1
|
Ghosal M, Mondal S, Ghosh T, Prusty D, Senapati D. Core-to-Shell Thickness-Regulated Ag@Au Nanocatalyst for LSPR-Improved In Situ Detection of Extracellular Peroxide: Response in a Cancer Cell. Anal Chem 2025; 97:7651-7661. [PMID: 39983018 DOI: 10.1021/acs.analchem.4c04651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
In the current study, we designed a unique core-to-shell thickness-regulated Ag@Au nanocatalyst (CSNPs) for H2O2-induced selective oxidative etching of core silver. Synthesized CSNPs exhibit high colloidal stability and demonstrate a significant localized surface plasmon resonance (LSPR) effect in the biological window. These unique properties in turn allow us to formulate a unique CSNP-based LSPR-induced electrochemical detection assay for selective trace-level sensing of H2O2 in vitro. Conceptually, we utilized LSPR to amplify the electrochemical signals by inducing the generation of hot electrons and hot holes, which can be harnessed for catalytic purposes. Here, the Au shell acts as a supplier of the hot electron for enhanced catalytic reduction of H2O2 where the free electron of the Au shell is subsidized by the Ag core by its subsequent oxidation. The combination of high LSPR property, stability, and efficient binding property makes these NPs not only a surface-enhanced Raman scattering (SERS) enhancer but also a promising electrocatalyst for biomolecule detection, which emphasizes the significant potential of these engineered nanomaterials in various applications.
Collapse
Affiliation(s)
- Manorama Ghosal
- Chemical Sciences Division, Homi Bhabha National Institute, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata 700064, India
| | - Subrata Mondal
- Department of Chemistry, Dinhata College, Dinhata, Cooch Behar 736135, India
| | - Tanmay Ghosh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis # 08-03, Singapore 138634, Republic of Singapore
| | - Debasish Prusty
- Biophysics and Structural Genomics Division, Homi Bhabha National Institute, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata 700064, India
| | - Dulal Senapati
- Chemical Sciences Division, Homi Bhabha National Institute, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata 700064, India
| |
Collapse
|
2
|
Duffield C, Rey Gomez LM, Tsao SCH, Wang Y. Recent advances in SERS assays for detection of multiple extracellular vesicles biomarkers for cancer diagnosis. NANOSCALE 2025; 17:3635-3655. [PMID: 39745015 DOI: 10.1039/d4nr04014g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
As the prevalence of cancer is escalating, there is an increased demand for early and sensitive diagnostic tools. A major challenge in early detection is the lack of specific biomarkers, and a readily accessible, sensitive and rapid detection method. To meet these challenges, cancer-derived small extracellular vesicles (sEVs) have been discovered as a new promising cancer biomarker due to the high abundance of sEVs in body fluids and their extensive cargo of biomarkers. Additionally, surface-enhanced Raman scattering (SERS) presents a sensitive, multiplexed, and rapid method that has gained attraction with recent studies showing promising results from patient samples for the multiplex detection of cancer sEVs. Various label-based SERS multiplex assays have been developed in the field of SERS including bead assays, lateral flow immunoassays, microfluidic devices, and artificial intelligence (AI)-based label-free SERS chips, targeting multiple surface proteins to ensure comprehensive multiplex diagnostics. These assays hold promise for enabling early detection, quantification, and subtyping of cancer-derived sEVs for cancer diagnostic applications. This review aims to provide a summary of the recent advances in the field of SERS multiplex assays for detection, quantification, and subtyping of sEVs to facilitate cancer diagnosis. This review further provides unique insights into the use of sEVs as a biomarker and aims to address the issues surrounding their translation from laboratories to clinics.
Collapse
Affiliation(s)
- Chloe Duffield
- School of Natural Sciences, Faculty of science and engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Laura M Rey Gomez
- School of Natural Sciences, Faculty of science and engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Simon Chang-Hao Tsao
- School of Natural Sciences, Faculty of science and engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Yuling Wang
- School of Natural Sciences, Faculty of science and engineering, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
3
|
Chang H, Hur W, Kang H, Jun BH. In vivo surface-enhanced Raman scattering techniques: nanoprobes, instrumentation, and applications. LIGHT, SCIENCE & APPLICATIONS 2025; 14:79. [PMID: 39934124 DOI: 10.1038/s41377-024-01718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/29/2024] [Accepted: 12/15/2024] [Indexed: 02/13/2025]
Abstract
Surface-enhanced Raman scattering (SERS) has emerged as a powerful tool in various biomedical applications, including in vivo imaging, diagnostics, and therapy, largely due to the development of near-infrared (NIR) active SERS substrates. This review provides a comprehensive overview of SERS-based applications in vivo, focusing on key aspects such as the design considerations for SERS nanoprobes and advancements in instrumentation. Topics covered include the development of NIR SERS substrates, Raman label compounds (RLCs), protective coatings, and the conjugation of bioligands for targeted imaging and therapy. The review also discusses microscope-based configurations such as scanning, widefield imaging, and fiber-optic setups. Recent advances in using SERS nanoprobes for in vivo sensing, diagnostics, biomolecule screening, multiplex imaging, intraoperative guidance, and multifunctional cancer therapy are highlighted. The review concludes by addressing challenges in the clinical translation of SERS nanoprobes and outlines future directions, emphasizing opportunities for advancing biomedical research and clinical applications.
Collapse
Affiliation(s)
- Hyejin Chang
- Division of Science Education, Kangwon National University, Chuncheon, 24341, South Korea
| | - Won Hur
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
4
|
Qi K, Zhuang Q, Zhou Q, Lin D, Liu L, Qu J, Hu R. SERS-Encoded Nanoprobes Based on Silver-Coated Gold Nanorods for Cell Sorting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405061. [PMID: 39530621 DOI: 10.1002/smll.202405061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Optically-encoded probes have great potential for applications in the fields of biosensing and imaging. By employing specific encoding methods, these probes enable the detection of multiple target molecules and high-resolution imaging within the same sample. Among the various encoding methods, surface-enhanced Raman scattering (SERS) spectral encoding stands out due to its extremely narrow linewidth. Compared to fluorescence spectral encoding, SERS encoding significantly reduces crosstalk between adjacent peaks, thereby achieving a larger encoding capacity and enabling multi-channel parallel analysis. This article presents the design and construction of two novel sets of SERS-encoded probes based on noble metal core-shell nanostructures. Two different encoding strategies are successfully applied to encode the SERS spectra of the probes: 1D encoding based on the wavenumber of characteristic peaks in the SERS spectrum, and 2D encoding combining both wavenumber and intensity of characteristic peaks in the SERS spectrum. In addition, this study also demonstrates the potential application of 1D encoded probes in cell sorting. These studies verify the feasibility of applying these two encoding methods to SERS core-shell probes and provide new insights into the construction of optically encoded probes.
Collapse
Affiliation(s)
- Kang Qi
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qiaowei Zhuang
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qingsong Zhou
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Danying Lin
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Rui Hu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
5
|
Barshutina M, Arsenin A, Volkov V. SERS analysis of single cells and subcellular components: A review. Heliyon 2024; 10:e37396. [PMID: 39315187 PMCID: PMC11417266 DOI: 10.1016/j.heliyon.2024.e37396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
SERS is a rapidly advancing and non-destructive technique that has been proven to be more reliable and convenient than other traditional analytical methods. Due to its sensitivity and specificity, this technique is earning its place as a routine and powerful tool in biological and medical studies, especially for the analysis of living cells and subcellular components. This paper reviewed the research progress of single-cell SERS that has been made in the last few years and discussed challenges and future perspectives of this technique. The reviewed SERS platforms have been categorized according to their nature into the following types: (1) colloid-based, substrate-based, or hybrid; (2) ligand-based or ligand-free, and (3) label-based or label-free. The advantages and disadvantages of each type and their potential applications in various fields are thoroughly discussed.
Collapse
Affiliation(s)
- M. Barshutina
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - A. Arsenin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan, Armenia
| | - V. Volkov
- Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan, Armenia
- Emerging Technologies Research Center, XPANCEO, Dubai, United Arab Emirates
| |
Collapse
|
6
|
García-Lojo D, Rodal-Cedeira S, Núñez-Sánchez S, Arenas-Esteban D, Polavarapu L, Bals S, Pérez-Juste J, Pastoriza-Santos I. Pentatwinned AuAg Nanorattles with Tailored Plasmonic Properties for Near-Infrared Applications. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:8763-8772. [PMID: 39347470 PMCID: PMC11428089 DOI: 10.1021/acs.chemmater.4c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Noble metal nanoparticles, particularly gold and silver nanoparticles, have garnered significant attention due to their ability to manipulate light at the nanoscale through their localized surface plasmon resonance (LSPR). While their LSPRs below 1100 nm were extensively exploited in a wide range of applications, their potential in the near-infrared (NIR) region, crucial for optical communication and sensing, remains relatively underexplored. One primary reason is likely the limited strategies available to obtain highly stable plasmonic nanoparticles with tailored optical properties in the NIR region. Herein, we synthesized AuAg nanorattles (NRTs) with tailored and narrow plasmonic responses ranging from 1000 to 3000 nm. Additionally, we performed comprehensive characterization, employing advanced electron microscopy and various spectroscopic techniques, coupled with finite difference time domain (FDTD) simulations, to elucidate their optical properties. Notably, we unveiled the main external and internal LSPR modes by combining electron energy-loss spectroscopy (EELS) with surface-enhanced Raman scattering (SERS). Furthermore, we demonstrated through surface-enhanced infrared absorption spectroscopy (SEIRA) that the NRTs can significantly enhance the infrared signals of a model molecule. This study not only reports the synthesis of plasmonic NRTs with tunable LSPRs over the entire NIR range but also demonstrates their potential for NIR sensing and optical communication.
Collapse
Affiliation(s)
- Daniel García-Lojo
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| | - Sergio Rodal-Cedeira
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| | - Sara Núñez-Sánchez
- Centro de Física das Universidades do Minho e do Porto (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
| | | | - Lakshminarayana Polavarapu
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
| | - Sara Bals
- EMAT, University of Antwerp, Groenenborgerlaa 171, 2020 Antwerp, Belgium
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| |
Collapse
|
7
|
Cardellini J, Dallari C, De Santis I, Riccio L, Ceni C, Morrone A, Calamai M, Pavone FS, Credi C, Montis C, Berti D. Hybrid lipid-AuNP clusters as highly efficient SERS substrates for biomedical applications. Nat Commun 2024; 15:7975. [PMID: 39266504 PMCID: PMC11392932 DOI: 10.1038/s41467-024-52205-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/29/2024] [Indexed: 09/14/2024] Open
Abstract
Although Surface Enhanced Raman Scattering (SERS) is widely applied for ultrasensitive diagnostics and imaging, its potential is largely limited by the difficult preparation of SERS tags, typically metallic nanoparticles (NPs) functionalized with Raman-active molecules (RRs), whose production often involves complex synthetic approaches, low colloidal stability and poor reproducibility. Here, we introduce LipoGold Tags, a simple platform where gold NPs (AuNPs) clusters form via self-assembly on lipid vesicle. RRs embedded in the lipid bilayer experience enhanced electromagnetic field, significantly increasing their Raman signals. We modulate RRs and lipid vesicle concentrations to achieve optimal SERS enhancement and we provide robust structural characterization. We further demonstrate the versatility of LipoGold Tags by functionalizing them with biomolecular probes, including antibodies. As proof of concept, we successfully detect intracellular GM1 alterations, distinguishing healthy donors from patients with infantile GM1 gangliosidosis, showcasing LipoGold Tags as advancement in SERS probes production.
Collapse
Affiliation(s)
- Jacopo Cardellini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Caterina Dallari
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Physics, University of Florence, Sesto Fiorentino, Italy
- National Institute of Optics-National Research Council, Sesto Fiorentino, Italy
| | - Ilaria De Santis
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy
| | - Lorenzo Riccio
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Costanza Ceni
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
| | - Amelia Morrone
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Martino Calamai
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- National Institute of Optics-National Research Council, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Physics, University of Florence, Sesto Fiorentino, Italy
- National Institute of Optics-National Research Council, Sesto Fiorentino, Italy
| | - Caterina Credi
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- National Institute of Optics-National Research Council, Sesto Fiorentino, Italy
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy
| | - Debora Berti
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy.
| |
Collapse
|
8
|
Estévez-Varela C, Núñez-Sánchez S, Piñeiro-Varela P, de Aberasturi DJ, Liz-Marzán LM, Pérez-Juste J, Pastoriza-Santos I. Plexcitonic Nanorattles as Highly Efficient SERS-Encoded Tags. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306045. [PMID: 38009519 DOI: 10.1002/smll.202306045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/02/2023] [Indexed: 11/29/2023]
Abstract
Plexcitonic nanoparticles exhibit strong light-matter interactions, mediated by localized surface plasmon resonances, and thereby promise potential applications in fields such as photonics, solar cells, and sensing, among others. Herein, these light-matter interactions are investigated by UV-visible and surface-enhanced Raman scattering (SERS) spectroscopies, supported by finite-difference time-domain (FDTD) calculations. Our results reveal the importance of combining plasmonic nanomaterials and J-aggregates with near-zero-refractive index. As plexcitonic nanostructures nanorattles are employed, based on J-aggregates of the cyanine dye 5,5,6,6-tetrachloro-1,1-diethyl-3,3-bis(4-sulfobutyl)benzimidazolocarbocyanine (TDBC) and plasmonic silver-coated gold nanorods, confined within mesoporous silica shells, which facilitate the adsorption of the J-aggregates onto the metallic nanorod surface, while providing high colloidal stability. Electromagnetic simulations show that the electromagnetic field is strongly confined inside the J-aggregate layer, at wavelengths near the upper plexcitonic mode, but it is damped toward the J-aggregate/water interface at the lower plexcitonic mode. This behavior is ascribed to the sharp variation of dielectric properties of the J-aggregate shell close to the plasmon resonance, which leads to a high opposite refractive index contrast between water and the TDBC shell, at the upper and the lower plexcitonic modes. This behavior is responsible for the high SERS efficiency of the plexcitonic nanorattles under both 633 nm and 532 nm laser illumination. SERS analysis showed a detection sensitivity down to the single-nanoparticle level and, therefore, an exceptionally high average SERS intensity per particle. These findings may open new opportunities for ultrasensitive biosensing and bioimaging, as superbright and highly stable optical labels based on the strong coupling effect.
Collapse
Affiliation(s)
| | - Sara Núñez-Sánchez
- CINBIO, Universidade de Vigo, Vigo, 36310, Spain
- Centro de Física das Universidades do Minho e do Porto (CF-UM-UP), Universidade do Minho, Braga, 4710-057, Portugal
| | - Paula Piñeiro-Varela
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Miramon Pasealekua, 194, Donostia-San Sebastián, Gipuzkoa, 20014, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Donostia-San Sebastián, Gipuzkoa, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Dorleta Jiménez de Aberasturi
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Miramon Pasealekua, 194, Donostia-San Sebastián, Gipuzkoa, 20014, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Donostia-San Sebastián, Gipuzkoa, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Luis M Liz-Marzán
- CINBIO, Universidade de Vigo, Vigo, 36310, Spain
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Miramon Pasealekua, 194, Donostia-San Sebastián, Gipuzkoa, 20014, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Donostia-San Sebastián, Gipuzkoa, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | | | | |
Collapse
|
9
|
Sloan-Dennison S, Wallace GQ, Hassanain WA, Laing S, Faulds K, Graham D. Advancing SERS as a quantitative technique: challenges, considerations, and correlative approaches to aid validation. NANO CONVERGENCE 2024; 11:33. [PMID: 39154073 PMCID: PMC11330436 DOI: 10.1186/s40580-024-00443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Surface-enhanced Raman scattering (SERS) remains a significant area of research since it's discovery 50 years ago. The surface-based technique has been used in a wide variety of fields, most prominently in chemical detection, cellular imaging and medical diagnostics, offering high sensitivity and specificity when probing and quantifying a chosen analyte or monitoring nanoparticle uptake and accumulation. However, despite its promise, SERS is mostly confined to academic laboratories and is not recognised as a gold standard analytical technique. This is due to the variations that are observed in SERS measurements, mainly caused by poorly characterised SERS substrates, lack of universal calibration methods and uncorrelated results. To convince the wider scientific community that SERS should be a routinely used analytical technique, the field is now focusing on methods that will increase the reproducibility of the SERS signals and how to validate the results with more well-established techniques. This review explores the difficulties experienced by SERS users, the methods adopted to reduce variation and suggestions of best practices and strategies that should be adopted if one is to achieve absolute quantification.
Collapse
Affiliation(s)
- Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Gregory Q Wallace
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Waleed A Hassanain
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Stacey Laing
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
10
|
Verdin A, Malherbe C, Eppe G. Designing SERS nanotags for profiling overexpressed surface markers on single cancer cells: A review. Talanta 2024; 276:126225. [PMID: 38749157 DOI: 10.1016/j.talanta.2024.126225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
This review focuses on the chemical design and the use of Surface-Enhanced Raman Scattering (SERS)-active nanotags for measuring surface markers that can be overexpressed at the surface of single cancer cells. Indeed, providing analytical tools with true single-cell measurements capabilities is capital, especially since cancer research is increasingly leaning toward single-cell analysis, either to guide treatment decisions or to understand complex tumor behaviour including the single-cell heterogeneity and the appearance of treatment resistance. Over the past two decades, SERS nanotags have triggered significant interest in the scientific community owing their advantages over fluorescent tags, mainly because SERS nanotags resist photobleaching and exhibit sharper signal bands, which reduces possible spectral overlap and enables the discrimination between the SERS signals and the autofluorescence background from the sample itself. The extensive efforts invested in harnessing SERS nanotags for biomedical purposes, particularly in cancer research, highlight their potential as the next generation of optical labels for single-cell studies. The review unfolds in two main parts. The first part focuses on the structure of SERS nanotags, detailing their chemical composition and the role of each building block of the tags. The second part explores applications in measuring overexpressed surface markers on single-cells. The latter encompasses studies using single nanotags, multiplexed measurements, quantitative information extraction, monitoring treatment responses, and integrating phenotype measurements with SERS nanotags on single cells isolated from complex biological matrices. This comprehensive review anticipates SERS nanotags to persist as a pivotal technology in advancing single-cell analytical methods, particularly in the context of cancer research and personalized medicine.
Collapse
Affiliation(s)
- Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium.
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| |
Collapse
|
11
|
Chen H, Wu Z, Zhao A, Wang J. Surface-enhanced Raman scattering nanotag of tunable ZIF-8 shell-encapsulated magnetic core-plasmonic satellites for disentangling chemical enhancement from electromagnetic enhancement. NANOTECHNOLOGY 2024; 35:425603. [PMID: 38986449 DOI: 10.1088/1361-6528/ad6163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
To enhance the stability of Raman reporters, these reporters were trapped in a metal organic framework (MOF) exoskeleton that was grown and compressed on Fe3O4@Au core-satellites, producing recyclable surface-enhanced Raman scattering (SERS) nanotags. Furthermore, encapsulation of Raman reporters in the assembled MOF-based nanocomposites was divided into two types of patterns, pre-enrichment and post-enrichment, in order to disentangle chemical enhancement of charge transfer (CT) from electromagnetic enhancement (EM) in SERS. Hence, to demonstrate the effect of encapsulation, a typical non-thiolated Raman reporter, for example crystal violet (CV) trapped in a core-satellite nanoassembly-based zeolitic imidazolate framework (ZIF-8) shell, was selected. The results suggest that stability and Raman intensity are remarkably improved. Moreover, the pattern of incorporation of CV into the ZIF-8 shell with tunable shell thickness can contribute to the disentangling of CT effects from EM effects.
Collapse
Affiliation(s)
- Hao Chen
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Institute of Solid State Physics, HeFei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - ZhaoGuo Wu
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Institute of Solid State Physics, HeFei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - AiWu Zhao
- Institute of Solid State Physics, HeFei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Jin Wang
- Institute of Solid State Physics, HeFei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| |
Collapse
|
12
|
Li R, Hu Y, Sun X, Zhang Z, Chen K, Liu Q, Chen X. Intra-nanoparticle plasmonic nanogap based spatial-confinement SERS analysis of polypeptides. Talanta 2024; 273:125899. [PMID: 38484502 DOI: 10.1016/j.talanta.2024.125899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Sensing and characterizing water-soluble polypeptides are essential in various biological applications. However, detecting polypeptides using Surface-Enhanced Raman Scattering (SERS) remains a challenge due to the dominance of aromatic amino acid residues and backbones in the signal, which hinders the detection of non-aromatic amino acid residues. Herein, intra-nanoparticle plasmonic nanogap were designed by etching the Ag shell in Au@AgNPs (i.e., obtaining AuAg cores) with chlorauric acid under mild conditions, at the same time forming the outermost Au shell and the void between the AuAg cores and the Au shell (AuAg@void@Au). By varying the Ag to added chloroauric acid molar ratios, we pioneered a simple, controllable, and general synthetic strategy to form interlayer-free nanoparticles with tunable Au shell thickness, achieving precise regulation of electric field enhancement within the intra-nanogap. As validation, two polypeptide molecules, bacitracin and insulin B, were successfully synchronously encapsulated and spatial-confined in the intra-nanogap for sensing. Compared with concentrated 50 nm AuNPs and Au@AgNPs as SERS substrates, our simultaneous detection method improved the sensitivity of the assay while benefiting to obtain more comprehensive characteristic peaks of polypeptides. The synthetic strategy of confining analytes while fabricating plasmonic nanostructures enables the diffusion of target molecules into the nanogap in a highly specific and sensitive manner, providing the majority of the functionality required to achieve peptide detection or sequencing without the hassle of labeling.
Collapse
Affiliation(s)
- Ruili Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yuyang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaotong Sun
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhipeng Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Kecen Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Xiangjiang Laboratory, Changsha 410205, China.
| |
Collapse
|
13
|
Troncoso-Afonso L, Vinnacombe-Willson GA, García-Astrain C, Liz-Márzan LM. SERS in 3D cell models: a powerful tool in cancer research. Chem Soc Rev 2024; 53:5118-5148. [PMID: 38607302 PMCID: PMC11104264 DOI: 10.1039/d3cs01049j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 04/13/2024]
Abstract
Unraveling the cellular and molecular mechanisms underlying tumoral processes is fundamental for the diagnosis and treatment of cancer. In this regard, three-dimensional (3D) cancer cell models more realistically mimic tumors compared to conventional 2D cell cultures and are more attractive for performing such studies. Nonetheless, the analysis of such architectures is challenging because most available techniques are destructive, resulting in the loss of biochemical information. On the contrary, surface-enhanced Raman spectroscopy (SERS) is a non-invasive analytical tool that can record the structural fingerprint of molecules present in complex biological environments. The implementation of SERS in 3D cancer models can be leveraged to track therapeutics, the production of cancer-related metabolites, different signaling and communication pathways, and to image the different cellular components and structural features. In this review, we highlight recent progress in the use of SERS for the evaluation of cancer diagnosis and therapy in 3D tumoral models. We outline strategies for the delivery and design of SERS tags and shed light on the possibilities this technique offers for studying different cellular processes, through either biosensing or bioimaging modalities. Finally, we address current challenges and future directions, such as overcoming the limitations of SERS and the need for the development of user-friendly and robust data analysis methods. Continued development of SERS 3D bioimaging and biosensing systems, techniques, and analytical strategies, can provide significant contributions for early disease detection, novel cancer therapies, and the realization of patient-tailored medicine.
Collapse
Affiliation(s)
- Lara Troncoso-Afonso
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Gipuzkoa, Spain
| | - Gail A Vinnacombe-Willson
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
| | - Clara García-Astrain
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales, y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Luis M Liz-Márzan
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales, y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- Ikerbasque Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
14
|
Lu Y, Mo X, Zhu G, Huang Y, Wang Y, Yang Z, Gao L, Shen G, Wang Y, Zhao X. Ratiometric SERS quantification of SO 2 vapor based on Au@Ag-Au with Raman reporter as internal standard. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133763. [PMID: 38359757 DOI: 10.1016/j.jhazmat.2024.133763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Practical gas sensing application requires sensors to quantify target analytes with high sensitivity and reproducibility. However, conventional surface enhanced Raman scattering (SERS) sensor lacks reproducibility and quantification arising from variations of "hot spot" distribution and measurement conditions. Here, a ratio-dependent SERS sensor was developed for quantitative label-free gas sensing. Au@Ag-Au nanoparticles (NPs) were filtered onto anodic aluminum oxide (AAO) forming Au@Ag-Au@AAO SERS substrate. 4-MBA was encapsulated in the gap of Au@Ag-Au and served as the internal standard (IS) to calibrate SERS signal fluctuation for improved quantification ability. Combined with headspace sampling method, SO2 residue in traditional Chinese medicine (TCM) can be extracted and captured on the immediate vicinity of Au@Ag-Au surface. The intensity ratio I613 cm-1/I1078 cm-1 showed excellent linearity within the range of 0.5 mg/kg-500 mg/kg, demonstrating superior quantification performance for SO2 detection. Signals for concentration as low as 0.05 mg/kg of SO2 could be effectively collected, much lower than the strictest limit 10 mg/kg in Chinese Pharmacopoeia. Combined with a handheld Raman spectrometer, handy and quantitative TCM quality evaluation in aspect of SO2 residue was realized. This ratiometric SERS sensor functioned well in rapid on-site SO2 quantification, exhibiting excellent sensitivity and simple operability.
Collapse
Affiliation(s)
- Yu Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou 215163, China; Southeast University Shenzhen Research Institute, Shenzhen 518000, China
| | - Xiufang Mo
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou 215163, China; Southeast University Shenzhen Research Institute, Shenzhen 518000, China
| | - Geng Zhu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou 215163, China; Southeast University Shenzhen Research Institute, Shenzhen 518000, China
| | - Yan Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou 215163, China; Southeast University Shenzhen Research Institute, Shenzhen 518000, China
| | - Yingchao Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Zhenzhong Yang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liqiong Gao
- Hangzhou Institute for Food and Drug Control, Hangzhou 310022, China
| | - Guofang Shen
- Hangzhou Institute for Food and Drug Control, Hangzhou 310022, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China.
| | - Xiangwei Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou 215163, China; Southeast University Shenzhen Research Institute, Shenzhen 518000, China.
| |
Collapse
|
15
|
Vázquez-Iglesias L, Stanfoca Casagrande GM, García-Lojo D, Ferro Leal L, Ngo TA, Pérez-Juste J, Reis RM, Kant K, Pastoriza-Santos I. SERS sensing for cancer biomarker: Approaches and directions. Bioact Mater 2024; 34:248-268. [PMID: 38260819 PMCID: PMC10801148 DOI: 10.1016/j.bioactmat.2023.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
These days, cancer is thought to be more than just one illness, with several complex subtypes that require different screening approaches. These subtypes can be distinguished by the distinct markings left by metabolites, proteins, miRNA, and DNA. Personalized illness management may be possible if cancer is categorized according to its biomarkers. In order to stop cancer from spreading and posing a significant risk to patient survival, early detection and prompt treatment are essential. Traditional cancer screening techniques are tedious, time-consuming, and require expert personnel for analysis. This has led scientists to reevaluate screening methodologies and make use of emerging technologies to achieve better results. Using time and money saving techniques, these methodologies integrate the procedures from sample preparation to detection in small devices with high accuracy and sensitivity. With its proven potential for biomedical use, surface-enhanced Raman scattering (SERS) has been widely used in biosensing applications, particularly in biomarker identification. Consideration was given especially to the potential of SERS as a portable clinical diagnostic tool. The approaches to SERS-based sensing technologies for both invasive and non-invasive samples are reviewed in this article, along with sample preparation techniques and obstacles. Aside from these significant constraints in the detection approach and techniques, the review also takes into account the complexity of biological fluids, the availability of biomarkers, and their sensitivity and selectivity, which are generally lowered. Massive ways to maintain sensing capabilities in clinical samples are being developed recently to get over this restriction. SERS is known to be a reliable diagnostic method for treatment judgments. Nonetheless, there is still room for advancement in terms of portability, creation of diagnostic apps, and interdisciplinary AI-based applications. Therefore, we will outline the current state of technological maturity for SERS-based cancer biomarker detection in this article. The review will meet the demand for reviewing various sample types (invasive and non-invasive) of cancer biomarkers and their detection using SERS. It will also shed light on the growing body of research on portable methods for clinical application and quick cancer detection.
Collapse
Affiliation(s)
- Lorena Vázquez-Iglesias
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | | | - Daniel García-Lojo
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Letícia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Barretos School of Medicine Dr. Paulo Prata—FACISB, Barretos, 14785-002, Brazil
| | - Tien Anh Ngo
- Vinmec Tissue Bank, Vinmec Health Care System, Hanoi, Viet Nam
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, 4710-057, Braga, Portugal
| | - Krishna Kant
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| |
Collapse
|
16
|
Hwang IJ, Choi C, Kim H, Lee H, Yoo Y, Choi Y, Hwang JH, Jung K, Lee JC, Kim JH. Confined growth of Ag nanogap shells emitting stable Raman label signals for SERS liquid biopsy of pancreatic cancer. Biosens Bioelectron 2024; 248:115948. [PMID: 38160636 DOI: 10.1016/j.bios.2023.115948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
To develop a reliable surface-enhanced Raman scattering (SERS) immunoassay as a new liquid biopsy modality, SERS nanoprobes emitting strong and stable signals are necessary. However, Ag nanoparticles used as SERS nanoprobes are prone to rapid fading of SERS signals by oxidation. This has driven the development of a new strategy for Ag-based SERS nanoprobes emitting stable and strong SERS signals over time. Herein, Ag nanogap shells entrapping Raman labels are created in the confined pores of mesoporous silica nanoparticles (AgNSM) through a rapid single-step reaction for SERS liquid biopsy. Each AgNSM nanoprobe possesses multiple nanogaps of 1.58 nm to entrap Raman labels, allowing superior long-term SERS signal stability and large enhancement of 1.5 × 106. AgNSM nanoprobes conjugated with an antibody specific for carbohydrate antigen (CA)19-9 are employed in the SERS sandwich immunoassay including antibody-conjugated magnetic nanoparticles for CA19-9 detection, showing a two orders of magnitude lower limit of detection (0.025 U mL-1) than an enzyme-linked immunosorbent assay (0.3 U mL-1). The AgNSM nanoprobe immunoassay accurately quantifies CA19-9 levels from clinical serum samples of early and advanced pancreatic cancer. AgNSM nanoprobes with stable SERS signals provide a new route to SERS liquid biopsy for effective detection of blood biomarkers.
Collapse
Affiliation(s)
- In-Jun Hwang
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Chanhee Choi
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hongwon Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hyunji Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Yejoo Yoo
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Yujin Choi
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jin-Hyeok Hwang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 03080, Republic of Korea
| | - Kwangrok Jung
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 03080, Republic of Korea
| | - Jong-Chan Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 03080, Republic of Korea
| | - Jong-Ho Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
17
|
Hamad-Schifferli K. Applications of Gold Nanoparticles in Plasmonic and Nanophotonic Biosensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:185-221. [PMID: 38273208 PMCID: PMC11182655 DOI: 10.1007/10_2023_237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The unique properties of plasmonic nanoparticles and nanostructures have enabled a broad range of applications in a diverse set of fields, ranging from biological sensing, cancer therapy, to catalysis. They have been some of the most studied nanomaterials due in part to their chemical stability and biocompatibility as well as supporting theoretical efforts. The synthesis and fabrication of plasmonic nanoparticles and nanostructures have now reached high precision and sophistication. We review here their fundamental optical properties, discuss their tailoring for biological environments, and then detail examples on how they have been used to innovate in the biological and biomedical fields.
Collapse
Affiliation(s)
- Kimberly Hamad-Schifferli
- Department of Engineering, School for the Environment, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
18
|
Reichstein J, Müssig S, Wintzheimer S, Mandel K. Communicating Supraparticles to Enable Perceptual, Information-Providing Matter. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306728. [PMID: 37786273 DOI: 10.1002/adma.202306728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Indexed: 10/04/2023]
Abstract
Materials are the fundament of the physical world, whereas information and its exchange are the centerpieces of the digital world. Their fruitful synergy offers countless opportunities for realizing desired digital transformation processes in the physical world of materials. Yet, to date, a perfect connection between these worlds is missing. From the perspective, this can be achieved by overcoming the paradigm of considering materials as passive objects and turning them into perceptual, information-providing matter. This matter is capable of communicating associated digitally stored information, for example, its origin, fate, and material type as well as its intactness on demand. Herein, the concept of realizing perceptual, information-providing matter by integrating customizable (sub-)micrometer-sized communicating supraparticles (CSPs) is presented. They are assembled from individual nanoparticulate and/or (macro)molecular building blocks with spectrally differentiable signals that are either robust or stimuli-susceptible. Their combination yields functional signal characteristics that provide an identification signature and one or multiple stimuli-recorder features. This enables CSPs to communicate associated digital information on the tagged material and its encountered stimuli histories upon signal readout anywhere across its life cycle. Ultimately, CSPs link the materials and digital worlds with numerous use cases thereof, in particular fostering the transition into an age of sustainability.
Collapse
Affiliation(s)
- Jakob Reichstein
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Stephan Müssig
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Susanne Wintzheimer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D-97082, Würzburg, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D-97082, Würzburg, Germany
| |
Collapse
|
19
|
Oliveira MJ, Dalot A, Fortunato E, Martins R, Byrne HJ, Franco R, Águas H. Microfluidic SERS devices: brightening the future of bioanalysis. DISCOVER MATERIALS 2022; 2:12. [PMID: 36536830 PMCID: PMC9751519 DOI: 10.1007/s43939-022-00033-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
A new avenue has opened up for applications of surface-enhanced Raman spectroscopy (SERS) in the biomedical field, mainly due to the striking advantages offered by SERS tags. SERS tags provide indirect identification of analytes with rich and highly specific spectral fingerprint information, high sensitivity, and outstanding multiplexing potential, making them very useful in in vitro and in vivo assays. The recent and innovative advances in nanomaterial science, novel Raman reporters, and emerging bioconjugation protocols have helped develop ultra-bright SERS tags as powerful tools for multiplex SERS-based detection and diagnosis applications. Nevertheless, to translate SERS platforms to real-world problems, some challenges, especially for clinical applications, must be addressed. This review presents the current understanding of the factors influencing the quality of SERS tags and the strategies commonly employed to improve not only spectral quality but the specificity and reproducibility of the interaction of the analyte with the target ligand. It further explores some of the most common approaches which have emerged for coupling SERS with microfluidic technologies, for biomedical applications. The importance of understanding microfluidic production and characterisation to yield excellent device quality while ensuring high throughput production are emphasised and explored, after which, the challenges and approaches developed to fulfil the potential that SERS-based microfluidics have to offer are described.
Collapse
Affiliation(s)
- Maria João Oliveira
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Dalot
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
| | - Rodrigo Martins
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin, Camden Row, Dublin 8, Dublin, Ireland
| | - Ricardo Franco
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Hugo Águas
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
| |
Collapse
|
20
|
Calidonio JM, Gomez-Marquez J, Hamad-Schifferli K. Nanomaterial and interface advances in immunoassay biosensors. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:17804-17815. [PMID: 38957865 PMCID: PMC11218816 DOI: 10.1021/acs.jpcc.2c05008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Biosensors have been used for a remarkable array of applications, including infectious diseases, environmental monitoring, cancer diagnosis, food safety, and numerous others. In particular, the global COVID-19 pandemic has exposed a need for rapid tests, so the type of biosensor that has gained considerable interest recently are immunoassays, which are used for rapid diagnostics. The performance of paper-based lateral flow and dipstick immunoassays is influenced by the physical properties of the nanoparticles (NPs), NP-antibody conjugates, and paper substrate. Many materials innovations have enhanced diagnostics by increasing sensitivity or enabling unique readouts. However, negative side effects can arise at the interface between the biological sample and biomolecules and the NP or paper substrate, such as non-specific adsorption and protein denaturation. In this Perspective, we discuss the immunoassay components and highlight chemistry and materials innovations that can improve sensitivity. We also explore the range of bio-interface issues that can present challenges for immunoassays.
Collapse
Affiliation(s)
| | | | - Kimberly Hamad-Schifferli
- Department of Engineering, University of Massachusetts Boston, Boston, MA 02125
- School for the Environment, University of Massachusetts Boston, Boston, MA 02125
| |
Collapse
|
21
|
de la Encarnación C, Jimenez de Aberasturi D, Liz-Marzán LM. Multifunctional plasmonic-magnetic nanoparticles for bioimaging and hyperthermia. Adv Drug Deliv Rev 2022; 189:114484. [PMID: 35944586 DOI: 10.1016/j.addr.2022.114484] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
Multicompartment nanoparticles have raised great interest for different biomedical applications, thanks to the combined properties of different materials within a single entity. These hybrid systems have opened new avenues toward diagnosis and combination therapies, thus becoming preferred theranostic agents. When hybrid nanoparticles comprise magnetic and plasmonic components, both magnetic and optical properties can be achieved, which are potentially useful for multimodal bioimaging, hyperthermal therapies and magnetically driven selective delivery. Nanostructures comprising iron oxide and gold are usually selected for biomedical applications, as they display size-dependent properties, biocompatibility, and unique physical and chemical characteristics that can be tuned through highly precise synthetic protocols. We provide herein an overview of the most recent synthetic protocols to prepare magnetic-plasmonic nanostructures made of iron oxide and gold, to then highlight the progress made on multifunctional magnetic-plasmonic bioimaging and heating-based therapies. We discuss the advantages and limitations of the various systems in these directions.
Collapse
Affiliation(s)
- Cristina de la Encarnación
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
| | - Dorleta Jimenez de Aberasturi
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; CIBER-BBN, ISCIII, 20014 Donostia-San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; CIBER-BBN, ISCIII, 20014 Donostia-San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
22
|
Eremina OE, Czaja AT, Fernando A, Aron A, Eremin DB, Zavaleta C. Expanding the Multiplexing Capabilities of Raman Imaging to Reveal Highly Specific Molecular Expression and Enable Spatial Profiling. ACS NANO 2022; 16:10341-10353. [PMID: 35675533 DOI: 10.1021/acsnano.2c00353] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Profiling the heterogeneous landscape of cell types and biomolecules is rapidly being adopted to address current imperative research questions. Precision medicine seeks advancements in molecular spatial profiling techniques with highly multiplexed imaging capabilities and subcellular resolution, which remains an extremely complex task. Surface-enhanced Raman spectroscopy (SERS) imaging offers promise through the utilization of nanoparticle-based contrast agents that exhibit narrow spectral features and molecular specificity. The current renaissance of gold nanoparticle technology makes Raman scattering intensities competitive with traditional fluorescence methods while offering the added benefit of unsurpassed multiplexing capabilities. Here, we present an expanded library of individually distinct SERS nanoparticles to arm researchers and clinicians. Our nanoparticles consist of a ∼60 nm gold core, a Raman reporter molecule, and a final inert silica coating. Using density functional theory, we have selected Raman reporters that meet the key criterion of high spectral uniqueness to facilitate unmixing of up to 26 components in a single imaging pixel in vitro and in vivo. We also demonstrated the utility of our SERS nanoparticles for targeting cultured cells and profiling cancerous human tissue sections for highly multiplexed optical imaging. This study showcases the far-reaching capabilities of SERS-based Raman imaging in molecular profiling to improve personalized medicine and overcome the major challenges of functional and structural diversity in proteomic imaging.
Collapse
Affiliation(s)
- Olga E Eremina
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, California 90089, United States
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Alexander T Czaja
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, California 90089, United States
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Augusta Fernando
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, California 90089, United States
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Arjun Aron
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, California 90089, United States
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Dmitry B Eremin
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, 837 Bloom Walk, Los Angeles, California 90089, United States
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, California 90089, United States
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| |
Collapse
|
23
|
Li J, Liu F, He C, Shen F, Ye J. Orthogonal gap-enhanced Raman tags for interference-free and ultrastable surface-enhanced Raman scattering. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:1549-1560. [PMID: 39635286 PMCID: PMC11501518 DOI: 10.1515/nanoph-2021-0689] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/20/2022] [Accepted: 03/16/2022] [Indexed: 12/07/2024]
Abstract
Spectral interference from backgrounds is not negligible for surface-enhanced Raman scattering (SERS) tags and often influences the accuracy and reliability of SERS applications. We report the design and synthesis of orthogonal gap-enhanced Raman tags (O-GERTs) by embedding alkyne and deuterium-based reporters in the interior metallic nanogaps of core-shell nanoparticles and explore their signal orthogonality as optical probes against different backgrounds from common substrates and media (e.g., glass and polymer) to related targets (e.g., bacteria, cancer cells, and tissues). Proof-of-concept experiments show that the O-GERT signals in the fingerprint region (200-1800 cm-1) are likely interfered by various backgrounds, leading to difficulty of accurate quantification, while the silent-region (1800-2800 cm-1) signals are completely interference-free. Moreover, O-GERTs show much higher photo and biological stability compared to conventional SERS tags. This work not only demonstrates O-GERTs as universal optical tags for accurate and reliable detection onto various substrates and in complex media, but also opens new opportunities in a variety of frontier applications, such as three-dimensional data storage and security labeling.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai200030, P. R. China
| | - Fugang Liu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai200030, P. R. China
| | - Chang He
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai200030, P. R. China
| | - Feng Shen
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai200030, P. R. China
| | - Jian Ye
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai200030, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai200127, P. R. China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| |
Collapse
|
24
|
Liu H, Gao X, Xu C, Liu D. SERS Tags for Biomedical Detection and Bioimaging. Theranostics 2022; 12:1870-1903. [PMID: 35198078 PMCID: PMC8825578 DOI: 10.7150/thno.66859] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/09/2021] [Indexed: 11/05/2022] Open
Abstract
Surface-enhanced Raman scattering (SERS) has emerged as a valuable technique for molecular identification. Due to the characteristics of high sensitivity, excellent signal specificity, and photobleaching resistance, SERS has been widely used in the fields of environmental monitoring, food safety, and disease diagnosis. By attaching the organic molecules to the surface of plasmonic nanoparticles, the obtained SERS tags show high-performance multiplexing capability for biosensing. The past decade has witnessed the progress of SERS tags for liquid biopsy, bioimaging, and theranostics applications. This review focuses on the advances of SERS tags in biomedical fields. We first introduce the building blocks of SERS tags, followed by the summarization of recent progress in SERS tags employed for detecting biomarkers, such as DNA, miRNA, and protein in biological fluids, as well as imaging from in vitro cell, bacteria, tissue to in vivo tumors. Further, we illustrate the appealing applications of SERS tags for delineating tumor margins and cancer diagnosis. In the end, perspectives of SERS tags projecting into the possible obstacles are deliberately proposed in future clinical translation.
Collapse
Affiliation(s)
- Huiqiao Liu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Xia Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, Tianjin 300000, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
25
|
Esmaeilzadeh M, Dizajghorbani-Aghdam H, Malekfar R. Surface-Enhanced Raman scattering of methylene blue on titanium nitride nanoparticles synthesized by laser ablation in organic solvents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119721. [PMID: 33845389 DOI: 10.1016/j.saa.2021.119721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/27/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Suspensions of titanium nitride (TiN) nanoparticles (NPs) were prepared using nanosecond Ce:Nd:YAG pulsed laser ablation (λ = 1064 nm) of a TiN target immersed in various solvents such as Toluene (C6H5CH3), Acetonitrile (CH3CN), and N, N-dimethylformamide (C3H7NO). The synthesized NPs were characterized by applying a range of spectroscopic, structural, and compositional analysis techniques. The obtained TiN NPs in N, N-dimethylformamide (DMF-TiN NPs) solvent showed strong optical absorption in the near-infrared (NIR) range; Whereas, the obtained TiN NPs in toluene (T-TiN NPs) and acetonitrile (AN-TiN NPs) solvents were covered with a carbon matrix layer that quenched their surface plasmon resonance (SPR). The carbon matrix on the NPs was removed by thermal oxidation to obtain carbon-free TiN NPs. All the prepared carbon-free TiN NPs were employed as substrates for the surface-enhanced Raman scattering (SERS) spectroscopy of methylene blue (MB) molecules as a probe molecule adsorbed on the surface. All substrates indicated nearly the same order of enhancement factors (EFs) (~103) for MB.
Collapse
Affiliation(s)
- Marzieh Esmaeilzadeh
- Atomic and Molecular Physics Group, Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-175, Islamic Republic of Iran.
| | - Hossein Dizajghorbani-Aghdam
- Atomic and Molecular Physics Group, Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-175, Islamic Republic of Iran.
| | - Rasoul Malekfar
- Atomic and Molecular Physics Group, Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-175, Islamic Republic of Iran.
| |
Collapse
|
26
|
Zheng J, Yan J, Qi X, Zhang X, Li Y, Zou M. AgNPs and MIL-101(Fe) self-assembled nanometer materials improved the SERS detection sensitivity and reproducibility. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119396. [PMID: 33433376 DOI: 10.1016/j.saa.2020.119396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/09/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Recently, in the research of Surface-enhanced Raman scattering (SERS) technology, it is found that the preparation of enhanced substrate is particularly important. In this work, the most commonly used methods were used to synthesize AgNPs and MIL-101(Fe), and AgNPs/MIL-101(Fe) nanocomposite was obtained through self-assembly of the two substances. Four different probe molecules were detected with the self-assembled substrate and compared with the results of same probe molecules with AgNPs and MIL-101(Fe) as SERS substrate separately, it was found that AgNPs/ MIL-101 (Fe) nanocomposites had a strong enhancing effect as SERS substrate. The Enhancement Factor (EF) value of 10-6 mol/L Rhodamine 6G (R6G) was calculated as 2.09 × 109, and the Raman intensities of the peak relative standard deviation (RSD) of R6G Raman attribution was calculated as 7.55%. The time stability of the material was studied and it was found that the reduced Raman signal and poor reproducibility were due to the AgNPs placement time. AgNPs/ MIL-101 (Fe) nanocomposites were used as SERS substrate to detect Paraquat with a minimum concentration of 10-12 mol/L. The signal values of Paraquat Raman detected at 10-6 mol/L in different pH environments were relatively stable.
Collapse
Affiliation(s)
- Jieshuang Zheng
- Changchun University of Science and Technology, Changchun 130022, China
| | - Jinghui Yan
- Changchun University of Science and Technology, Changchun 130022, China
| | - Xiaohua Qi
- Chinese Academy of Inspection and Quarantine, Beijing 100123, China
| | - Xiaohua Zhang
- China Inspection Laboratory Technologies Co. Ltd (CILT), No. A 3, Gaobeidian Road, Chaoyang District, Beijing 100123, China
| | - Yunhui Li
- Changchun University of Science and Technology, Changchun 130022, China.
| | - Mingqiang Zou
- Chinese Academy of Inspection and Quarantine, Beijing 100123, China.
| |
Collapse
|
27
|
Pramanik A, Gao Y, Patibandla S, Mitra D, McCandless MG, Fassero LA, Gates K, Tandon R, Chandra Ray P. The rapid diagnosis and effective inhibition of coronavirus using spike antibody attached gold nanoparticles. NANOSCALE ADVANCES 2021; 3:1588-1596. [PMID: 34381960 PMCID: PMC8323809 DOI: 10.1039/d0na01007c] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/18/2021] [Indexed: 05/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the coronavirus disease that began in 2019 (COVID-19), has been responsible for 1.4 million deaths worldwide as of 13 November 2020. Because at the time of writing no vaccine is yet available, a rapid diagnostic assay is very urgently needed. Herein, we present the development of anti-spike antibody attached gold nanoparticles for the rapid diagnosis of specific COVID-19 viral antigen or virus via a simple colorimetric change observation within a 5 minute time period. For rapid and highly sensitive identification, surface enhanced Raman spectroscopy (SERS) was employed using 4-aminothiophenol as a reporter molecule, which is attached to the gold nanoparticle via an Au-S bond. In the presence of COVID-19 antigen or virus particles, owing to the antigen-antibody interaction, the gold nanoparticles undergo aggregation, changing color from pink to blue, which allows for the determination of the presence of antigen or virus very rapidly by the naked eye, even at concentrations of 1 nanogram (ng) per mL for COVID-19 antigen and 1000 virus particles per mL for SARS-CoV-2 spike protein pseudotyped baculovirus. Importantly, the aggregated gold nanoparticles form "hot spots" to provide very strong SERS signal enhancement from anti-spike antibody and 4-aminothiophenol attached gold nanoparticles via light-matter interactions. Finite-difference time-domain (FDTD) simulation data indicate a 4-orders-of-magnitude Raman enhancement in "hot spot" positions when gold nanoparticles form aggregates. Using a portable Raman analyzer, our reported data demonstrate that our antibody and 4-aminothiophenol attached gold nanoparticle-based SERS probe has the capability to detect COVID-19 antigen even at a concentration of 4 picograms (pg) per mL and virus at a concentration of 18 virus particles per mL within a 5 minute time period. Using HEK293T cells, which express angiotensin-converting enzyme 2 (ACE2), by which SARS-CoV-2 enters human cells, we show that anti-spike antibody attached gold nanoparticles have the capability to inhibit infection by the virus. Our reported data show that antibody attached gold nanoparticles bind to SARS-CoV-2 spike protein, thereby inhibiting the virus from binding to cell receptors, which stops virus infection and spread. It also has the capability to destroy the lipid membrane of the virus.
Collapse
Affiliation(s)
- Avijit Pramanik
- Department of Chemistry and Biochemistry, Jackson State University Jackson MS 39217 USA
| | - Ye Gao
- Department of Chemistry and Biochemistry, Jackson State University Jackson MS 39217 USA
| | - Shamily Patibandla
- Department of Chemistry and Biochemistry, Jackson State University Jackson MS 39217 USA
| | - Dipanwita Mitra
- Department: Microbiology and Immunology, University of Mississippi Medical Center Jackson MS 39216 USA
| | - Martin G McCandless
- Department: Microbiology and Immunology, University of Mississippi Medical Center Jackson MS 39216 USA
| | - Lauren A Fassero
- Department: Microbiology and Immunology, University of Mississippi Medical Center Jackson MS 39216 USA
| | - Kalein Gates
- Department of Chemistry and Biochemistry, Jackson State University Jackson MS 39217 USA
| | - Ritesh Tandon
- Department: Microbiology and Immunology, University of Mississippi Medical Center Jackson MS 39216 USA
| | - Paresh Chandra Ray
- Department of Chemistry and Biochemistry, Jackson State University Jackson MS 39217 USA
| |
Collapse
|