1
|
Tsipoaka M, Rownaghi AA, Rezaei F. Mo 2N-Activated Metal Borohydride Nanocomposites for H 2 Storage. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23923-23936. [PMID: 40199725 DOI: 10.1021/acsami.5c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Metal hydrides play a pivotal role in advancing the hydrogen economy by providing a compact solution for onboard hydrogen storage. However, their practical application is hindered by undesirable side reactions and slow kinetics during hydrogen uptake and release. We present herein enhanced thermodynamics and kinetics of hydrogen uptake/release through the infiltration of lithium borohydride (LiBH4) into Mo2N-doped defective boron nitride (Mo2N-DBN) host. Density functional theory (DFT), Ab initio molecular dynamics (MD), and a wide array of experimental data suggested that the Mo2N-DBN host promotes proximity between the active sites of LiBH4, effectively preventing aggregation during sorption processes, thereby leading to a reversible hydrogen storage capacity of 10.80 wt % at 200 °C and 50 bar for LiBH4@Mo2N-DBN composite with minimal loss after five hydrogenation-dehydrogenation cycles. This marked an 84% enhancement over pure LiBH4 under identical conditions and represented the highest reported storage capacity among LiBH4-based composites to date. The Mo2N sites in the composite prevented direct melting transitions of LiBH4 and facilitated the weakening of H-H bonds, which in turn gave rise to fast dehydrogenation kinetics (Ea = 77.44 ± 0.02 kJ/mol). Additionally, analysis of hydrogenation-dehydrogenation energetics indicated that Li atoms are drawn from the LiBH4 cluster toward Mo2N sites, coordinating with N atoms and thereby promoting better interface stability. We anticipate the continuous formation of interfaces between Mo2N-DBN, LiH, and B, where rehydrogenation reactions can proceed efficiently, supported by the migration of H-containing species between bulk and interfacial regions.
Collapse
Affiliation(s)
- Maxwell Tsipoaka
- Department of Chemical, Environmental and Materials Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33124, United States
| | - Ali A Rownaghi
- National Energy Technology Laboratory (NETL), United States Department of Energy, Pittsburgh, Pennsylvania 15236-0940, United States
| | - Fateme Rezaei
- Department of Chemical, Environmental and Materials Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33124, United States
| |
Collapse
|
2
|
Wahab MA, Urooj I, Sohail M, Karim MR, Alnaser IA, Abdala A, Haque R. Advancing Catalysts by Nanoconfinement and Catalysis for Enhanced Hydrogen Production from Magnesium Borohydride: A Review. Chem Asian J 2024; 19:e202400174. [PMID: 38862390 DOI: 10.1002/asia.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Hydrogen storage in solid-state materials represents a promising avenue for advancing hydrogen storage technologies, driven by their potential for high efficiency, reduced risk, and cost-effectiveness. Among the employed materials, magnesium borohydride (Mg(BH4)2) stands out for its exceptional characteristics, with a gravimetric capacity of 14.9 wt% and a volumetric hydrogen density capacity of 146 kg/m3. However, the practical application of Mg(BH4)2 is impeded by challenges such as high desorption temperatures (≥ 270 °C), sluggish kinetics, poor reversibility, and the formation of unexpected byproducts like diborane. To address these limitations, extensive research efforts have been directed towards enhancing the hydrogen storage properties of Mg(BH4)2. Various strategies have been explored, including incorporating catalysts or additives, nanoconfinement of Mg(BH4)2 within porous supports, and modifications involving metal alloys and compositional adjustments. These approaches are actively under investigation for improving the performance of Mg(BH4)2-based hydrogen storage systems. This review provides a comprehensive survey of recent advancements in Mg(BH4)2 research, focusing on experimental findings related to nanoconfined Mg(BH4)2 and modified thermodynamic processes aimed at enabling hydrogen release at lower temperatures by mitigating sluggish kinetics. Precisely, nanostructuring techniques, catalyst-mediated nanoconfinement methodologies, and alloy/compositional modifications will be elucidated, highlighting their potential to enhance hydrogen storage properties and overcome existing limitations. Furthermore, this review also discusses the challenges encountered in utilizing Mg(BH4)2 for hydrogen storage applications and offers insights into the prospects of this material. By synthesizing the latest research findings and identifying areas for further exploration, this review aims to contribute to the ongoing efforts toward realizing the full potential of Mg(BH4)2 as a viable solution for hydrogen storage in diverse applications.
Collapse
Affiliation(s)
- Md A Wahab
- Energy and Process Engineering Laboratory, School of Mechanical, Medical, and Process Engineering, Faculty of Science and Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
- Chemical Engineering Program, Texas A&M University at Qatar, Education City, Doha, Qatar
| | - Ifra Urooj
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Mohammad Rezaul Karim
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh, 11421, Saudi Arabia
| | - Ibrahim A Alnaser
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh, 11421, Saudi Arabia
- Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Ahmed Abdala
- Chemical Engineering Program, Texas A&M University at Qatar, Education City, Doha, Qatar
| | - Rezwanul Haque
- School of Science, Technology and Engineering, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
3
|
Chakraborty R, Talbot JJ, Shen H, Yabuuchi Y, Carsch KM, Jiang HZH, Furukawa H, Long JR, Head-Gordon M. Quantum chemical modeling of hydrogen binding in metal-organic frameworks: validation, insight, predictions and challenges. Phys Chem Chem Phys 2024; 26:6490-6511. [PMID: 38324335 DOI: 10.1039/d3cp05540j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A detailed chemical understanding of H2 interactions with binding sites in the nanoporous crystalline structure of metal-organic frameworks (MOFs) can lay a sound basis for the design of new sorbent materials. Computational quantum chemical calculations can aid in this quest. To set the stage, we review general thermodynamic considerations that control the usable storage capacity of a sorbent. We then discuss cluster modeling of H2 ligation at MOF binding sites using state-of-the-art density functional theory (DFT) calculations, and how the binding can be understood using energy decomposition analysis (EDA). Employing these tools, we illustrate the connections between the character of the MOF binding site and the associated adsorption thermodynamics using four experimentally characterized MOFs, highlighting the role of open metal sites (OMSs) in accessing binding strengths relevant to room temperature storage. The sorbents are MOF-5, with no open metal sites, Ni2(m-dobdc), containing Lewis acidic Ni(II) sites, Cu(I)-MFU-4l, containing π basic Cu(I) sites and V2Cl2.8(btdd), also containing π-basic V(II) sites. We next explore the potential for binding multiple H2 molecules at a single metal site, with thermodynamics useful for storage at ambient temperature; a materials design goal which has not yet been experimentally demonstrated. Computations on Ca2+ or Mg2+ bound to catecholate or Ca2+ bound to porphyrin show the potential for binding up to 4 H2; there is precedent for the inclusion of both catecholate and porphyrin motifs in MOFs. Turning to transition metals, we discuss the prediction that two H2 molecules can bind at V(II)-MFU-4l, a material that has been synthesized with solvent coordinated to the V(II) site. Additional calculations demonstrate binding three equivalents of hydrogen per OMS in Sc(I) or Ti(I)-exchanged MFU-4l. Overall, the results suggest promising prospects for experimentally realizing higher capacity hydrogen storage MOFs, if nontrivial synthetic and desolvation challenges can be overcome. Coupled with the unbounded chemical diversity of MOFs, there is ample scope for additional exploration and discovery.
Collapse
Affiliation(s)
- Romit Chakraborty
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Justin J Talbot
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Hengyuan Shen
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Yuto Yabuuchi
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Kurtis M Carsch
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Henry Z H Jiang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Hiroyasu Furukawa
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Jeffrey R Long
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Department of Chemical and Biomedical Engineering, University of California, Berkeley, CA 94720, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Pantaleone S, Albanese E, Donà L, Corno M, Baricco M, Civalleri B. Theoretical prediction of nanosizing effects and role of additives in the decomposition of Mg(BH 4) 2. RSC Adv 2024; 14:6398-6409. [PMID: 38380234 PMCID: PMC10877581 DOI: 10.1039/d3ra08710g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
The energetic transition towards renewable resources is one of the biggest challenges of this century. In this context, the role of H2 is of paramount importance as a key source of energy that could substitute traditional fossil fuels. This technology, even if available in several manufactures, still needs to be optimized at all levels (production, storage and distribution) to be integrated on a larger scale. Among materials suitable to store H2, Mg(BH4)2 is particularly interesting due to its high content of H2 in terms of gravimetric density. Nanosizing effects and role of additives in the decomposition of Mg(BH4)2 were studied by density functional theory (DFT) modelling. Both effects were analyzed because of their contribution in promoting the decomposition of the material. In particular, to have a quantitative idea of nanosizing effects, we used thin film 2D models corresponding to different crystallographic surfaces and referred to the following reaction: Mg(BH4)2 → MgB2 + 4H2. When moving from bulk to nanoscale (2D models), a remarkable decrease in the decomposition energy (10-20 kJ mol-1) was predicted depending on the surface and the thin film thickness considered. As regards the role of additives (Ni and Cu), we based our analysis on their effect in perturbing neighboring borohydride groups. We found a clear elongation of some B-H bonds, in particular with the NiF2 additive (about 0.1 Å). We interpreted this behavior as an indicator of the propensity of borohydride towards dissociation. On the basis of this evidence, we also explored a possible reaction pathway of NiF2 and CuF2 on Mg(BH4)2 up to H2 release and pointed out the major catalytic effect of Ni compared to Cu.
Collapse
Affiliation(s)
- Stefano Pantaleone
- Dipartimento di Chimica and NIS Interdepartmental Centre, Università degli Studi di Torino via P. Giuria 7 10125 Torino Italy
| | - Elisa Albanese
- Dipartimento di Chimica and NIS Interdepartmental Centre, Università degli Studi di Torino via P. Giuria 7 10125 Torino Italy
| | - Lorenzo Donà
- Dipartimento di Chimica and NIS Interdepartmental Centre, Università degli Studi di Torino via P. Giuria 7 10125 Torino Italy
| | - Marta Corno
- Dipartimento di Chimica and NIS Interdepartmental Centre, Università degli Studi di Torino via P. Giuria 7 10125 Torino Italy
| | - Marcello Baricco
- Dipartimento di Chimica and NIS Interdepartmental Centre, Università degli Studi di Torino via P. Giuria 7 10125 Torino Italy
| | - Bartolomeo Civalleri
- Dipartimento di Chimica and NIS Interdepartmental Centre, Università degli Studi di Torino via P. Giuria 7 10125 Torino Italy
| |
Collapse
|
5
|
Wang Y, Xue Y, Züttel A. Nanoscale engineering of solid-state materials for boosting hydrogen storage. Chem Soc Rev 2024; 53:972-1003. [PMID: 38111973 DOI: 10.1039/d3cs00706e] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The development of novel materials capable of securely storing hydrogen at high volumetric and gravimetric densities is a requirement for the wide-scale usage of hydrogen as an energy carrier. In recent years, great efforts via nanoscale tuning and designing strategies on both physisorbents and chemisorbents have been devoted to improvements in their thermodynamic and kinetic aspects. Increasing the hydrogen storage capacity/density for physisorbents and chemisorbents and improving the dehydrogenation kinetics of hydrides are still considered a challenge. The extensive and fast development of advanced nanotechnologies has fueled a surge in research that presents huge potential in designing solid-state materials to meet the ultimate U.S. Department of Energy capacity targets for onboard light-duty vehicles, material-handling equipments, and portable power applications. Different from the existing literature, in this review, particular attention is paid to the recent advances in nanoscale engineering of solid-state materials for boosting hydrogen storage, especially the nanoscale tuning and designing strategies. We first present a short overview of hydrogen storage mechanisms of nanoscale engineering for boosted hydrogen storage performance on solid-state materials, for example, hydrogen spillover, nanopump effect, nanosize effect, nanocatalysis, and other non-classical hydrogen storage mechanisms. Then, the focus is on recent advancements in nanoscale engineering strategies aimed at enhancing the gravimetric hydrogen storage capacity of porous materials, reducing dehydrogenation temperature and improving reaction kinetics and reversibility of hydrogen desorption/absorption for metal hydrides. Effective nanoscale tuning strategies for enhancing the hydrogen storage performance of porous materials include optimizing surface area and pore volume, fine-tuning nanopore sizes, introducing nanostructure doping, and crafting nanoarchitecture and nanohybrid materials. For metal hydrides, successful strategies involve nanoconfinement, nanosizing, and the incorporation of nanocatalysts. This review further addresses the points to future research directions in the hope of ushering in the practical applications of hydrogen storage materials.
Collapse
Affiliation(s)
- Yunting Wang
- Institute of Chemical Sciences and Engineering, École polytechnique fédérale de Lausanne (EPFL), CH-1950 Sion, Switzerland.
- Empa Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Yudong Xue
- Institute of Chemical Sciences and Engineering, École polytechnique fédérale de Lausanne (EPFL), CH-1950 Sion, Switzerland.
| | - Andreas Züttel
- Institute of Chemical Sciences and Engineering, École polytechnique fédérale de Lausanne (EPFL), CH-1950 Sion, Switzerland.
- Empa Materials Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
6
|
Sugar JD, Vitale SM, Shivanna M, Stavila V. TEM Sample Preparation and Microstructural Characterization of Air Sensitive, µm-scale, Infiltrated MOF-Based Particles. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:509-510. [PMID: 37613059 DOI: 10.1093/micmic/ozad067.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
| | - Suzy M Vitale
- Carnegie Institution for Science, Washington, D.C., USA
| | | | | |
Collapse
|
7
|
Christian MS, Nenoff TM, Rimsza JM. Effect of Linker Structure and Functionalization on Secondary Gas Formation in Metal-Organic Frameworks. J Phys Chem A 2023; 127:2881-2888. [PMID: 36947182 DOI: 10.1021/acs.jpca.2c07751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Rare-earth terephthalic acid (BDC)-based metal-organic frameworks (MOFs) are promising candidate materials for acid gas separation and adsorption from flue gas streams. However, previous simulations have shown that acid gases (H2O, NO2, and SO2) react with the hydroxyl on the BDC linkers to form protonated acid gases as a potential degradation mechanism. Herein, gas-phase computational approaches were used to identify the formation energies of these secondary protonated acid gases across multiple BDC linker molecules. Formation energies for secondary protonated acid gases were evaluated using both density functional theory (DFT) and correlated wave function methods for varying BDC-gas reaction mechanisms. Upon validation of DFT to reproduce wave function calculation results, rotated conformational linkers and chemically functionalized BDC linkers with -OH, -NH2, and -SH were investigated. The calculations show that the rotational conformation affects the molecule stability. Double-functionalized BDC linkers, where two functional groups are substituted onto BDC, showed varied reaction energies depending on whether the functional groups donate or withdraw electrons from the aromatic system. Based on these results, BDC linker design must balance adsorption performance with degradation via linker dehydrogenation for the design of stable MOFs for acid gas separations.
Collapse
Affiliation(s)
- Matthew S Christian
- Geochemistry Department, Sandia National Laboratories, P.O. Box 5800, Eubank Boulevard SE, Albuquerque, New Mexico 87185, United States
| | - Tina M Nenoff
- Advanced Science & Technology, Sandia National Laboratories, P.O. Box 5800, Eubank Boulevard SE, Albuquerque, New Mexico 87185, United States
| | - Jessica M Rimsza
- Geochemistry Department, Sandia National Laboratories, P.O. Box 5800, Eubank Boulevard SE, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
8
|
Gunda H, Ray KG, Klebanoff LE, Dun C, Marple MAT, Li S, Sharma P, Friddle RW, Sugar JD, Snider JL, Horton RD, Davis BC, Chames JM, Liu YS, Guo J, Mason HE, Urban JJ, Wood BC, Allendorf MD, Jasuja K, Stavila V. Hydrogen Storage in Partially Exfoliated Magnesium Diboride Multilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205487. [PMID: 36470595 DOI: 10.1002/smll.202205487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Metal boride nanostructures have shown significant promise for hydrogen storage applications. However, the synthesis of nanoscale metal boride particles is challenging because of their high surface energy, strong inter- and intraplanar bonding, and difficult-to-control surface termination. Here, it is demonstrated that mechanochemical exfoliation of magnesium diboride in zirconia produces 3-4 nm ultrathin MgB2 nanosheets (multilayers) in high yield. High-pressure hydrogenation of these multilayers at 70 MPa and 330 °C followed by dehydrogenation at 390 °C reveals a hydrogen capacity of 5.1 wt%, which is ≈50 times larger than the capacity of bulk MgB2 under the same conditions. This enhancement is attributed to the creation of defective sites by ball-milling and incomplete Mg surface coverage in MgB2 multilayers, which disrupts the stable boron-boron ring structure. The density functional theory calculations indicate that the balance of Mg on the MgB2 nanosheet surface changes as the material hydrogenates, as it is energetically favorable to trade a small number of Mg vacancies in Mg(BH4 )2 for greater Mg coverage on the MgB2 surface. The exfoliation and creation of ultrathin layers is a promising new direction for 2D metal boride/borohydride research with the potential to achieve high-capacity reversible hydrogen storage at more moderate pressures and temperatures.
Collapse
Affiliation(s)
- Harini Gunda
- Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA
- Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Keith G Ray
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | | | - Chaochao Dun
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Maxwell A T Marple
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Sichi Li
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Peter Sharma
- Sandia National Laboratories, 1515 Eubank SE, Albuquerque, NM, 87185, USA
| | - Raymond W Friddle
- Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA
| | - Joshua D Sugar
- Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA
| | - Jonathan L Snider
- Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA
| | - Robert D Horton
- Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA
| | - Brendan C Davis
- Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA
| | - Jeffery M Chames
- Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA
| | - Yi-Sheng Liu
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jinghua Guo
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Harris E Mason
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Jeffrey J Urban
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Brandon C Wood
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Mark D Allendorf
- Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA
| | - Kabeer Jasuja
- Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Vitalie Stavila
- Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA
| |
Collapse
|
9
|
Comanescu C. Paving the Way to the Fuel of the Future-Nanostructured Complex Hydrides. Int J Mol Sci 2022; 24:143. [PMID: 36613588 PMCID: PMC9820751 DOI: 10.3390/ijms24010143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Hydrides have emerged as strong candidates for energy storage applications and their study has attracted wide interest in both the academic and industry sectors. With clear advantages due to the solid-state storage of hydrogen, hydrides and in particular complex hydrides have the ability to tackle environmental pollution by offering the alternative of a clean energy source: hydrogen. However, several drawbacks have detracted this material from going mainstream, and some of these shortcomings have been addressed by nanostructuring/nanoconfinement strategies. With the enhancement of thermodynamic and/or kinetic behavior, nanosized complex hydrides (borohydrides and alanates) have recently conquered new estate in the hydrogen storage field. The current review aims to present the most recent results, many of which illustrate the feasibility of using complex hydrides for the generation of molecular hydrogen in conditions suitable for vehicular and stationary applications. Nanostructuring strategies, either in the pristine or nanoconfined state, coupled with a proper catalyst and the choice of host material can potentially yield a robust nanocomposite to reliably produce H2 in a reversible manner. The key element to tackle for current and future research efforts remains the reproducible means to store H2, which will build up towards a viable hydrogen economy goal. The most recent trends and future prospects will be presented herein.
Collapse
Affiliation(s)
- Cezar Comanescu
- National Institute of Materials Physics, 405A Atomiștilor Str., 77125 Magurele, Romania;
- Faculty of Physics, University of Bucharest, 405, Atomiștilor Str., 77125 Magurele, Romania
| |
Collapse
|
10
|
A carbon monoxide releasing metal organic framework nanoplatform for synergistic treatment of triple-negative breast tumors. J Nanobiotechnology 2022; 20:494. [PMID: 36424645 PMCID: PMC9685850 DOI: 10.1186/s12951-022-01704-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Carbon monoxide (CO) is an important signaling molecule participating in multiple biological functions. Previous studies have confirmed the valuable roles of CO in cancer therapies. If the CO concentration and distribution can be controlled in tumors, new cancer therapeutic strategy may be developed to benefit the patient survival. RESULTS In this study, a UiO-67 type metal-organic framework (MOF) nanoplatform was produced with cobalt and ruthenium ions incorporated into its structure (Co/Ru-UiO-67). Co/Ru-UiO-67 had a size range of 70-90 nm and maintained the porous structure, with cobalt and ruthenium distributed uniformly inside. Co/Ru-UiO-67 was able to catalyze carbon dioxide into CO upon light irradiation in an efficient manner with a catalysis speed of 5.6 nmol/min per 1 mg Co/Ru-UiO-67. Due to abnormal metabolic properties of tumor cells, tumor microenvironment usually contains abundant amount of CO2. Co/Ru-UiO-67 can transform tumor CO2 into CO at both cellular level and living tissues, which consequently interacts with relevant signaling pathways (e.g. Notch-1, MMPs etc.) to adjust tumor microenvironment. With proper PEGylation (pyrene-polyacrylic acid-polyethylene glycol, Py-PAA-PEG) and attachment of a tumor-homing peptide (F3), functionalized Co/Ru-UiO-67 could accumulate strongly in triple-negative MDA-MB-231 breast tumors, witnessed by positron emission tomography (PET) imaging after the addition of radioactive zirconium-89 (89Zr) into Co-UiO-67. When applied in vivo, Co/Ru-UiO-67 could alter the local hypoxic condition of MDA-MB-231 tumors, and work synergistically with tirapazamine (TPZ). CONCLUSION This nanoscale UiO-67 MOF platform can further our understanding of CO functions while produce CO in a controllable manner during cancer therapeutic administration.
Collapse
|
11
|
Chakraborty R, Carsch KM, Jaramillo DE, Yabuuchi Y, Furukawa H, Long JR, Head-Gordon M. Prediction of Multiple Hydrogen Ligation at a Vanadium(II) Site in a Metal-Organic Framework. J Phys Chem Lett 2022; 13:10471-10478. [PMID: 36326596 DOI: 10.1021/acs.jpclett.2c02844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Densifying hydrogen in a metal-organic framework (MOF) at moderate pressures can circumvent challenges associated with high-pressure compression. The highly tunable structural and chemical composition in MOFs affords vast possibilities to optimize binding interactions. At the heart of this search are the nanoscale characteristics of molecular adsorption at the binding site(s). Using density functional theory (DFT) to model binding interactions of hydrogen to the exposed metal site of cation-exchanged MFU-4l, we predict multiple hydrogen ligation of H2 at the first coordination sphere of V(II) in V(II)-exchanged MFU-4l. We find that the strength of this binding between the metal site and H2 molecules can be tuned by altering the halide counterion adjacent to the metal site and that the fluoride containing node affords the most favorable interactions for high-density H2 storage. Using energy decomposition analysis, we delineate electronic contributions that enable multiple hydrogen ligation and demonstrate its benefits for hydrogen adsorption and release at modest pressures.
Collapse
Affiliation(s)
- Romit Chakraborty
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Kurtis M Carsch
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemistry, University of California, Berkeley, California94720, United States
| | - David E Jaramillo
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Yuto Yabuuchi
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Hiroyasu Furukawa
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Jeffrey R Long
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemistry, University of California, Berkeley, California94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemical and Biomedical Engineering, University of California, Berkeley, California94720, United States
| | - Martin Head-Gordon
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemistry, University of California, Berkeley, California94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| |
Collapse
|
12
|
Christian MS, Nenoff TM, Rimsza JM. Discovery of Complex Binding and Reaction Mechanisms from Ternary Gases in Rare Earth Metal–Organic Frameworks. Chemistry 2022; 28:e202201926. [DOI: 10.1002/chem.202201926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 11/05/2022]
Affiliation(s)
| | - Tina M. Nenoff
- Material, Chemical, and Physical Sciences Sandia National Laboratories Albuquerque NM 87123 USA
| | - Jessica M. Rimsza
- Geochemistry Department Sandia National Laboratories Albuquerque NM 87123 USA
| |
Collapse
|
13
|
Comanescu C. Recent Development in Nanoconfined Hydrides for Energy Storage. Int J Mol Sci 2022; 23:7111. [PMID: 35806115 PMCID: PMC9267122 DOI: 10.3390/ijms23137111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogen is the ultimate vector for a carbon-free, sustainable green-energy. While being the most promising candidate to serve this purpose, hydrogen inherits a series of characteristics making it particularly difficult to handle, store, transport and use in a safe manner. The researchers' attention has thus shifted to storing hydrogen in its more manageable forms: the light metal hydrides and related derivatives (ammonia-borane, tetrahydridoborates/borohydrides, tetrahydridoaluminates/alanates or reactive hydride composites). Even then, the thermodynamic and kinetic behavior faces either too high energy barriers or sluggish kinetics (or both), and an efficient tool to overcome these issues is through nanoconfinement. Nanoconfined energy storage materials are the current state-of-the-art approach regarding hydrogen storage field, and the current review aims to summarize the most recent progress in this intriguing field. The latest reviews concerning H2 production and storage are discussed, and the shift from bulk to nanomaterials is described in the context of physical and chemical aspects of nanoconfinement effects in the obtained nanocomposites. The types of hosts used for hydrogen materials are divided in classes of substances, the mean of hydride inclusion in said hosts and the classes of hydrogen storage materials are presented with their most recent trends and future prospects.
Collapse
Affiliation(s)
- Cezar Comanescu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania;
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1 Polizu St., 011061 Bucharest, Romania
- Faculty of Physics, University of Bucharest, Atomiștilor 405, 077125 Magurele, Romania
| |
Collapse
|
14
|
|
15
|
Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y, Syed ZH, Delferro M, Notestein JM, Farha OK, Hupp JT. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 2022; 51:1045-1097. [PMID: 35005751 DOI: 10.1039/d1cs00968k] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Timothy A Goetjen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Qining Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Megan C Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Zoha H Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
16
|
Wychowaniec JK, Saini H, Scheibe B, Dubal DP, Schneemann A, Jayaramulu K. Hierarchical porous metal–organic gels and derived materials: from fundamentals to potential applications. Chem Soc Rev 2022; 51:9068-9126. [DOI: 10.1039/d2cs00585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes recent progress in the development and applications of metal–organic gels (MOGs) and their hybrids and derivatives dividing them into subclasses and discussing their synthesis, design and structure–property relationship.
Collapse
Affiliation(s)
- Jacek K. Wychowaniec
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Haneesh Saini
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| | - Błażej Scheibe
- Adam Mickiewicz University in Poznań, NanoBioMedical Centre, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland
| | - Deepak P. Dubal
- School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Andreas Schneemann
- Lehrstuhl für Anorganische Chemie I, Technische Universität Dresden, Bergstr. 66, 01067 Dresden, Germany
| | - Kolleboyina Jayaramulu
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| |
Collapse
|
17
|
Stavila V, Li S, Dun C, Marple MAT, Mason HE, Snider JL, Reynolds JE, El Gabaly F, Sugar JD, Spataru CD, Zhou X, Dizdar B, Majzoub EH, Chatterjee R, Yano J, Schlomberg H, Lotsch BV, Urban JJ, Wood BC, Allendorf MD. Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Vitalie Stavila
- Sandia National Laboratories 7011 East Avenue Livermore CA 94550 USA
| | - Sichi Li
- Lawrence Livermore National Laboratory 7000 East Avenue Livermore CA 94550 USA
| | - Chaochao Dun
- Lawrence Berkeley National Laboratory 1 Cyclotron Rd Berkeley CA 94720 USA
| | | | - Harris E. Mason
- Lawrence Livermore National Laboratory 7000 East Avenue Livermore CA 94550 USA
| | | | | | - Farid El Gabaly
- Sandia National Laboratories 7011 East Avenue Livermore CA 94550 USA
| | - Joshua D. Sugar
- Sandia National Laboratories 7011 East Avenue Livermore CA 94550 USA
| | | | - Xiaowang Zhou
- Sandia National Laboratories 7011 East Avenue Livermore CA 94550 USA
| | - Brennan Dizdar
- University of Missouri—St. Louis Department of Physics and Astronomy One University Blvd St. Louis MO 63121 USA
- University of Chicago Chicago IL 60637 USA
| | - Eric H. Majzoub
- University of Missouri—St. Louis Department of Physics and Astronomy One University Blvd St. Louis MO 63121 USA
| | - Ruchira Chatterjee
- Lawrence Berkeley National Laboratory 1 Cyclotron Rd Berkeley CA 94720 USA
| | - Junko Yano
- Lawrence Berkeley National Laboratory 1 Cyclotron Rd Berkeley CA 94720 USA
| | - Hendrik Schlomberg
- Max-Planck-Institut für Festkörperforschung Heisenbergstraße 1 70569 Stuttgart Germany
- University of Munich (LMU) Department of Chemistry Butenandtstraße 5–13 81377 München Germany
| | - Bettina V. Lotsch
- Max-Planck-Institut für Festkörperforschung Heisenbergstraße 1 70569 Stuttgart Germany
- University of Munich (LMU) Department of Chemistry Butenandtstraße 5–13 81377 München Germany
| | - Jeffrey J. Urban
- Lawrence Berkeley National Laboratory 1 Cyclotron Rd Berkeley CA 94720 USA
| | - Brandon C. Wood
- Lawrence Livermore National Laboratory 7000 East Avenue Livermore CA 94550 USA
| | - Mark D. Allendorf
- Sandia National Laboratories 7011 East Avenue Livermore CA 94550 USA
| |
Collapse
|
18
|
Stavila V, Li S, Dun C, Marple MAT, Mason HE, Snider JL, Reynolds JE, El Gabaly F, Sugar JD, Spataru CD, Zhou X, Dizdar B, Majzoub EH, Chatterjee R, Yano J, Schlomberg H, Lotsch BV, Urban JJ, Wood BC, Allendorf MD. Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage. Angew Chem Int Ed Engl 2021; 60:25815-25824. [PMID: 34459093 DOI: 10.1002/anie.202107507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/02/2021] [Indexed: 11/09/2022]
Abstract
The highly unfavorable thermodynamics of direct aluminum hydrogenation can be overcome by stabilizing alane within a nanoporous bipyridine-functionalized covalent triazine framework (AlH3 @CTF-bipyridine). This material and the counterpart AlH3 @CTF-biphenyl rapidly desorb H2 between 95 and 154 °C, with desorption complete at 250 °C. Sieverts measurements, 27 Al MAS NMR and 27 Al{1 H} REDOR experiments, and computational spectroscopy reveal that AlH3 @CTF-bipyridine dehydrogenation is reversible at 60 °C under 700 bar hydrogen, >10 times lower pressure than that required to hydrogenate bulk aluminum. DFT calculations and EPR measurements support an unconventional mechanism whereby strong AlH3 binding to bipyridine results in single-electron transfer to form AlH2 (AlH3 )n clusters. The resulting size-dependent charge redistribution alters the dehydrogenation/rehydrogenation thermochemistry, suggesting a novel strategy to enable reversibility in high-capacity metal hydrides.
Collapse
Affiliation(s)
- Vitalie Stavila
- Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA
| | - Sichi Li
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Chaochao Dun
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Maxwell A T Marple
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Harris E Mason
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Jonathan L Snider
- Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA
| | - Joseph E Reynolds
- Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA
| | - Farid El Gabaly
- Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA
| | - Joshua D Sugar
- Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA
| | - Catalin D Spataru
- Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA
| | - Xiaowang Zhou
- Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA
| | - Brennan Dizdar
- University of Missouri-St. Louis, Department of Physics and Astronomy, One University Blvd, St. Louis, MO, 63121, USA.,University of Chicago, Chicago, IL, 60637, USA
| | - Eric H Majzoub
- University of Missouri-St. Louis, Department of Physics and Astronomy, One University Blvd, St. Louis, MO, 63121, USA
| | - Ruchira Chatterjee
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Junko Yano
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Hendrik Schlomberg
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569, Stuttgart, Germany.,University of Munich (LMU), Department of Chemistry, Butenandtstraße 5-13, 81377, München, Germany
| | - Bettina V Lotsch
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569, Stuttgart, Germany.,University of Munich (LMU), Department of Chemistry, Butenandtstraße 5-13, 81377, München, Germany
| | - Jeffrey J Urban
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Brandon C Wood
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Mark D Allendorf
- Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA
| |
Collapse
|
19
|
Destabilization of Boron-Based Compounds for Hydrogen Storage in the Solid-State: Recent Advances. ENERGIES 2021. [DOI: 10.3390/en14217003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Boron-based materials have been widely studied for hydrogen storage applications. Examples of these compounds are borohydrides and boranes. However, all of these present some disadvantages that have hindered their potential application as hydrogen storage materials in the solid-state. Thus, different strategies have been developed to improve the dehydrogenation properties of these materials. The purpose of this review is to provide an overview of recent advances (for the period 2015–2021) in the destabilization strategies that have been considered for selected boron-based compounds. With this aim, we selected seven of the most investigated boron-based compounds for hydrogen storage applications: lithium borohydride, sodium borohydride, magnesium borohydride, calcium borohydride, ammonia borane, hydrazine borane and hydrazine bisborane. The destabilization strategies include the use of additives, the chemical modification and the nanosizing of these compounds. These approaches were analyzed for each one of the selected boron-based compounds and these are discussed in the present review.
Collapse
|
20
|
Xu H, Guo J, Yang L, Gao Z, Song YY. Construction of Peroxidase-like Metal-Organic Frameworks in TiO 2 Nanochannels: Robust Free-Standing Membranes for Diverse Target Sensing. Anal Chem 2021; 93:9486-9494. [PMID: 34170111 DOI: 10.1021/acs.analchem.1c01287] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The high cost and easy denaturation of natural enzymes under environmental conditions hinder their practical usefulness in sensing devices. In this study, peroxidase (POD)-like metal-organic frameworks (MOFs) were in situ grown in the nanochannels of an anodized TiO2 membrane (TiO2NM) as an electrochemical platform for multitarget sensing. By directly using a nanochannel wall as the precursor of metal nodes, Ti-MOFs were in situ derived on the nanochannel wall. Benefitting from the presence of bipyridine groups on the ligands, the MOFs in the nanochannels provide plenty of sites for Fe3+ anchoring, thus endowing the resulting membrane (named as Fe3+:MOFs/TiO2NM) with remarkable POD-like activity. Such Fe3+-induced POD-like activity is very sensitive to thiol-containing molecules owing to the strong coordination effect of thiols on Fe3+. Most importantly, the POD-like activity of nanochannels can be in situ characterized by the current-potential (I-V) properties via catalyzing the oxidation of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) substrate to the corresponding positively charged product ABTS•+. As a proof-of-concept application, the free-standing POD-like membranes were applied as a label-free assay in sensing cysteine, as well as monitoring acetylcholinesterase (AChE) activity through the generated thiol-containing product. Furthermore, based on the toxicity effect of organophosphorus (OP) compounds on AChE, the robust membranes were successfully utilized to evaluate the toxicity of diverse OP compounds. The POD-like nanochannels open up an innovative way to expand the application of nanochannel-based electrochemical sensing platforms in drug inspection, food safety, and environmental pollution.
Collapse
Affiliation(s)
- Huijie Xu
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Junli Guo
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Lingling Yang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|
21
|
Cho Y, Li S, Snider JL, Marple MAT, Strange NA, Sugar JD, El Gabaly F, Schneemann A, Kang S, Kang MH, Park H, Park J, Wan LF, Mason HE, Allendorf MD, Wood BC, Cho ES, Stavila V. Reversing the Irreversible: Thermodynamic Stabilization of LiAlH 4 Nanoconfined Within a Nitrogen-Doped Carbon Host. ACS NANO 2021; 15:10163-10174. [PMID: 34029480 DOI: 10.1021/acsnano.1c02079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A general problem when designing functional nanomaterials for energy storage is the lack of control over the stability and reactivity of metastable phases. Using the high-capacity hydrogen storage candidate LiAlH4 as an exemplar, we demonstrate an alternative approach to the thermodynamic stabilization of metastable metal hydrides by coordination to nitrogen binding sites within the nanopores of N-doped CMK-3 carbon (NCMK-3). The resulting LiAlH4@NCMK-3 material releases H2 at temperatures as low as 126 °C with full decomposition below 240 °C, bypassing the usual Li3AlH6 intermediate observed in bulk. Moreover, >80% of LiAlH4 can be regenerated under 100 MPa H2, a feat previously thought to be impossible. Nitrogen sites are critical to these improvements, as no reversibility is observed with undoped CMK-3. Density functional theory predicts a drastically reduced Al-H bond dissociation energy and supports the observed change in the reaction pathway. The calculations also provide a rationale for the solid-state reversibility, which derives from the combined effects of nanoconfinement, Li adatom formation, and charge redistribution between the metal hydride and the host.
Collapse
Affiliation(s)
- YongJun Cho
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
- Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sichi Li
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Jonathan L Snider
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Maxwell A T Marple
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Nicholas A Strange
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Joshua D Sugar
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Farid El Gabaly
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Andreas Schneemann
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Sungsu Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Ho Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Hayoung Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Liwen F Wan
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Harris E Mason
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Mark D Allendorf
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Brandon C Wood
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Eun Seon Cho
- Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Vitalie Stavila
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| |
Collapse
|
22
|
Hahn NT, Self J, Han KS, Murugesan V, Mueller KT, Persson KA, Zavadil KR. Quantifying Species Populations in Multivalent Borohydride Electrolytes. J Phys Chem B 2021; 125:3644-3652. [PMID: 33797900 DOI: 10.1021/acs.jpcb.1c00263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multivalent batteries represent an important beyond Li-ion energy storage concept. The prospect of calcium batteries, in particular, has emerged recently due to novel electrolyte demonstrations, especially that of a ground-breaking combination of the borohydride salt Ca(BH4)2 dissolved in tetrahydrofuran. Recent analysis of magnesium and calcium versions of this electrolyte led to the identification of divergent speciation pathways for Mg2+ and Ca2+ despite identical anions and solvents, owing to differences in cation size and attendant flexibility of coordination. To test these proposed speciation equilibria and develop a more quantitative understanding thereof, we have applied pulsed-field-gradient nuclear magnetic resonance and dielectric relaxation spectroscopy to study these electrolytes. Concentration-dependent variation in anion diffusivities and solution dipole relaxations, interpreted with the aid of molecular dynamics simulations, confirms these divergent Mg2+ and Ca2+ speciation pathways. These results provide a more quantitative description of the electroactive species populations. We find that these species are present in relatively small quantities, even in the highly active Ca(BH4)2/tetrahydrofuran electrolyte. This finding helps interpret previous characterizations of metal deposition efficiency and morphology control and thus provides important fundamental insight into the dynamic properties of multivalent electrolytes for next-generation batteries.
Collapse
Affiliation(s)
- Nathan T Hahn
- Joint Center for Energy Storage Research, Lemont, Illinois 60439, United States.,Material, Physical and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Julian Self
- Joint Center for Energy Storage Research, Lemont, Illinois 60439, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.,Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kee Sung Han
- Joint Center for Energy Storage Research, Lemont, Illinois 60439, United States.,Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Vijayakumar Murugesan
- Joint Center for Energy Storage Research, Lemont, Illinois 60439, United States.,Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Karl T Mueller
- Joint Center for Energy Storage Research, Lemont, Illinois 60439, United States.,Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kristin A Persson
- Joint Center for Energy Storage Research, Lemont, Illinois 60439, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin R Zavadil
- Joint Center for Energy Storage Research, Lemont, Illinois 60439, United States.,Material, Physical and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
23
|
Simulation of nanosizing effects in the decomposition of Ca(BH4)2 through atomistic thin film models. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04326-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|