1
|
Guo LS, An Y, Zhang ZY, Ma CB, Li JQ, Dong Z, Tian J, Liu ZY, Liu JG. Exploring the diagnostic potential: magnetic particle imaging for brain diseases. Mil Med Res 2025; 12:18. [PMID: 40287777 PMCID: PMC12034128 DOI: 10.1186/s40779-025-00603-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/07/2025] [Indexed: 04/29/2025] Open
Abstract
Brain diseases are characterized by high incidence, disability, and mortality rates. Their elusive nature poses a significant challenge for early diagnosis. Magnetic particle imaging (MPI) is a novel imaging technique with high sensitivity, high temporal resolution, and no ionizing radiation. It relies on the nonlinear magnetization response of superparamagnetic iron oxide nanoparticles (SPIONs), allowing visualization of the spatial concentration distribution of SPIONs in biological tissues. MPI is expected to become a mainstream technology for the early diagnosis of brain diseases, such as cancerous, cerebrovascular, neurodegenerative, and inflammatory diseases. This review provides an overview of the principles of MPI, explores its potential applications in brain diseases, and discusses the prospects for the diagnosis and management of these diseases.
Collapse
Affiliation(s)
- Li-Shuang Guo
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yu An
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China
| | - Ze-Yu Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China
| | - Chen-Bin Ma
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jia-Qian Li
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhen Dong
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jie Tian
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China.
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100191, China.
| | - Zhen-Yu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100191, China.
- University of Chinese Academy of Sciences, Beijing, 100080, China.
| | - Jian-Gang Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China.
| |
Collapse
|
2
|
Zhong Q, Liu H, Feng Y, Jiao X, Yang Y, Zhang D, Wang Q, Ahasan Z, Li AZ, Liew CW, Cai Z, Liu Z, Cai K. Detecting white adipose tissue browning in mice with in vivo R 2∗ mapping at 9.4T MRI. J Lipid Res 2025; 66:100735. [PMID: 39709160 PMCID: PMC11786758 DOI: 10.1016/j.jlr.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024] Open
Abstract
White adipose tissue (WAT) browning is considered a promising strategy to combat obesity and related metabolic diseases. Currently, fat-water fraction (FWF) has been used as a marker for the loss of lipids associated with WAT browning. However, FWF may not be sensitive to metabolic changes and cannot specifically reflect iron-regulated metabolism during browning. Here, we report a noninvasive preclinical imaging approach based on iron content detected by R2∗ mapping to assess in vivo WAT browning in mice. In this study, we investigated the browning of inguinal white adipose tissue (iWAT) induced by long-term CL-316,243 (CL) drug stimulation in mice. We quantified the changes in R2∗, FWF, uncoupling protein 1 (UCP1) expression, and iron content. The iWAT of all mice was dissected for H&E staining and immunohistochemistry for the absorbance of UCP1 and iron content. In in vivo experiments, a significant increase in R2∗ and a decrease in FWF were observed in iWAT after 7 days of CL administration compared with the saline-treated and the baseline groups. Accordingly, in ex vivo experiments, UCP1 expression and the total iron content in iWAT significantly increased after 7 days of CL stimulation. By pooling all mice data, the UCP1 expression level of iWAT and iron content was found to be highly correlated with R2∗ and inversely correlated with FWF. Taken together, R2∗ may serve as a potential imaging biomarker for assessing WAT browning, which provides a new diagnostic and therapeutic evaluation tool for metabolic diseases.
Collapse
Affiliation(s)
- Qiaoling Zhong
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongsheng Liu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China; Department of Radiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Xiuwei Jiao
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Yuanbo Yang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Daming Zhang
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Qian Wang
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Zoheb Ahasan
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Andrew Z Li
- New Trier Township High School, Winnetka, IL, USA
| | - Chong Wee Liew
- Physiology and Biophysics Department, University of Illinois at Chicago, Chicago, IL, USA
| | - Zimeng Cai
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China.
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China.
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Velazquez-Albino AC, Imhoff ED, Rinaldi-Ramos CM. Advances in engineering nanoparticles for magnetic particle imaging (MPI). SCIENCE ADVANCES 2025; 11:eado7356. [PMID: 39772674 PMCID: PMC11708890 DOI: 10.1126/sciadv.ado7356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Magnetic particle imaging (MPI) is an emerging imaging modality with exciting biomedical applications, such as cell tracking, blood pool imaging, and image-guided magnetic hyperthermia. MPI is unique in that signal is generated entirely by synthetic nanoparticle tracers, motivating precise engineering of magnetic nanoparticle properties including size, shape, composition, and coating to address the needs of specific applications. However, success in many applications and in clinical transition requires development of high-sensitivity and high-resolution tracers, for which there is considerable room for improvement. This review summarizes recent advancements in MPI tracer synthesis and compares reported tracers in terms of sensitivity and resolution. In making these comparisons, we point out inconsistencies in reporting of MPI tracer properties. To overcome this challenge, we propose a list of properties to standardize characterization and reporting of new MPI tracers and improve communication within the field.
Collapse
Affiliation(s)
| | - Eric Daniel Imhoff
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Carlos M. Rinaldi-Ramos
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6131, USA
| |
Collapse
|
4
|
Guan G, Shi G, Liu H, Xu J, Zhang Q, Dong Z, Lu C, Wang Y, Lei L, Nan B, Zhang C, Yue R, Du Y, Tian J, Song G. Responsive Magnetic Particle Imaging Tracer: Overcoming "Always-On" Limitation, Eliminating Interference, and Ensuring Safety in Adaptive Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409117. [PMID: 39410733 DOI: 10.1002/adma.202409117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/04/2024] [Indexed: 12/06/2024]
Abstract
Magnetic particle imaging (MPI) has emerged as a novel technology utilizing superparamagnetic nanoparticles as tracers, essential for disease diagnosis and treatment guidance in preclinical animal models. Unlike other modalities, MPI provides high sensitivity, deep tissue penetration, and no signal attenuation. However, existing MPI tracers suffer from "always-on" signals, which complicate organ-specific imaging and hinder accuracy. To overcome these challenges, we have developed a responsive MPI tracer using pH-responsive PdFe alloy particles coated with a gatekeeper polymer. This tracer exhibits pH-sensitive Fe release and modulation of the MPI signal, enabling selective imaging with a higher signal-to-noise ratio and intratumoral pH quantification. Notably, this responsive tracer facilitates subtraction-enhanced MPI imaging, effectively eliminating interference from liver uptake and expanding the scope of abdominal imaging. Additionally, the tracer employs a dual-function mechanism for adaptive cancer therapy, combining pH-switchable enzyme-like catalysis with dual-key co-activation of ROS generation, and Pd skeleton that scavenges free radicals to minimize Fe-related toxicity. This advancement promises to significantly expand MPI's applicability in diagnostics and therapeutic monitoring, marking a leap forward in imaging technology.
Collapse
Affiliation(s)
- Guoqiang Guan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Guangyuan Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Huiyi Liu
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Juntao Xu
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qingpeng Zhang
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhe Dong
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chang Lu
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Youjuan Wang
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Lingling Lei
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bin Nan
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Cheng Zhang
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Renye Yue
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, China
| | - Guosheng Song
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
5
|
He J, Zhang H, Li Y, Li G, Lei S, Qian Z, Xiong F, Feng Y, Zhu T, An Y, Tian J. Sequential Scan-Based Single-Dimension Multi-Voxel System Matrix Calibration for Open-Sided Magnetic Particle Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3856-3868. [PMID: 38781069 DOI: 10.1109/tmi.2024.3404602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Open-sided magnetic particle imaging (OS-MPI) has garnered significant interest due to its potential for interventional applications. However, the system matrix calibration in OS-MPI using sequential scans is a time-consuming task and susceptible to the low signal-to-noise ratio (SNR) resulting from the small calibration sample size. These challenges have hindered the practical implementation of system matrix-based reconstruction for sequentially scanned OS-MPI. To address these issues, we propose a novel calibration method, named sequen- tial scan-based single-dimension multi-voxel calibration (SS-SDMVC), to efficiently obtain a high-SNR system matrix. This method was implemented in a cylindrical field of view (FOV), where a bar calibration sample parallel to the field-free line (FFL) was shifted along a fixed radial direction. A standard image reconstruction process was also introduced to verify the feasibility of SS-SDMVC. Through simulations, we analyzed the effects of noise levels and scanner imperfections on the SS-SDMVC-based reconstruction and demonstrated its robustness. In experiments, we compared the imaging performance of SS-SDMVC and the sequential scan-based traditional cubic-FOV SMC. The results showed that SS-SDMVC reduced the number of measurements by a factor of 210.94 and achieved higher reconstruction quality. Therefore, SS-SDMVC is expected to improve the reconstruction quality of human- scale or high-gradient FFL MPI scanners.
Collapse
|
6
|
Moerenhout TMJA, Chen J, Bouwmeester H, Rietjens IMCM, Kramer NI. Development of a Generic Physiologically Based Kinetic Model for the Prediction of Internal Exposure to Organophosphate Pesticides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18834-18845. [PMID: 39374537 PMCID: PMC11500413 DOI: 10.1021/acs.est.4c06534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
Since their introduction into agriculture, the toxicity of organophosphate (OP) pesticides has been widely studied in animal models. However, next generation risk assessment (NGRA) intends to maximize the use of novel approach methodologies based on in vitro and in silico methods. Therefore, this study describes the development and evaluation of a generic physiologically based kinetic (PBK) model for acute exposure to OP pesticides in rats and humans using quantitative structure property relationships and data from published in vitro studies. The models were evaluated using in vivo studies from the literature for chlorpyrifos, diazinon, fenitrothion, methyl-parathion, ethyl-parathion, dimethoate, chlorfenvinphos, and profenofos. Evaluation was performed by comparing simulated and in vivo observed time profiles for blood, plasma, or urinary concentrations and other toxicokinetic parameters. Of simulated concentration-time profiles, 87 and 91% were within a 5-fold difference from observed toxicokinetic data from rat and human studies, respectively. Only for dimethyl-organophosphates further refinement of the model is required. It is concluded that the developed generic PBK model provides a new tool to assess species differences in rat and human kinetics of OP pesticides. This approach provides a means to perform NGRA for these compounds and could also be adopted for other classes of compounds.
Collapse
Affiliation(s)
- Thijs M. J. A. Moerenhout
- Division of Toxicology, Wageningen
University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jiaqi Chen
- Division of Toxicology, Wageningen
University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen
University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ivonne M. C. M. Rietjens
- Division of Toxicology, Wageningen
University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Nynke I. Kramer
- Division of Toxicology, Wageningen
University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
7
|
Liu Y, Zhang L, Wei Z, Wang T, Yang X, Tian J, Hui H. Transformer for low concentration image denoising in magnetic particle imaging. Phys Med Biol 2024; 69:175014. [PMID: 39137818 DOI: 10.1088/1361-6560/ad6ede] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Objective.Magnetic particle imaging (MPI) is an emerging tracer-basedin vivoimaging technology. The use of MPI at low superparamagnetic iron oxide nanoparticle concentrations has the potential to be a promising area of clinical application due to the inherent safety for humans. However, low tracer concentrations reduce the signal-to-noise ratio of the magnetization signal, leading to severe noise artifacts in the reconstructed MPI images. Hardware improvements have high complexity, while traditional methods lack robustness to different noise levels, making it difficult to improve the quality of low concentration MPI images.Approach.Here, we propose a novel deep learning method for MPI image denoising and quality enhancing based on a sparse lightweight transformer model. The proposed residual-local transformer structure reduces model complexity to avoid overfitting, in which an information retention block facilitates feature extraction capabilities for the image details. Besides, we design a noisy concentration dataset to train our model. Then, we evaluate our method with both simulated and real MPI image data.Main results.Simulation experiment results show that our method can achieve the best performance compared with the existing deep learning methods for MPI image denoising. More importantly, our method is effectively performed on the real MPI image of samples with an Fe concentration down to 67μgFeml-1.Significance.Our method provides great potential for obtaining high quality MPI images at low concentrations.
Collapse
Affiliation(s)
- Yuanduo Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing 100190, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, People's Republic of China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Liwen Zhang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing 100190, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, People's Republic of China
| | - Zechen Wei
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing 100190, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, People's Republic of China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Tan Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing 100190, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, People's Republic of China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xin Yang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing 100190, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, People's Republic of China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing 100190, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, People's Republic of China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing 100191, People's Republic of China
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
- National Key Laboratory of Kidney Diseases, Beijing 100853, People's Republic of China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing 100190, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, People's Republic of China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- National Key Laboratory of Kidney Diseases, Beijing 100853, People's Republic of China
| |
Collapse
|
8
|
Xie X, Zhai J, Zhou X, Guo Z, Lo PC, Zhu G, Chan KWY, Yang M. Magnetic Particle Imaging: From Tracer Design to Biomedical Applications in Vasculature Abnormality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306450. [PMID: 37812831 DOI: 10.1002/adma.202306450] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Indexed: 10/11/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging non-invasive tomographic technique based on the response of magnetic nanoparticles (MNPs) to oscillating drive fields at the center of a static magnetic gradient. In contrast to magnetic resonance imaging (MRI), which is driven by uniform magnetic fields and projects the anatomic information of the subjects, MPI directly tracks and quantifies MNPs in vivo without background signals. Moreover, it does not require radioactive tracers and has no limitations on imaging depth. This article first introduces the basic principles of MPI and important features of MNPs for imaging sensitivity, spatial resolution, and targeted biodistribution. The latest research aiming to optimize the performance of MPI tracers is reviewed based on their material composition, physical properties, and surface modifications. While the unique advantages of MPI have led to a series of promising biomedical applications, recent development of MPI in investigating vascular abnormalities in cardiovascular and cerebrovascular systems, and cancer are also discussed. Finally, recent progress and challenges in the clinical translation of MPI are discussed to provide possible directions for future research and development.
Collapse
Affiliation(s)
- Xulin Xie
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Jiao Zhai
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Zhengjun Guo
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
- Department of Oncology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Pui-Chi Lo
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
9
|
Gao P, Liu Y, Wang X, Feng X, Liu H, Liu S, Huang X, Wu X, Xiong F, Jia X, Hui H, Jiang J, Tian J. Adhesion molecule-targeted magnetic particle imaging nanoprobe for visualization of inflammation in acute lung injury. Eur J Nucl Med Mol Imaging 2024; 51:1233-1245. [PMID: 38095676 DOI: 10.1007/s00259-023-06550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/27/2023] [Indexed: 03/22/2024]
Abstract
PURPOSE Uncontrolled intra-alveolar inflammation is a central pathogenic feature, and its severity translates into a valid prognostic indicator of acute lung injury (ALI). Unfortunately, current clinical imaging approaches are unsuitable for visualizing and quantifying intra-alveolar inflammation. This study aimed to construct a small-sized vascular cell adhesion molecule-1 (VCAM-1)-targeted magnetic particle imaging (MPI) nanoprobe (ESPVPN) to visualize and accurately quantify intra-alveolar inflammation at the molecular level. METHODS ESPVPN was engineered by conjugating a peptide (VHPKQHRGGSK(Cy7)GC) onto a polydopamine-functionalized superparamagnetic iron oxide core. The MPI performance, targeting, and biosafety of the ESPVPN were characterized. VCAM-1 expression in HUVECs and mouse models was evaluated by western blot. The degree of inflammation and distribution of VCAM-1 in the lungs were assessed using histopathology. The expression of pro-inflammatory markers and VCAM-1 in lung tissue lysates was measured using ELISA. After intravenous administration of ESPVPN, MPI and CT imaging were used to analyze the distribution of ESPVPN in the lungs of the LPS-induced ALI models. RESULTS The small-sized (~10 nm) ESPVPN exhibited superior MPI performance compared to commercial MagImaging® and Vivotrax, and ESPVPN had effective targeting and biosafety. VCAM-1 was highly expressed in LPS-induced ALI mice. VCAM-1 expression was positively correlated with the LPS-induced dose (R = 0.9381). The in vivo MPI signal showed positive correlations with both VCAM-1 expression (R = 0.9186) and representative pro-inflammatory markers (MPO, TNF-α, IL-6, IL-8, and IL-1β, R > 0.7). CONCLUSION ESPVPN effectively targeted inflammatory lungs and combined the advantages of MPI quantitative imaging to visualize and evaluate the degree of ALI inflammation.
Collapse
Affiliation(s)
- Pengli Gao
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu Liu
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoli Wang
- School of Medical Imaging, Weifang Medical University, Weifang, 261053, China
| | - Xin Feng
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Heng Liu
- Department of Radiology, PLA Rocket Force Characteristic Medical Center, No. 16 Xinjiekou Outer Street, Beijing, 100088, China
| | - Songlu Liu
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiazi Huang
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangjun Wu
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fei Xiong
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaohua Jia
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jingying Jiang
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China.
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China.
| | - Jie Tian
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China.
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China.
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
10
|
Sanz-de Diego E, Aires A, Palacios-Alonso P, Cabrera D, Silvestri N, Vequi-Suplicy CC, Artés-Ibáñez EJ, Requejo-Isidro J, Delgado-Buscalioni R, Pellegrino T, Cortajarena AL, Terán FJ. Multiparametric modulation of magnetic transduction for biomolecular sensing in liquids. NANOSCALE 2024; 16:4082-4094. [PMID: 38348700 DOI: 10.1039/d3nr06489a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The recent COVID19 pandemic has remarkably boosted the research on in vitro diagnosis assays to detect biomarkers in biological fluids. Specificity and sensitivity are mandatory for diagnostic kits aiming to reach clinical stages. Whilst the modulation of sensitivity can significantly improve the detection of biomarkers in liquids, this has been scarcely explored. Here, we report on the proof of concept and parametrization of a novel biosensing methodology based on the changes of AC magnetic hysteresis areas observed for magnetic nanoparticles following biomolecular recognition in liquids. Several parameters are shown to significantly modulate the transducing capacity of magnetic nanoparticles to detect analytes dispersed in saline buffer at concentrations of clinical relevance. Magnetic nanoparticles were bio-conjugated with an engineered recognition peptide as a receptor. Analytes are engineered tetratricopeptide binding domains fused to the fluorescent protein whose dimerization state allows mono- or divalent variants. Our results unveil that the number of receptors per particle, analyte valency and concentration, nanoparticle composition and concentration, and field conditions play a key role in the formation of assemblies driven by biomolecular recognition. Consequently, all these parameters modulate the nanoparticle transduction capacity. Our study provides essential insights into the potential of AC magnetometry for customizing biomarker detection in liquids.
Collapse
Affiliation(s)
- Elena Sanz-de Diego
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
| | - Antonio Aires
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain.
| | | | - David Cabrera
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thurnburrow Drive, ST4 7QB, Stoke on Trent, UK
| | | | | | - Emilio J Artés-Ibáñez
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
- Nanotech Solutions, 40150 Villacastín, Spain
| | - José Requejo-Isidro
- Centro Nacional de Biotecnologia (CSIC), 28049 Madrid, Spain
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| | | | | | - Aitziber L Cortajarena
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Francisco J Terán
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| |
Collapse
|
11
|
Wolf A, Zink A, Stiegler LMS, Branscheid R, Apeleo Zubiri B, Müssig S, Peukert W, Walter J, Spiecker E, Mandel K. Magnetic in situ determination of surface coordination motifs by utilizing the degree of particle agglomeration. J Colloid Interface Sci 2023; 648:633-643. [PMID: 37321082 DOI: 10.1016/j.jcis.2023.05.182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
Most analytical techniques used to study the surface chemical properties of superparamagnetic iron oxide nanoparticles (SPIONs) are barely suitable for in situ investigations in liquids, where SPIONs are mostly applied for hyperthermia therapy, diagnostic biosensing, magnetic particle imaging or water purification. Magnetic particle spectroscopy (MPS) can resolve changes in magnetic interactions of SPIONs within seconds at ambient conditions. Herein, we show that by adding mono- and divalent cations to citric acid capped SPIONs, the degree of agglomeration can be utilized to study the selectivity of cations towards surface coordination motifs via MPS. A favored chelate agent, like ethylenediaminetetraacetic acid (EDTA) for divalent cations, removes cations from coordination sites on the SPION surface and causes redispersion of agglomerates. The magnetic determination thereof represents what we call a "magnetically indicated complexometric titration". The relevance of agglomerate sizes for the MPS signal response is studied on a model system of SPIONs and the surfactant cetrimonium bromide (CTAB). Analytical ultracentrifugation (AUC) and cryogenic transmission electron microscopy (cryo-TEM) reveal that large micron-sized agglomerates are required to significantly change the MPS signal response. With this work, a fast and easy-to-use characterization method to determine surface coordination motifs of magnetic nanoparticles in optically dense media is demonstrated.
Collapse
Affiliation(s)
- Andreas Wolf
- Department of Chemistry and Pharmacy, Professorship for Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany; Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Wuerzburg, Germany
| | - Andreas Zink
- Department of Chemistry and Pharmacy, Professorship for Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Lisa M S Stiegler
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany; Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstrasse 9a, 91058 Erlangen, Germany
| | - Robert Branscheid
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 3, 91058 Erlangen, Germany
| | - Benjamin Apeleo Zubiri
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 3, 91058 Erlangen, Germany
| | - Stephan Müssig
- Department of Chemistry and Pharmacy, Professorship for Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany; Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstrasse 9a, 91058 Erlangen, Germany
| | - Johannes Walter
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany; Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstrasse 9a, 91058 Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 3, 91058 Erlangen, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Professorship for Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany; Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Wuerzburg, Germany.
| |
Collapse
|
12
|
Magnetic Particle Imaging in Vascular Imaging, Immunotherapy, Cell Tracking, and Noninvasive Diagnosis. Mol Imaging 2023. [DOI: 10.1155/2023/4131117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Magnetic particle imaging (MPI) is a new tracer-based imaging modality that is useful in diagnosing various pathophysiology related to the vascular system and for sensitive tracking of cytotherapies. MPI uses nonradioactive and easily assimilated nanometer-sized iron oxide particles as tracers. MPI images the nonlinear Langevin behavior of the iron oxide particles and has allowed for the sensitive detection of iron oxide-labeled therapeutic cells in the body. This review will provide an overview of MPI technology, the tracer, and its use in vascular imaging and cytotherapies using molecular targets.
Collapse
|
13
|
Arsalani S, Radon P, Schier P, Jaufenthaler A, Liebl M, Baumgarten D, Wiekhorst F. Developing magnetorelaxometry imaging for human applications. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac9c41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. Magnetic nanoparticles (MNPs) are a promising tool in biomedical applications such as cancer therapy and diagnosis, where localization and quantification of MNP distributions are often mandatory. This can be obtained by magnetorelaxometry imaging (MRXI). Approach. In this work, the capability of MRXI for quantitative imaging of MNP inside larger volumes such as a human head is investigated. We developed a human head phantom simulating a glioblastoma multiforme (GBM) tumor containing MNP for magnetic hyperthermia treatment. The sensitivity of our MRXI setup for detection of MNP concentrations in the range of 3–19 mg cm−3 was studied. Main result. The results show the high capability of MRXI to detect MNPs in a human head sized volume. Superficial sources with a concentration larger than 12 mg cm-3 could be reconstructed with a resulotion of about 1 cm-3. Significance. The reconstruction of the MNP distribution, mimicking a GBM tumor of 7 cm3 volume with clinically relevant iron concentration, demonstrates the in vivo feasibility of MRXI in humans.
Collapse
|
14
|
Development of Phantoms for Multimodal Magnetic Resonance Imaging and Magnetic Particle Imaging. Polymers (Basel) 2022; 14:polym14193925. [PMID: 36235873 PMCID: PMC9571530 DOI: 10.3390/polym14193925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Phantoms are crucial for the development of imaging techniques based on magnetic nanoparticles (MNP). They serve as test objects to simulate application scenarios but are also used for quality assurance and interlaboratory comparisons. Magnetic particle imaging (MPI) is excellent for specifically detecting magnetic nanoparticles (MNP) without any background signals. To obtain information about the surrounding soft tissue, MPI is often used in combination with magnetic resonance imaging (MRI). For such application scenarios, this poses a challenge for phantom fabrication, as they need to accommodate MNP as well as provide MR visibility. Recently, layer-by-layer fabrication of parts using Additive Manufacturing (AM) has emerged as a powerful tool for creating complex and patient-specific phantoms, but these are characterized by poor MR visibility of the AM material. We present the systematic screening of AM materials as candidates for multimodal MRI/MPI imaging. Of all investigated materials, silicone (Dreve, Biotec) exhibited the best properties with sufficient MR-signal performance and the lowest absorption of MNP at the interface of AM materials. With the help of AM and the selection of appropriate materials, we have been able to produce suitable MRI/MPI phantoms.
Collapse
|
15
|
Harvell-Smith S, Tung LD, Thanh NTK. Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality. NANOSCALE 2022; 14:3658-3697. [PMID: 35080544 DOI: 10.1039/d1nr05670k] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging tracer-based modality that enables real-time three-dimensional imaging of the non-linear magnetisation produced by superparamagnetic iron oxide nanoparticles (SPIONs), in the presence of an external oscillating magnetic field. As a technique, it produces highly sensitive radiation-free tomographic images with absolute quantitation. Coupled with a high contrast, as well as zero signal attenuation at-depth, there are essentially no limitations to where that can be imaged within the body. These characteristics enable various biomedical applications of clinical interest. In the opening sections of this review, the principles of image generation are introduced, along with a detailed comparison of the fundamental properties of this technique with other common imaging modalities. The main feature is a presentation on the up-to-date literature for the development of SPIONs tailored for improved imaging performance, and developments in the current and promising biomedical applications of this emerging technique, with a specific focus on theranostics, cell tracking and perfusion imaging. Finally, we will discuss recent progress in the clinical translation of MPI. As signal detection in MPI is almost entirely dependent on the properties of the SPION employed, this work emphasises the importance of tailoring the synthetic process to produce SPIONs demonstrating specific properties and how this impacts imaging in particular applications and MPI's overall performance.
Collapse
Affiliation(s)
- Stanley Harvell-Smith
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Le Duc Tung
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| |
Collapse
|
16
|
Zhong X, Di Z, Xu Y, Liang Q, Feng K, Zhang Y, Di L, Wang R. Mineral medicine: from traditional drugs to multifunctional delivery systems. Chin Med 2022; 17:21. [PMID: 35144660 PMCID: PMC8830990 DOI: 10.1186/s13020-022-00577-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
Mineral drugs are an important constituent of traditional Chinese medicine (TCM). Taking minerals that contain heavy metals as drugs is a very national characteristic part of TCM. However, the safety and scientific nature of mineral drugs are controversial owing to their heavy metals and strong toxicity. In 2000, the Food and Drug Administration (FDA) authorized arsenic trioxide (ATO) as first-line therapy for acute promyelocytic leukemia. This makes the development and utilization of mineral drugs become a research hotspot. The development of nanomedicine has found a great prospect of mineral drugs in nano-delivery carriers. And that will hold promise to address the numerous biological barriers facing mineral drug formulations. However, the studies on mineral drugs in the delivery system are few at present. There is also a lack of a detailed description of mineral drug delivery systems. In this review, the advanced strategies of mineral drug delivery systems in tumor therapy are summarized. In addition, the therapeutic advantages and research progress of novel mineral drug delivery systems are also discussed. Here, we hope that this will provide a useful reference for the design and application of new mineral drug delivery systems.
Collapse
Affiliation(s)
- Xiaoqing Zhong
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Zhenning Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Yuanxin Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Qifan Liang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Kuanhan Feng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Yuting Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Liuqing Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China.
| | - Ruoning Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China.
| |
Collapse
|
17
|
Cao J, Lv P, Shu Y, Wang J. Aptamer/AuNPs encoders endow precise identification and discrimination of lipoprotein subclasses. Biosens Bioelectron 2022; 196:113743. [PMID: 34740115 DOI: 10.1016/j.bios.2021.113743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/29/2022]
Abstract
Lipoproteins are composed of lipid and apolipoproteins in conjunction with noncovalent bonds. Different lipoprotein categories, particularly Low-Density Lipoprotein (LDL), High-Density Lipoprotein (HDL) and Very Low-Density Lipoprotein (VLDL) disagree in roles for the occurrence and development of cardiovascular disease, and their exact discrimination are critically required. Herein, a multiplexed sensor platform combined with an encoder system is introduced for accurate analysis of multiple lipoproteins in complex matrix. Three encoders, i.e., bare AuNPs, AuNPs-anti-LDL aptamer (AuNPs-apt) and AuNPs-non-aptamer DNA (AuNPs-n), facilitate precise discrimination for lipoprotein subclasses at a fairly low level of 0.490 nM. The binding of single-stranded DNA (ssDNA) with AuNPs prevents them from gathering in a relatively higher level of salt. In targets stimuli, the weaker binding between ssDNA and AuNPs is destroyed to certain degrees depending on the differential affinities among DNA, AuNPs, and multifarious proteins. It results in distinct aggregation states of encoders to cause diverse ultraviolet absorption, which may be statistically characterized to achieve highly facile and precise identification for lipoprotein subclasses. Remarkably, LDL at 0.05-37.5 μg/mL could be identified by the encoder system. 11 typical proteins including three lipoprotein subclasses in human serum were also precisely discriminated. Furthermore, the accurate identification of lipoprotein subclasses with different molar ratios from real clinical serum samples were obtained.
Collapse
Affiliation(s)
- Jianfang Cao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Peiying Lv
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
18
|
Ludewig P, Graeser M, Forkert ND, Thieben F, Rández-Garbayo J, Rieckhoff J, Lessmann K, Förger F, Szwargulski P, Magnus T, Knopp T. Magnetic particle imaging for assessment of cerebral perfusion and ischemia. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1757. [PMID: 34617413 DOI: 10.1002/wnan.1757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 02/04/2023]
Abstract
Stroke is one of the leading worldwide causes of death and sustained disability. Rapid and accurate assessment of cerebral perfusion is essential to diagnose and successfully treat stroke patients. Magnetic particle imaging (MPI) is a new technology with the potential to overcome some limitations of established imaging modalities. It is an innovative and radiation-free imaging technique with high sensitivity, specificity, and superior temporal resolution. MPI enables imaging and diagnosis of stroke and other neurological pathologies such as hemorrhage, tumors, and inflammatory processes. MPI scanners also offer the potential for targeted therapies of these diseases. Due to lower field requirements, MPI scanners can be designed as resistive magnets and employed as mobile devices for bedside imaging. With these advantages, MPI could accelerate and improve the diagnosis and treatment of neurological disorders. This review provides a basic introduction to MPI, discusses its current use for stroke imaging, and addresses future applications, including the potential for clinical implementation. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Graeser
- Section for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany.,Fraunhofer Research Institute for Individualized and Cell-based Medicine, Lübeck, Germany.,Institute for Medical Engineering, University of Lübeck, Lübeck, Germany
| | - Nils D Forkert
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Florian Thieben
- Section for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
| | - Javier Rández-Garbayo
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna Rieckhoff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lessmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fynn Förger
- Section for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
| | - Patryk Szwargulski
- Section for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Knopp
- Section for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
19
|
Martins PM, Lima AC, Ribeiro S, Lanceros-Mendez S, Martins P. Magnetic Nanoparticles for Biomedical Applications: From the Soul of the Earth to the Deep History of Ourselves. ACS APPLIED BIO MATERIALS 2021; 4:5839-5870. [PMID: 35006927 DOI: 10.1021/acsabm.1c00440] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Precisely engineered magnetic nanoparticles (MNPs) have been widely explored for applications including theragnostic platforms, drug delivery systems, biomaterial/device coatings, tissue engineering scaffolds, performance-enhanced therapeutic alternatives, and even in SARS-CoV-2 detection strips. Such popularity is due to their unique, challenging, and tailorable physicochemical/magnetic properties. Given the wide biomedical-related potential applications of MNPs, significant achievements have been reached and published (exponentially) in the last five years, both in synthesis and application tailoring. Within this review, and in addition to essential works in this field, we have focused on the latest representative reports regarding the biomedical use of MNPs including characteristics related to their oriented synthesis, tailored geometry, and designed multibiofunctionality. Further, actual trends, needs, and limitations of magnetic-based nanostructures for biomedical applications will also be discussed.
Collapse
Affiliation(s)
- Pedro M Martins
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.,IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, Braga 4710-057, Portugal
| | - Ana C Lima
- Centre/Department of Physics, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Sylvie Ribeiro
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Centre/Department of Physics, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Senentxu Lanceros-Mendez
- 3BCMaterials, Basque Centre for Materials and Applications, UPV/EHU Science Park, Leioa 48940, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Pedro Martins
- IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, Braga 4710-057, Portugal.,Centre/Department of Physics, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| |
Collapse
|