1
|
Yuan S, Li X, Zhang YL, Zhou WJ, Du YB, He ZX, Liu HM, Bai YR. Functional Hexafluoroisopropyl Group Used in the Construction of Biologically Important Pyrimidine Derivatives. J Org Chem 2024; 89:16485-16492. [PMID: 39480993 DOI: 10.1021/acs.joc.4c01749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
A series of versatile 4-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)pyridine intermediates have been developed to efficiently produce biaryls, amines, ethers, and thioethers. These hydrolysis-stable ether intermediates exhibit reactivity toward electron-donating groups and nucleophiles in cross-coupling and nucleophilic substitution reactions while surpassing the stability of corresponding aryl halides. In comparison to conventional coupling methods, this protocol offers an alternative pathway for accessing natural product and drug-like compounds without the need for metal catalysts. With assistance of this approach, we successfully obtained a potent P-glycoprotein inhibitor 4k (YS-370), a potent epidermal growth factor receptor inhibitor 4l (YS-363), and a promising lysine-specific demethylase 1 inhibitor 5g.
Collapse
Affiliation(s)
- Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Li
- Department of Obstetrics and Gynecology, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yue-Lin Zhang
- Department of Obstetrics and Gynecology, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wen-Juan Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Yuan-Bing Du
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhang-Xu He
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou 450001, China
| | - Yi-Ru Bai
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Pang L, Shah H, Xu Y, Qian S. Delta-5-desaturase: A novel therapeutic target for cancer management. Transl Oncol 2021; 14:101207. [PMID: 34438249 PMCID: PMC8390547 DOI: 10.1016/j.tranon.2021.101207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/31/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
D5D is an independent prognostic factor in cancer. D5D aggravates cancer progression via mediating AA/PGE2 production from DGLA. AA/PGE2 promotes cancer progression via regulating the tumor microenvironment. Inhibition of D5D redirects COX-2 catalyzed DGLA peroxidation, producing 8-HOA. 8-HOA suppress cancer by regulating proliferation, apoptosis, and metastasis.
Delta-5 desaturase (D5D) is a rate-limiting enzyme that introduces double-bonds to the delta-5 position of the n-3 and n-6 polyunsaturated fatty acid chain. Since fatty acid metabolism is a vital factor in cancer development, several recent studies have revealed that D5D activity and expression could be an independent prognostic factor in cancers. However, the mechanistic basis of D5D in cancer progression is still controversial. The classical concept believes that D5D could aggravate cancer progression via mediating arachidonic acid (AA)/prostaglandin E2 production from dihomo-γ-linolenic acid (DGLA), resulting in activation of EP receptors, inflammatory pathways, and immunosuppression. On the contrary, D5D may prevent cancer progression through activating ferroptosis, which is iron-dependent cell death. Suppression of D5D by RNA interference and small-molecule inhibitor has been identified as a promising anti-cancer strategy. Inhibition of D5D could shift DGLA peroxidation pattern from generating AA to a distinct anti-cancer free radical byproduct, 8-hydroxyoctanoic acid, resulting in activation of apoptosis pathway and simultaneously suppression of cancer cell survival, proliferation, migration, and invasion. Hence, understanding the molecular mechanisms of D5D on cancer may therefore facilitate the development of novel therapeutical applications. Given that D5D may serve as a promising target in cancer, in this review, we provide an updated summary of current knowledge on the role of D5D in cancer development and potentially useful therapeutic strategies.
Collapse
Affiliation(s)
- Lizhi Pang
- Department of Pharmaceutical Sciences, North Dakota State University, Sudro 108, 1401 Albrecht Blvd, Fargo, ND, USA.
| | - Harshit Shah
- Department of Pharmaceutical Sciences, North Dakota State University, Sudro 108, 1401 Albrecht Blvd, Fargo, ND, USA
| | - Yi Xu
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Steven Qian
- Department of Pharmaceutical Sciences, North Dakota State University, Sudro 108, 1401 Albrecht Blvd, Fargo, ND, USA
| |
Collapse
|
3
|
Diarylureas: Repositioning from Antitumor to Antimicrobials or Multi-Target Agents against New Pandemics. Antibiotics (Basel) 2021; 10:antibiotics10010092. [PMID: 33477901 PMCID: PMC7833385 DOI: 10.3390/antibiotics10010092] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Antimicrobials have allowed medical advancements over several decades. However, the continuous emergence of antimicrobial resistance restricts efficacy in treating infectious diseases. In this context, the drug repositioning of already known biological active compounds to antimicrobials could represent a useful strategy. In 2002 and 2003, the SARS-CoV pandemic immobilized the Far East regions. However, the drug discovery attempts to study the virus have stopped after the crisis declined. Today’s COVID-19 pandemic could probably have been avoided if those efforts against SARS-CoV had continued. Recently, a new coronavirus variant was identified in the UK. Because of this, the search for safe and potent antimicrobials and antivirals is urgent. Apart from antiviral treatment for severe cases of COVID-19, many patients with mild disease without pneumonia or moderate disease with pneumonia have received different classes of antibiotics. Diarylureas are tyrosine kinase inhibitors well known in the art as anticancer agents, which might be useful tools for a reposition as antimicrobials. The first to come onto the market as anticancer was sorafenib, followed by some other active molecules. For this interesting class of organic compounds antimicrobial, antiviral, antithrombotic, antimalarial, and anti-inflammatory properties have been reported in the literature. These numerous properties make these compounds interesting for a new possible pandemic considering that, as well as for other viral infections also for CoVID-19, a multitarget therapeutic strategy could be favorable. This review is meant to be an overview on diarylureas, focusing on their biological activities, not dwelling on the already known antitumor activity. Quite a lot of papers present in the literature underline and highlight the importance of these molecules as versatile scaffolds for the development of new and promising antimicrobials and multitarget agents against new pandemic events.
Collapse
|
4
|
Utilizing the Combination of Binding Kinetics and Micro-Pharmacokinetics Link in Vitro α-Glucosidase Inhibition to in Vivo Target Occupancy. Biomolecules 2019; 9:biom9090493. [PMID: 31527517 PMCID: PMC6770063 DOI: 10.3390/biom9090493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/20/2022] Open
Abstract
Many compounds with good inhibitory activity (i.e., high affinity) within in vitro experiments failed in vivo studies due to a lack of efficacy from limited target occupancy (TO) in the drug discovery process. Recently, it was found that rate constants of the formation and dissociation of the binary drug-target complex, rather than affinity, often govern in vivo efficacy. Therefore, the binding kinetics (BK) properties of compound-target interaction are emerging as a pivotal parameter. However, it is obvious that BK rate constants of the compound against target would not be directly linked to the in vivo TO unless the compound concentration in the target vicinity at any time point (TPK) can be evaluated. Here, we developed a novel simulation model to quantitate the dynamic change of target engagement over time in rat with a combined use of BK and TPK features of Epicatechin gallate (ECG) and epigallocatechin gallate (EGCG) on the basis of α-glucosidase (AGH). Analysis of the results displayed that the percent of maximum AGH occupancies by the ECG were varied significantly from 48.9 to 95.3% and by the EGCG slightly from 96 to 99.8%; that the time course of above 70% engagement by ECG spanned a range from 0 to 0.64 h and by EGCG a range of 1.5 to 8.9 h in four different intestinal segments of the rat. It was clearly analyzed how each parameter in the simulation model effected on the in vivo the AGH engagement by ECG and EGCG. Our results provide a novel approach for assessing the potential inhibitory activity of the compounds against AGH.
Collapse
|
5
|
Xu Y, Yang X, Gao D, Yang L, Miskimins K, Qian SY. Dihomo-γ-linolenic acid inhibits xenograft tumor growth in mice bearing shRNA-transfected HCA-7 cells targeting delta-5-desaturase. BMC Cancer 2018; 18:1268. [PMID: 30567534 PMCID: PMC6299961 DOI: 10.1186/s12885-018-5185-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
Background We previously demonstrated that knockdown of delta-5-desaturase via siRNA transfection together with dihomo-γ-linolenic acid supplementation inhibited colon cancer cell growth and migration, by promoting the production of the anti-cancer byproduct 8-hydroxyoctanoic acid from Cyclooxygenase-2-catalyzed dihomo-γ-linolenic acid peroxidation. Here, we extend our study to investigate the effects of delta-5-desaturase-knockdown and the resulting intensified dihomo-γ-linolenic acid peroxidation in xenograft tumor mice model. Methods Four-week old nude mice bearing the human colon cancer cell HCA-7/C29 vs. its delta-5-desaturase knockdown analog (via shRNA transfection) were subject to 4-week treatments of: vehicle control, dihomo-γ-linolenic acid supplementation, 5-Fluorouracil, and combination of dihomo-γ-linolenic acid and 5-Fluorouracil. Tumor growth was monitored during the treatment. At the endpoint, the mice were euthanized and the tumor tissues were collected for further mechanism analysis. Results Delta-5-desaturase knockdown (shRNA) together with dihomo-γ-linolenic acid supplementation increased 8-hydroxyoctanoic acid production to a threshold level in xenograft tumors, which consequently induced p53-dependent apoptosis and reduced tumors significantly. The promoted 8-hydroxyoctanoic acid formation was also found to suppress the tumors’ metastatic potential via regulating MMP-2 and E-cadherin expressions. In addition, our in vivo data showed that delta-5-desaturase knockdown along with dihomo-γ-linolenic acid supplementation resulted in anti-tumor effects comparable to those of 5-Fluorouracil. Conclusions We have demonstrated that our paradigm-shifting strategy of knocking down delta-5-desaturase and taking advantage of overexpressed Cyclooxygenase-2 in tumor cells can be used for colon cancer suppression. Our research outcome will lead us to develop a better and safer anti-cancer therapy for patients. Electronic supplementary material The online version of this article (10.1186/s12885-018-5185-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Xu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58105, USA
| | - Xiaoyu Yang
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58105, USA
| | - Di Gao
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58105, USA
| | - Liu Yang
- Department of Transplantation, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Keith Miskimins
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Steven Y Qian
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58105, USA.
| |
Collapse
|
6
|
Fujimoto J, Okamoto R, Noguchi N, Hara R, Masada S, Kawamoto T, Nagase H, Tamura YO, Imanishi M, Takagahara S, Kubo K, Tohyama K, Iida K, Andou T, Miyahisa I, Matsui J, Hayashi R, Maekawa T, Matsunaga N. Discovery of 3,5-Diphenyl-4-methyl-1,3-oxazolidin-2-ones as Novel, Potent, and Orally Available Δ-5 Desaturase (D5D) Inhibitors. J Med Chem 2017; 60:8963-8981. [PMID: 29023121 DOI: 10.1021/acs.jmedchem.7b01210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The discovery and optimization of Δ-5 desaturase (D5D) inhibitors are described. Investigation of the 1,3-oxazolidin-2-one scaffold was inspired by a pharmacophore model constructed from the common features of several hit compounds, resulting in the identification of 3,5-diphenyl-1,3-oxazolidin-2-one 5h as a novel lead showing potent in vitro activity. Subsequent optimization focused on the modification of two metabolic sites, which provided (4S,5S)-5i, a derivative with improved metabolic stability. Moreover, adding a substituent into the upper phenyl moiety further enhanced the intrinsic activity, which led to the discovery of 5-[(4S,5S)-5-(4fluorophenyl)-4-methyl-2-oxo-1,3-oxazolidin-3-yl]benzene-1,3-dicarbonitrile (4S,5S)-5n, endowed with excellent D5D binding affinity, cellular activity, and high oral bioavailability in a mouse. It exhibited robust in vivo hepatic arachidonic acid/dihomo-γ-linolenic acid ratio reduction (a target engagement marker) in an atherosclerosis mouse model. Finally, an asymmetric synthetic procedure for this compound was established.
Collapse
Affiliation(s)
- Jun Fujimoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Rei Okamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Naoyoshi Noguchi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ryoma Hara
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shinichi Masada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tetsuji Kawamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroki Nagase
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yumiko Okano Tamura
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mitsuaki Imanishi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shuichi Takagahara
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazuki Kubo
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kimio Tohyama
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Koichi Iida
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomohiro Andou
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ikuo Miyahisa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Junji Matsui
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ryouta Hayashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tsuyoshi Maekawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Nobuyuki Matsunaga
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
7
|
Imamura K, Tomita N, Kawakita Y, Ito Y, Ono K, Nii N, Miyazaki T, Yonemori K, Tawada M, Sumi H, Satoh Y, Yamamoto Y, Miyahisa I, Sasaki M, Satomi Y, Hirayama M, Nishigaki R, Maezaki H. Discovery of Novel and Potent Stearoyl Coenzyme A Desaturase 1 (SCD1) Inhibitors as Anticancer Agents. Bioorg Med Chem 2017; 25:3768-3779. [PMID: 28571972 DOI: 10.1016/j.bmc.2017.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
A lead compound A was identified previously as an stearoyl coenzyme A desaturase (SCD) inhibitor during research on potential treatments for obesity. This compound showed high SCD1 binding affinity, but a poor pharmacokinetic (PK) profile and limited chemical accessibility, making it suboptimal for use in anticancer research. To identify potent SCD1 inhibitors with more promising PK profiles, we newly designed a series of 'non-spiro' 4, 4-disubstituted piperidine derivatives based on molecular modeling studies. As a result, we discovered compound 1a, which retained moderate SCD1 binding affinity. Optimization around 1a was accelerated by analyzing Hansch-Fujita and Hammett constants to obtain 4-phenyl-4-(trifluoromethyl)piperidine derivative 1n. Fine-tuning of the azole moiety of 1n led to compound 1o (T-3764518), which retained nanomolar affinity and exhibited an excellent PK profile. Reflecting the good potency and PK profile, orally administrated compound 1o showed significant pharmacodynamic (PD) marker reduction (at 0.3mg/kg, bid) in HCT116 mouse xenograft model and tumor growth suppression (at 1mg/kg, bid) in 786-O mouse xenograft model. In conclusion, we identified a new series of SCD1 inhibitors, represented by compound 1o, which represents a promising new chemical tool suitable for the study of SCD1 biology as well as the potential development of novel anticancer therapies.
Collapse
Affiliation(s)
- Keisuke Imamura
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Naoki Tomita
- Corporate Finance Department, Takeda Pharmaceutical Company Ltd., 12-10, Nihonbashi 2-chome, Chuo-ku, Tokyo 103-8668, Japan
| | - Youichi Kawakita
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshiteru Ito
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kouji Ono
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Noriyuki Nii
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tohru Miyazaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazuko Yonemori
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Michiko Tawada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroyuki Sumi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshihiko Satoh
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yukiko Yamamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ikuo Miyahisa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masako Sasaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshinori Satomi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Megumi Hirayama
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ryuichi Nishigaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hironobu Maezaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
8
|
Nishizawa S, Sumi H, Satoh Y, Yamamoto Y, Kitazawa S, Honda K, Araki H, Kakoi K, Imamura K, Sasaki M, Miyahisa I, Satomi Y, Nishigaki R, Hirayama M, Aoyama K, Maezaki H, Hara T. In vitro and in vivo antitumor activities of T-3764518, a novel and orally available small molecule stearoyl-CoA desaturase 1 inhibitor. Eur J Pharmacol 2017; 807:21-31. [PMID: 28442322 DOI: 10.1016/j.ejphar.2017.03.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/18/2023]
Abstract
Most cancer cells are characterized by elevated lipid biosynthesis. The rapid proliferation of cancer cells requires de novo synthesis of fatty acids. Stearoyl-CoA desaturase-1 (SCD1), a key enzyme for lipogenesis, is overexpressed in various types of cancer and plays an important role in cancer cell proliferation. Therefore, it has been studied as a candidate target for cancer therapy. In this study, we demonstrate the pharmacological properties of T-3764518, a novel and orally available small molecule inhibitor of SCD1. T-3764518 inhibited stearoyl-CoA desaturase-catalyzed conversion of stearoyl-CoA to oleoyl-CoA in colorectal cancer HCT-116 cells and their growth. Further, it slowed tumor growth in an HCT-116 and a mesothelioma MSTO-211H mouse xenograft model. Comprehensive lipidomic analyses revealed that T-3764518 increases the membrane ratio of saturated: unsaturated fatty acids in various lipid species such as phosphatidylcholines and diacylglycerols in both cultured cells and HCT-116 xenografts. Treatment-associated lipidomic changes were followed by activated endoplasmic reticulum (ER) stress responses such as increased immunoglobulin heavy chain-binding protein expression in HCT-116 cells. These T-3764518-induced changes led to an increase in cleaved poly (ADP-ribose) polymerase 1 (PARP1), a marker of apoptosis. Additionally, bovine serum albumin conjugated with oleic acid, an SCD1 product, prevented cell growth inhibition and ER stress responses by T-3764518, indicating that these outcomes were not attributable to off-target effects. These results indicate that T-3764518 is a promising new anticancer drug candidate.
Collapse
Affiliation(s)
- Satoru Nishizawa
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Hiroyuki Sumi
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Yoshihiko Satoh
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Yukiko Yamamoto
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Satoshi Kitazawa
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Kohei Honda
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Hideo Araki
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Kazuyo Kakoi
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Keisuke Imamura
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Masako Sasaki
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Ikuo Miyahisa
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Yoshinori Satomi
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Ryuuichi Nishigaki
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Megumi Hirayama
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Kazunobu Aoyama
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Hironobu Maezaki
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Takahito Hara
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
9
|
Yashiro H, Takagahara S, Tamura YO, Miyahisa I, Matsui J, Suzuki H, Ikeda S, Watanabe M. A Novel Selective Inhibitor of Delta-5 Desaturase Lowers Insulin Resistance and Reduces Body Weight in Diet-Induced Obese C57BL/6J Mice. PLoS One 2016; 11:e0166198. [PMID: 27832159 PMCID: PMC5104425 DOI: 10.1371/journal.pone.0166198] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 10/24/2016] [Indexed: 11/15/2022] Open
Abstract
Obesity is now recognized as a state of chronic low-grade inflammation and is called as metabolic inflammation. Delta-5 desaturase (D5D) is an enzyme that metabolizes dihomo-γ-linolenic acid (DGLA) to arachidonic acid (AA). Thus, D5D inhibition increases DGLA (precursor to anti-inflammatory eicosanoids) while decreasing AA (precursor to pro-inflammatory eicosanoids), and could result in synergistic improvement in the low-grade inflammatory state. Here, we demonstrate reduced insulin resistance and the anti-obesity effect of a D5D selective inhibitor (compound-326), an orally active small-molecule, in a high-fat diet-induced obese (DIO) mouse model. In vivo D5D inhibition was confirmed by determining changes in blood AA/DGLA profiles. In DIO mice, chronic treatment with compound-326 lowered insulin resistance and caused body weight loss without significant impact on cumulative calorie intake. Decreased macrophage infiltration into adipose tissue was expected from mRNA analysis. Increased daily energy expenditure was also observed following administration of compound-326, in line with sustained body weight loss. These data indicate that the novel D5D selective inhibitor, compound-326, will be a new class of drug for the treatment of obese and diabetic patients.
Collapse
Affiliation(s)
- Hiroaki Yashiro
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa Japan
- * E-mail:
| | - Shuichi Takagahara
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa Japan
| | - Yumiko Okano Tamura
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa Japan
| | - Ikuo Miyahisa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa Japan
| | - Junji Matsui
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa Japan
| | - Hideo Suzuki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa Japan
| | - Shota Ikeda
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa Japan
| | - Masanori Watanabe
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa Japan
| |
Collapse
|