oviedo 33006, Spain
| | - Anushree Maurya
- Department
of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Mamta Pal
- Department
of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Zohra Siddiqui
- Department
of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Raj Shukla
- Department
of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Shilendra K. Pathak
- Department
of Physics, M. M. M. P. G. College, Deoria 274502, Uttar Pradesh, India
| | - Ruchi Srivastava
- Department
of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Vikas K. Shukla
- Department
of Physics, Maharishi University of Information
Technology, Lucknow 226013, Uttar Pradesh, India
| | - Onkar Prasad
- Department
of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Leena Sinha
- Department
of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| |
Collapse
|
5
|
Yıldız MT, Osmaniye D, Saglik BN, Levent S, Kurnaz R, Ozkay Y, Kaplancıklı ZA. Synthesis, molecular dynamics simulation, and evaluation of biological activity of novel flurbiprofen and ibuprofen-like compounds. J Mol Recognit 2024:e3089. [PMID: 38894531 DOI: 10.1002/jmr.3089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024]
Abstract
The frequent use of anti-inflammatory drugs and the side effects of existing drugs keep the need for new compounds constant. For this purpose, flurbiprofen and ibuprofen-like compounds, which are frequently used anti-inflammatory compounds in this study, were synthesized and their structures were elucidated. Like ibuprofen and flurbiprofen, the compounds contain a residue of phenylacetic acid. On the other hand, it contains a secondary amine residue. Thus, it is planned to reduce the acidity, which is the biggest side effect of NSAI drugs, even a little bit. The estimated ADME parameters of the compounds were evaluated. Apart from internal use, local use of anti-inflammatory compounds is also very important. For this reason, the skin permeability values of the compounds were also calculated. And it has been found to be compatible with reference drugs. The COX enzyme inhibitory effects of the obtained compounds were tested by in vitro experiments. Compound 2a showed significant activity against COX-1 enzyme with an IC50 = 0.123 + 0.005 μM. The interaction of the compound with the enzyme active site was clarified by molecular dynamics studies.
Collapse
Affiliation(s)
- Mehmet Taha Yıldız
- Hamidiye Faculty of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Begum Nurpelin Saglik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Recep Kurnaz
- Acıbadem Hospital, Orthopedics and Traumatology Clinic, Eskişehir, Turkey
| | - Yusuf Ozkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
6
|
Elgohary MK, Elkotamy MS, Abdelrahman Alkabbani M, Abdel-Aziz HA. Fenamates and ibuprofen as foundational components in the synthesis of innovative, targeted COX-2 anti-inflammatory drugs, undergoing thorough biopharmacological assessments and in-silico computational studies. Bioorg Chem 2024; 147:107393. [PMID: 38691908 DOI: 10.1016/j.bioorg.2024.107393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Cyclooxygenase-2 plays a vital role in inflammation by catalyzing arachidonic acid conversion toward prostaglandins, making it a prime therapeutic objective. Selective COX-2 inhibitors represent significant progress in anti-inflammatory therapy, offering improved efficacy and fewer side effects. This study describes the synthesis of novel anti-inflammatory compounds from established pharmaceutically marketed agents like fenamates III-V and ibuprofen VI. Through rigorous in vitro testing, compounds 7b-c, and 12a-b demonstrated substantial in vitro selective inhibition, with IC50 values of 0.07 to 0.09 μM, indicating potent pharmacological activity. In vivo assessment, particularly focusing on compound 7c, revealed significant anti-inflammatory effects. Markedly, it demonstrated the highest inhibition of paw thickness (58.62 %) at the 5-hr mark compared to the carrageenan group, indicating its potency in mitigating inflammation. Furthermore, it exhibited a rapid onset of action, with a 54.88 % inhibition observed at the 1-hr mark. Subsequent comprehensive evaluations encompassing analgesic efficacy, histological characteristics, and toxicological properties indicated that compound 7c did not induce gastric ulcers, in contrast to the ulcerogenic tendency associated with mefenamic acid. Moreover, compound 7c underwent additional investigations through in silico methodologies such as molecular modelling, field alignment, and density functional theory. These analyses underscored the therapeutic potential and safety profile of this novel compound, warranting further exploration and development in the realm of pharmaceutical research.
Collapse
Affiliation(s)
- Mohamed K Elgohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City Cairo 11829, Egypt.
| | - Mahmoud S Elkotamy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City Cairo 11829, Egypt
| | - Mahmoud Abdelrahman Alkabbani
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Hatem A Abdel-Aziz
- Applied Organic Chemistry Department, National Research Center, Dokki, Cairo 12622, Egypt
| |
Collapse
|
7
|
Gariganti N, Bandi A, Gatta KN, Pagag J, Guruprasad L, Poola B, Kottalanka RK. Design, synthesis, in-silico studies and apoptotic activity of novel amide enriched 2-(1 H)- quinazolinone derivatives. Heliyon 2024; 10:e30292. [PMID: 38711664 PMCID: PMC11070864 DOI: 10.1016/j.heliyon.2024.e30292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Cancer is a broad classification of diseases that can affect any organ or body tissue due to aberrant cellular proliferation for unknown reasons. Many present chemotherapeutic drugs are highly toxic and have little selectivity. Additionally, they lead to the development of medication resistance. Therefore, developing tailored chemotherapeutic drugs with minimal side effects and good selectivity is crucial for cancer treatment. 2-(1H)-Quinazolinone is one of the vital scaffold and anticancer activity is one of the prominent biological activities of this class. Here we report the novel set of amide-enriched 2-(1H)-quinazolinone derivatives (7a-j) and their apoptotic activity with the help of MTT assay method against four human cancer cell lines: PC3 (prostate cancer), DU-145 (prostate cancer), A549 (lung cancer), and MCF7 (breast cancer). When compared to etoposide, every synthetic test compound (7a-j) exhibited moderate to excellent activity. The IC50 values of the new amide derivatives (7a-j) varied from 0.07 ± 0.0061 μM to 10.8 ± 0.69 μM. While the positive control, etoposide, exhibited 1.97 ± 0.45 μM to 3.08 ± 0.135 μM range. Among the novel amide derivatives (7a-j), in particular, 7i and 7j showed strong apoptotic activity against MCF7; 7h showed against PC3, and 7g showed against DU-145. Molecular docking studies of test compounds (7a-j) with the EGFR tyrosine kinase domain (PDB ID: 1M17) protein provided the significant docking scores for each test compound (7a-j) (-9.00 to -9.67 kcal/mol). Additionally, DFT investigations and MD simulations validated the predictions of molecular docking. According to the findings of the ADME analysis, oral absorption by humans is anticipated to be higher than 85 % for all test compounds.
Collapse
Affiliation(s)
- Naganjaneyulu Gariganti
- Department of Chemistry, School of Applied Science and Humanities, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, Andhra Pradesh, 522213, India
- Neuland Laboratories Ltd., Hyderabad, Telangana, 500034, India
| | - Anjaneyulu Bandi
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - K.R.S. Naresh Gatta
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Jishu Pagag
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Lalitha Guruprasad
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Bhaskar Poola
- Neuland Laboratories Ltd., Hyderabad, Telangana, 500034, India
| | - Ravi K. Kottalanka
- Department of Chemistry, School of Applied Science and Humanities, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, Andhra Pradesh, 522213, India
| |
Collapse
|
8
|
Rayan SA, George RF, Mohamed NM, Said MF. Exploring of novel oxazolones and imidazolones as anti-inflammatory and analgesic candidates with cyclooxygenase inhibitory action. Future Med Chem 2024; 16:963-981. [PMID: 38639393 PMCID: PMC11221545 DOI: 10.4155/fmc-2023-0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/06/2024] [Indexed: 04/20/2024] Open
Abstract
Aim: Over the last few decades, therapeutic needs have led to a search for safer COX-2 inhibitors with potential anti-inflammatory and analgesic activity. Materials & methods: A new series of oxazolone and imidazolone derivatives 3a-c and 4a-r were synthesized and evaluated as anti-inflammatory and analgesic agents. COX-1/COX-2 isozyme selectivity testing and molecular docking were performed. Results: All compounds showed good activities comparable to those of the reference, celecoxib. The most active compounds 3a, 4a, 4c, 4e and 4f showed promising gastric tolerability with an ulcer index lower than that of celecoxib. The molecular docking of p-methoxyphenyl derivative 4c showed alkyl interaction with the side pocket His75 of COX-2 and achieved the best anti-inflammatory activity, with a COX-2 selectivity index better than that of celecoxib.
Collapse
Affiliation(s)
- Seham A Rayan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt, Kasr El-Aini Street, Cairo, PO Box 11562, Egypt
| | - Riham F George
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt, Kasr El-Aini Street, Cairo, PO Box 11562, Egypt
| | - Nada M Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology & Information MTI, Cairo, 11585, Egypt
| | - Mona F Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt, Kasr El-Aini Street, Cairo, PO Box 11562, Egypt
| |
Collapse
|
9
|
Alkaoud AM, Alakhras AI, Ibrahim MA, Alghamdi SK, Hussein RK. In silico evaluation of a new compound incorporating 4(3H)-quinazolinone and sulfonamide as a potential inhibitor of a human carbonic anhydrase. BMC Chem 2024; 18:45. [PMID: 38433188 PMCID: PMC10910740 DOI: 10.1186/s13065-024-01150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
The present study investigates the potential of a new compound containing sulfonamide and 4(3H)-quinazolinone to inhibit the hCA-IIX enzyme using in silico methods. Density functional theory-based calculations of electronic properties have been addressed through the analysis of frontier molecular orbitals, molecule electrostatic potential, and IR and UV-vis spectroscopy data. A molecular electrostatic potential analysis predicts that the target protein will be most inhibited by the sulfonamide groups since it has the highest potential spots for electrophile and nucleophile attack. The investigated compound exhibited good ADMET properties and satisfied the Lipinski rule of drug likeness. The hCA-IIX protein binding affinity with the proposed compound was determined by molecular docking analysis, which revealed a stable conformation with more negative binding energy (-12.19 kcal/mol) than the standard AZA drug (-7.36 kcal/mol). Moreover, a molecular dynamics study confirmed the docking results through trajectory analysis. The RMSD and RMSF both showed convergence and no significant fluctuations during the simulation time, which revealed a stable interaction within the active domain of the target protein. According to these findings, the proposed compound has a good pharmacological nature and could potentially be an efficient drug against hCAIX enzymes.
Collapse
Affiliation(s)
- Ahmed M Alkaoud
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - Abbas I Alakhras
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - Moez A Ibrahim
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - S K Alghamdi
- Department of Physics, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Rageh K Hussein
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia.
| |
Collapse
|
10
|
Agatonovic-Kustrin S, Wong S, Dolzhenko AV, Gegechkori V, Morton DW. Bioassay-guided detection, identification and assessment of antibacterial and anti-inflammatory compounds from olive tree flower extracts by high-performance thin-layer chromatography linked to spectroscopy. J Pharm Biomed Anal 2024; 239:115912. [PMID: 38128161 DOI: 10.1016/j.jpba.2023.115912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Olive trees are one of the most widely cultivated fruit trees in the world. The chemical compositions and biological activities of olive tree fruit and leaves have been extensively researched for their nutritional and health-promoting properties. In contrast, limited data have been reported on olive flowers. The present study aimed to analyse bioactive compounds in olive flower extracts and the effect of fermentation-assisted extraction on phenolic content and antioxidant activity. High-performance thin-layer chromatography (HPTLC) hyphenated with the bioassay-guided detection and spectroscopic identification of bioactive compounds was used for the analysis. Enzymatic and bacterial in situ bioassays were used to detect COX-1 enzyme inhibition and antibacterial activity. Multiple zones of antibacterial activity and one zone of COX-1 inhibition were detected in both, non-fermented and fermented, extracts. A newly developed HPTLC-based experimental protocol was used to measure the high-maximal inhibitory concentrations (IC50) for the assessment of the relative potency of the extracts in inhibiting COX-1 enzyme and antibacterial activity. Strong antibacterial activities detected in zones 4 and 7 were significantly higher in comparison to ampicillin, as confirmed by low IC50 values (IC50 = 57-58 µg in zone 4 and IC50 = 157-167 µg in zone 7) compared to the ampicillin IC50 value (IC50 = 495 µg). The COX-1 inhibition by the extract (IC50 = 76-98 µg) was also strong compared to that of salicylic acid (IC50 = 557 µg). By comparing the locations of the bands to coeluted standards, compounds from detected bioactive bands were tentatively identified. The eluates from bioactive HPTLC zones were further analysed by FTIR NMR, and LC-MS spectroscopy. Multiple zones of antibacterial activity were associated with the presence of triterpenoid acids, while COX-1 inhibition was related to the presence of long-chain fatty acids.
Collapse
Affiliation(s)
- Snezana Agatonovic-Kustrin
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; Department of Rural Clinical Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia.
| | - Sheryn Wong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Anton V Dolzhenko
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - David W Morton
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; Department of Rural Clinical Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia.
| |
Collapse
|
11
|
Sisa M, Konečný L, Temml V, Carazo A, Mladěnka P, Landa P. SC-560 and mofezolac isosteres as new potent COX-1 selective inhibitors with antiplatelet effect. Arch Pharm (Weinheim) 2023; 356:e2200549. [PMID: 36772878 DOI: 10.1002/ardp.202200549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 02/12/2023]
Abstract
Selective cyclooxygenase (COX)-1 inhibitors can be employed as potential cardioprotective drugs. Moreover, COX-1 plays a key role in inflammatory processes and its activity is associated with some types of cancer. In this work, we designed and synthesized a set of compounds that structurally mimic the selective COX-1 inhibitors, SC-560 and mofezolac, the central cores of which were replaced either with triazole or benzene rings. The advantage of this approach is a relatively simple synthesis in comparison with the syntheses of parent compounds. The newly synthesized compounds exhibited remarkable activity and selectivity toward COX-1 in the enzymatic in vitro assay. The most potent compound, 10a (IC50 = 3 nM for COX-1 and 850 nM for COX-2), was as active as SC-560 (IC50 = 2.4 nM for COX-1 and 470 nM for COX-2) toward COX-1 and it was even more selective. The in vitro COX-1 enzymatic activity was further confirmed in the cell-based whole-blood antiplatelet assay, where three out of four selected compounds (10a,c,d, and 3b) exerted outstanding IC50 values in the nanomolar range (9-252 nM). Moreover, docking simulations were performed to reveal key interactions within the COX-1 binding pocket. Furthermore, the toxicity of the selected compounds was tested using the normal human kidney HK-2 cell line.
Collapse
Affiliation(s)
- Miroslav Sisa
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lukáš Konečný
- Faculty of Pharmacy in Hradec Kralové, Charles University, Hradec Kralové, Czech Republic
| | - Veronika Temml
- Department of Pharmacy/Pharmacognosy and Center of Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Alejandro Carazo
- Faculty of Pharmacy in Hradec Kralové, Charles University, Hradec Kralové, Czech Republic
| | - Přemysl Mladěnka
- Faculty of Pharmacy in Hradec Kralové, Charles University, Hradec Kralové, Czech Republic
| | - Přemysl Landa
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
12
|
Haroun M, Fesatidou M, Petrou A, Tratrat C, Zagaliotis P, Gavalas A, Venugopala KN, Kochkar H, Emeka PM, Younis NS, Elmaghraby DA, Almostafa MM, Chohan MS, Vizirianakis IS, Papadimitriou-Tsantarliotou A, Geronikaki A. Identification of Novel Cyclooxygenase-1 Selective Inhibitors of Thiadiazole-Based Scaffold as Potent Anti-Inflammatory Agents with Safety Gastric and Cytotoxic Profile. Molecules 2023; 28:molecules28083416. [PMID: 37110650 PMCID: PMC10142904 DOI: 10.3390/molecules28083416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Major obstacles faced by the use of nonsteroidal anti-inflammatory drugs (NSAID) are their gastrointestinal toxicity induced by non-selective inhibition of both cyclooxygenases (COX) 1 and 2 and their cardiotoxicity associated with a certain class of COX-2 selective inhibitors. Recent studies have demonstrated that selective COX-1 and COX-2 inhibition generates compounds with no gastric damage. The aim of the current study is to develop novel anti-inflammatory agents with a better gastric profile. In our previous paper, we investigated the anti-inflammatory activity of 4-methylthiazole-based thiazolidinones. Thus, based on these observations, herein we report the evaluation of anti-inflammatory activity, drug action, ulcerogenicity and cytotoxicity of a series of 5-adamantylthiadiazole-based thiazolidinone derivatives. The in vivo anti-inflammatory activity revealed that the compounds possessed moderate to excellent anti-inflammatory activity. Four compounds 3, 4, 10 and 11 showed highest potency (62.0, 66.7, 55.8 and 60.0%, respectively), which was higher than the control drug indomethacin (47.0%). To determine their possible mode of action, the enzymatic assay was conducted against COX-1, COX-2 and LOX. The biological results demonstrated that these compounds are effective COX-1 inhibitors. Thus, the IC50 values of the three most active compounds 3, 4 and 14 as COX-1 inhibitors were 1.08, 1.12 and 9.62 μΜ, respectively, compared to ibuprofen (12.7 μΜ) and naproxen (40.10 μΜ) used as control drugs. Moreover, the ulcerogenic effect of the best compounds 3, 4 and 14 were evaluated and revealed that no gastric damage was observed. Furthermore, compounds were found to be nontoxic. A molecular modeling study provided molecular insight to rationalize the COX selectivity. In summary, we discovered a novel class of selective COX-1 inhibitors that could be effectively used as potential anti-inflammatory agents.
Collapse
Affiliation(s)
- Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Maria Fesatidou
- School of Pharmacy, Aristotle, University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anthi Petrou
- School of Pharmacy, Aristotle, University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Panagiotis Zagaliotis
- School of Pharmacy, Aristotle, University of Thessaloniki, 54124 Thessaloniki, Greece
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10065, USA
| | - Antonis Gavalas
- School of Pharmacy, Aristotle, University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Hafedh Kochkar
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Basic & Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Promise M Emeka
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nancy S Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Dalia Ahmed Elmaghraby
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mervt M Almostafa
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Muhammad Shahzad Chohan
- Biomedical Sciences Department, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ioannis S Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | | | - Athina Geronikaki
- School of Pharmacy, Aristotle, University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
13
|
Bokhtia RM, Panda SS, Girgis AS, Samir N, Said MF, Abdelnaser A, Nasr S, Bekheit MS, Dawood AS, Sharma H, Wade M, Sharma SK, Ghanim AM. New NSAID Conjugates as Potent and Selective COX-2 Inhibitors: Synthesis, Molecular Modeling and Biological Investigation. Molecules 2023; 28:molecules28041945. [PMID: 36838932 PMCID: PMC9965125 DOI: 10.3390/molecules28041945] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
New sets of ibuprofen and indomethacin conjugates comprising triazolyl heterocycle were synthesized via click chemistry, adopting an optimized protocol through the molecular hybridization approach affording the targeted agents in good yields. The new non-steroidal anti-inflammatory drug (NSAID) conjugates were designed and synthesized and could be considered as potential drug candidates for the treatment of pain and inflammation. The anti-inflammatory properties were investigated for all the synthesized conjugates. Among 14 synthesized conjugates, four (5a, 5b, 5d, and 5e) were found to have significant anti-inflammatory properties potency 117.6%, 116.5%, 93.8%, and 109.1% in comparison to reference drugs ibuprofen (97.2%) and indomethacin (100%) in the rat paw edema carrageenan test without any ulcerogenic liability. The suppression effect of cytokines IL-6, TNF-α, and iNOS in addition to NO in the LPS-induced RAW264.7 cells supports the promising anti-inflammatory properties observed in the ibuprofen conjugates. In addition, several conjugates showed promising peripheral and central analgesic activity. The selectivity index (SI) of compound 5a (23.096) indicates the significant efficacy and selectivity for COX-2 over COX-1. Molecular modeling (docking and QSAR) studies described the observed biological properties.
Collapse
Affiliation(s)
- Riham M. Bokhtia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Siva S. Panda
- Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, USA
- Correspondence: or
| | - Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Nermin Samir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Mona F. Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo (AUC), Cairo 11835, Egypt
| | - Soad Nasr
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo (AUC), Cairo 11835, Egypt
| | - Mohamed S. Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Abdelhameed S. Dawood
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo (AUC), Cairo 11835, Egypt
| | - Horrick Sharma
- College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK 73096, USA
| | - Margaret Wade
- Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, USA
| | - Swapnil K. Sharma
- Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, USA
- Department of Computer Science and Engineering, University of California, Merced, CA 95343, USA
| | - Amany M. Ghanim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
14
|
Mićović T, Katanić Stanković JS, Bauer R, Nöst X, Marković Z, Milenković D, Jakovljević V, Tomović M, Bradić J, Stešević D, Stojanović D, Maksimović Z. In vitro, in vivo and in silico evaluation of the anti-inflammatory potential of Hyssopus officinalis L. subsp. aristatus (Godr.) Nyman (Lamiaceae). JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115201. [PMID: 35358622 DOI: 10.1016/j.jep.2022.115201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal properties of hyssop have been used in traditional medicine since ancient times, inter alia, in diseases/conditions with an inherent inflammatory process. AIM OF THE STUDY Accordingly, the aim of this study was to investigate the anti-inflammatory properties of hyssop herb preparations (essential oil and methanol extracts) in vivo, in vitro and in silico. MATERIALS AND METHODS For in vitro testing of essential oils and extracts of hyssop herb, the cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzyme assays were used. In vivo anti-inflammatory potential of the extracts (at doses of 50, 100 and 200 mg/kg) was assessed using the carrageenan-induced rat paw edema test. Molecular docking and dynamics were used for in silico testing of the inhibitory activity of chlorogenic (CA) and rosmarinic (RA) acids, as the dominant compounds in the tested methanol extracts against COX-1 and COX-2 enzymes. RESULTS Significant inhibitory activity was shown in the COX-2 test regarding extracts (essential oils did not exhibit any significant activity). Namely, all analyzed extracts, at a concentration of 20 μg/mL, showed a percentage of inhibition of COX-2 enzyme (54.04-63.04%), which did not indicate a statistically significant difference from the positive control of celecoxib (61.60%) at a concentration of 8.8 μM. In vivo testing showed that all methanol extracts of hyssop herb, at the highest test dose of 200 mg/kg in the third and fourth hours, after carrageenan administration, exhibited a statistically significant (p < 0.05) inhibitory effect on the increase in rat paw edema in relation to control. This activity is comparable or higher in relation to the reference substance, indomethacin, at a concentration of 8 mg/kg. The preliminary in silico results suggest that investigated compounds (RA and CA) showed better inhibitory activity against COX-1 and COX-2 than standard non-steroidal anti-inflammatory drug (NSAID), ibuprofen, as evident from the free binding energy (ΔGbind in kJ mol-1). The binding energies of the docked compounds to COX-1 and -2 were found to be in the range between -47.4 and -49.2 kJ mol-1. Ibuprofen, as the one NSAID, for the same receptors targets, showed remarkably higher binding energy (ΔGbind = -31.3 kJ mol-1 to COX-1, and ΔGbind = -30.9 kJ mol-1 to COX-2). CONCLUSION The results obtained not only support the traditional use of hyssop herb in inflammatory conditions in folk medicine, but also open the door to and the need for further in vivo testing of extracts in order to examine the molecular mechanism of anti-inflammatory activity in living systems and possibly develop a new anti-inflammatory drug or supplement.
Collapse
Affiliation(s)
- Tijana Mićović
- Institute for Medicines and Medical Devices of Montenegro, Bulevar Ivana Crnojevića 64a, 81000, Podgorica, Montenegro
| | - Jelena S Katanić Stanković
- Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia.
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstrasse 8, 8010, Graz, Austria
| | - Xuehong Nöst
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstrasse 8, 8010, Graz, Austria
| | - Zoran Marković
- Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| | - Dejan Milenković
- Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| | - Vladimir Jakovljević
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia; Department of Human Pathology, First Moscow State Medical University I. M. Sechenov, Trubetskaya street 8, str. 2, 119991, Moscow, Russia
| | - Marina Tomović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Jovana Bradić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Danijela Stešević
- Faculty of Natural Sciences and Mathematics, University of Montenegro, Džordža Vašingtona bb, 81000, Podgorica, Montenegro
| | - Danilo Stojanović
- Department of Botany, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000, Belgrade, Serbia
| | - Zoran Maksimović
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000, Belgrade, Serbia.
| |
Collapse
|
15
|
Pawar V, Shastri LA, Gudimani P, Joshi S, Sunagar V. Synthesis, characterization and molecular docking of novel lonazolac analogues 3-(3-hydroxy-5-methyl-1H-pyrazol-4-yl)-3-arylpropanoic acid derivatives: Highly potential COX-1/COX-2, matrix metalloproteinase and protein denaturation inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
16
|
Sathish E, Ansari AJ, Joshi G, Pandit A, Shukla M, Kumari N, Sharon A, Verma VP, Sawant DM. Pd-Catalysed [3 + 2]-cycloaddition towards the generation of bioactive bis-heterocycles/identification of COX-2 inhibitors via in silico analysis. Org Biomol Chem 2022; 20:4746-4752. [PMID: 35612901 DOI: 10.1039/d2ob00467d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the current research, we envisaged the synthesis of bis-heterocycles containing the dihydroisoxazole ring by [3 + 2] cycloaddition of VECs (vinyl ethylene carbonates) and nitrile oxides, assisted by a Pd catalyst. Herein we explored hydroximoyl chlorides as versatile precursors for the in situ generation of nitrile oxides that were exploited to achieve the cycloaddition reaction on a vinyl group of VECs to generate bis-heterocycles. In silico-based studies of bis-heterocycles on the cyclooxygenase (COX) enzyme displayed selective COX-2 inhibition.
Collapse
Affiliation(s)
- Elagandhula Sathish
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, NH-8, Ajmer-305801, Rajasthan, India.
| | - Arshad J Ansari
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, NH-8, Ajmer-305801, Rajasthan, India. .,Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, SAS Nagar-140306, Punjab, India
| | - Gaurav Joshi
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248002, India
| | - Akansha Pandit
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, NH-8, Ajmer-305801, Rajasthan, India.
| | - Monika Shukla
- Department of Chemistry, Banasthali University, Banasthali Newai-304022, Rajasthan, India.
| | - Neha Kumari
- Department of Chemistry, Birla Institution of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ashoke Sharon
- Department of Chemistry, Birla Institution of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Banasthali Newai-304022, Rajasthan, India.
| | - Devesh M Sawant
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, NH-8, Ajmer-305801, Rajasthan, India.
| |
Collapse
|