1
|
Li R, Hu Y, Hou Y, Li J, Niu X, Wang M, Wang L. Receptor-mediated membrane fusion drug delivery system based on chitosan derivatives to enhance tumor chemotherapy. Int J Biol Macromol 2025; 311:143869. [PMID: 40348215 DOI: 10.1016/j.ijbiomac.2025.143869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/18/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025]
Abstract
Tumor chemotherapy drug delivery systems often face significant challenges, including low targeting specificity and lysosomal sequestration, both of which can severely impair therapeutic efficacy. To overcome these limitations, we have developed a novel receptor-mediated membrane fusion (RMF) drug delivery system based on chitosan derivatives. This system can self-assemble into nanoparticles (NPs) and encapsulate doxorubicin (DOX). The physical properties of both unloaded and DOX-loaded NPs were systematically characterized. In vitro experiments demonstrated that the RMF system selectively interacts with tumor cell surfaces, inhibiting cell proliferation and migration. Additionally, the system effectively targets tumor cells, delivers the drug directly into the cytoplasm, thereby bypassing lysosomal sequestration, thus improving targeting efficiency and enhancing drug delivery. In vivo studies further confirmed the superior anticancer efficacy of the RMF system, alongside its excellent systemic safety. In conclusion, this RMF-based strategy offers a promising platform for the precise delivery of chemotherapeutics, addressing the critical limitations of conventional drug delivery systems and significantly enhancing therapeutic outcomes.
Collapse
Affiliation(s)
- Ruxiang Li
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Yaqi Hu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Yiyang Hou
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Jingge Li
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Xiaoyuan Niu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Mandi Wang
- Department of Chemistry, University of Wisconsin-Madison, 500 Lincoln Avenue, 161 Bascom Hall, Madison 53706, WI, United States.
| | - Lianyong Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, China.
| |
Collapse
|
2
|
Chi Y, Lu Y, Wu J, Li G, Li X, Wu Y, Zhao X, Wen J, Sha X, Lu GL, Hu K, Zhang Z. Rational Design of Bioinspired Lipoprotein System to Improve Penetration in Colorectal Peritoneal Metastases. NANO LETTERS 2025; 25:5231-5240. [PMID: 40106687 DOI: 10.1021/acs.nanolett.4c06402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Chemotherapy of lethal colorectal peritoneal metastases (PM) is notoriously challenged by poor drug delivery efficiency in PM tumors. Inspired by the histopathological examinations of PM tumors from colon cancer patients, a C[RGDfK] peptide-modified bioinspired lipoprotein (R-BLP) system was optimized from 8 formulations with profound penetrating ability in PM tumors of colorectal cancers. Then, a chemotherapeutic 7-ethyl-10-hydroxy-camptothecin (SN38)-loaded R-BLP (termed SR-BLP) was designed to promote their penetration in PM tumors and improve the chemotherapeutic efficacy. In CT26-induced PM models, SR-BLP exhibited better penetration profiles in PM tumors over a counterpart liposomal formulation. SR-BLP treatment produced an 80.03% suppression of PM incidence with obvious DNA damage and topoisomerase I (TOP I) downregulation and caused a 1.78-fold prolongation of survival time. Therefore, the histopathological features-inspired R-BLP provides an encouraging tumor-penetrating delivery platform for the effective chemotherapy of colorectal PM.
Collapse
Affiliation(s)
- Yifei Chi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yi Lu
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, P.R. China
| | - Jingbo Wu
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai 200240, P.R. China
| | - Guodong Li
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, P.R. China
| | - Xianlu Li
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, P.R. China
| | - Yao Wu
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, P.R. China
| | - Xiao Zhao
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, P.R. China
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai 200240, P.R. China
| | - Jingyuan Wen
- The University of Auckland, Auckland 1142, New Zealand
| | - Xianyi Sha
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, P.R. China
| | - Guo-Liang Lu
- The University of Auckland, Auckland 1142, New Zealand
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Zhiwen Zhang
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, P.R. China
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai 200240, P.R. China
| |
Collapse
|
3
|
Pan S, Yuan H, Zhai Q, Zhang Y, He H, Yin T, Tang X, Gou J. The journey of nanoparticles in the abdominal cavity: Exploring their in vivo fate and impact factors. J Control Release 2024; 376:266-285. [PMID: 39396710 DOI: 10.1016/j.jconrel.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Peritoneal carcinomatosis (PC) is caused by metastasis of primary tumor cells from intra-abdominal organs to the peritoneal surface. Intraperitoneal (IP) chemotherapy allows close contact of high concentrations of therapeutic agents with cancer cells in the peritoneal cavity to prolong patient survival. However, conventional IP chemotherapy is prone to rapid elimination from the peritoneal cavity and lacks specificity towards cancer cells. To address these challenges, there is an imperative demand for exploiting novel drug delivery systems to enhance drug retention in the peritoneal cavity and target PC cells. Therefore, in this review, we first recapitulate the physiological structures and barriers associated with IP drug delivery, highlighting the in vivo fate of nanoparticles (NPs) after IP administration. Furthermore, the influence of physicochemical properties (particle size, charge, surface modification, and carrier composition) on the in vivo fate of NPs is discussed. Perspectives on the rational design of NPs for IP therapy and recent clinical progress are also provided.
Collapse
Affiliation(s)
- Shu Pan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Qiyao Zhai
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
4
|
He L, Cheng W, Ren W, Chen J, Wu Z, Wei Y, Piao JG. In-situ activated arsenic-molybdenum dual-prodrug nanocomplexes for glutathione-depletion enhanced photothermal/chemotherapy against triple-negative breast cancer. CHEMICAL ENGINEERING JOURNAL 2024; 497:155075. [DOI: 10.1016/j.cej.2024.155075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
|
5
|
Perelló-Trias MT, Serrano-Muñoz AJ, Rodríguez-Fernández A, Segura-Sampedro JJ, Ramis JM, Monjo M. Intraperitoneal drug delivery systems for peritoneal carcinomatosis: Bridging the gap between research and clinical implementation. J Control Release 2024; 373:70-92. [PMID: 38986910 DOI: 10.1016/j.jconrel.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Several abdominal-located cancers develop metastasis within the peritoneum, what is called peritoneal carcinomatosis (PC), constituting a clinical challenge in their therapeutical management, often leading to poor prognoses. Current multidisciplinary strategies, including cytoreductive surgery (CRS), hyperthermic intraperitoneal chemotherapy (HIPEC), and pressurized intraperitoneal aerosol chemotherapy (PIPAC), demonstrate efficacy but have limitations. In response, alternative strategies are explored in the drug delivery field for intraperitoneal chemotherapy. Controlled drug delivery offers a promising avenue, maintaining localized drug concentrations for optimal PC management. Drug delivery systems (DDS), including hydrogels, implants, nanoparticles, and hybrid systems, show potential for sustained and region-specific drug release. The present review aims to offer an overview of the advances and current designs of DDS for PC chemotherapy administration, focusing on their composition, main characteristics, and principal experimental outcomes, highlighting the importance of biomaterial rationale design and in vitro/vivo models for their testing. Moreover, since clinical data for human subjects are scarce, we offer a critical discussion of the gap between bench and bedside in DDS translation, emphasizing the need for further research.
Collapse
Affiliation(s)
- M Teresa Perelló-Trias
- Cell Therapy and Tissue Engineering Group (TERCIT), Research Institute of Health Sciences (IUNICS), University of the Balearic Islands (UIB), Carretera de Valldemossa, Km 7,5, 07122 Palma, Balearic Islands, Spain; Health Research Institute of the Balearic Islands (IdISBa) - Carretera de Valldemossa, 79. Hospital Universitari Son Espases. Edifici S. 07120 Palma, Balearic Islands, Spain; Department of Fundamental Biology and Health Sciences, University of the Balearic Islands (UIB), Palma, Balearic Islands, Spain
| | - Antonio Jose Serrano-Muñoz
- Cell Therapy and Tissue Engineering Group (TERCIT), Research Institute of Health Sciences (IUNICS), University of the Balearic Islands (UIB), Carretera de Valldemossa, Km 7,5, 07122 Palma, Balearic Islands, Spain; Health Research Institute of the Balearic Islands (IdISBa) - Carretera de Valldemossa, 79. Hospital Universitari Son Espases. Edifici S. 07120 Palma, Balearic Islands, Spain; Department of Fundamental Biology and Health Sciences, University of the Balearic Islands (UIB), Palma, Balearic Islands, Spain
| | - Ana Rodríguez-Fernández
- Cell Therapy and Tissue Engineering Group (TERCIT), Research Institute of Health Sciences (IUNICS), University of the Balearic Islands (UIB), Carretera de Valldemossa, Km 7,5, 07122 Palma, Balearic Islands, Spain; Health Research Institute of the Balearic Islands (IdISBa) - Carretera de Valldemossa, 79. Hospital Universitari Son Espases. Edifici S. 07120 Palma, Balearic Islands, Spain; Department of Fundamental Biology and Health Sciences, University of the Balearic Islands (UIB), Palma, Balearic Islands, Spain
| | - Juan José Segura-Sampedro
- Health Research Institute of the Balearic Islands (IdISBa) - Carretera de Valldemossa, 79. Hospital Universitari Son Espases. Edifici S. 07120 Palma, Balearic Islands, Spain; General & Digestive Surgery Service, Hospital Universitario La Paz, Paseo de la Castellana, 261, Fuencarral-El Pardo, 28046 Madrid, Spain; School of Medicine, University of the Balearic Islands (UIB), Carretera de Valldemossa, km 7,5, 07122 Palma, Balearic Islands, Spain
| | - Joana Maria Ramis
- Cell Therapy and Tissue Engineering Group (TERCIT), Research Institute of Health Sciences (IUNICS), University of the Balearic Islands (UIB), Carretera de Valldemossa, Km 7,5, 07122 Palma, Balearic Islands, Spain; Health Research Institute of the Balearic Islands (IdISBa) - Carretera de Valldemossa, 79. Hospital Universitari Son Espases. Edifici S. 07120 Palma, Balearic Islands, Spain; Department of Fundamental Biology and Health Sciences, University of the Balearic Islands (UIB), Palma, Balearic Islands, Spain.
| | - Marta Monjo
- Cell Therapy and Tissue Engineering Group (TERCIT), Research Institute of Health Sciences (IUNICS), University of the Balearic Islands (UIB), Carretera de Valldemossa, Km 7,5, 07122 Palma, Balearic Islands, Spain; Health Research Institute of the Balearic Islands (IdISBa) - Carretera de Valldemossa, 79. Hospital Universitari Son Espases. Edifici S. 07120 Palma, Balearic Islands, Spain; Department of Fundamental Biology and Health Sciences, University of the Balearic Islands (UIB), Palma, Balearic Islands, Spain.
| |
Collapse
|
6
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
7
|
Xu Z, Piao X, Wang M, Pichardo S, Cheng B. Microbubble-enhanced transcranial MR-guided focused ultrasound brain hyperthermia: heating mechanism investigation using finite element method. ULTRASONICS SONOCHEMISTRY 2024; 107:106889. [PMID: 38702233 PMCID: PMC11214346 DOI: 10.1016/j.ultsonch.2024.106889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Recently, our group developed a synergistic brain drug delivery method to achieve simultaneous transcranial hyperthermia and localized blood-brain barrier opening via MR-guided focused ultrasound (MRgFUS). In a rodent model, we demonstrated that the ultrasound power required for transcranial MRgFUS hyperthermia was significantly reduced by injecting microbubbles (MBs). However, the specific mechanisms underlying the power reduction caused by MBs remain unclear. The present study aims to elucidate the mechanisms of MB-enhanced transcranial MRgFUS hyperthermia through numerical studies using the finite element method. The microbubble acoustic emission (MAE) and the viscous dissipation (VD) were hypothesized to be the specific mechanisms. Acoustic wave propagation was used to model the FUS propagation in the brain tissue, and a bubble dynamics equation for describing the dynamics of MBs with small shell thickness was used to model the MB oscillation under FUS exposures. A modified bioheat transfer equation was used to model the temperature in the rodent brain with different heat sources. A theoretical model was used to estimate the bubble shell's surface tension, elasticity, and viscosity losses. The simulation reveals that MAE and VD caused a 40.5% and 52.3% additional temperature rise, respectively. Compared with FUS only, MBs caused a 64.0% temperature increase, which is consistent with our previous animal experiments. Our investigation showed that MAE and VD are the main mechanisms of MB-enhanced transcranial MRgFUS hyperthermia.
Collapse
Affiliation(s)
- Zhouyang Xu
- Translational Research in Ultrasound Theranostics Laboratory, School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Xiangkun Piao
- Translational Research in Ultrasound Theranostics Laboratory, School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Mingyu Wang
- Translational Research in Ultrasound Theranostics Laboratory, School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Samuel Pichardo
- Department of Radiology, University of Calgary, Calgary, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Bingbing Cheng
- Translational Research in Ultrasound Theranostics Laboratory, School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
8
|
Karmakar A, Silswal A, Koner AL. Review of NIR-responsive ''Smart'' carriers for photothermal chemotherapy. J Mater Chem B 2024; 12:4785-4808. [PMID: 38690723 DOI: 10.1039/d3tb03004k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This review focuses on the versatile applications of near-infrared (NIR)-responsive smart carriers in biomedical applications, particularly drug delivery and photothermal chemotherapy. These carriers demonstrate multi-responsive theranostics capabilities, including pH-dependent drug release, targeted delivery of chemotherapeutics, heat-mediated drug release, and photothermal tumor damage. Biological samples are transparent to NIR light with a suitable wavelength, and therefore, NIR light is advantageous for deep-tissue penetration. It also generates sufficient heat in tissue samples, which is beneficial for on-demand NIR-responsive drug delivery in vivo systems. The development of biocompatible materials with sufficient NIR light absorption properties and drug-carrying functionality has shown tremendous growth in the last five years. Thus, this review offers insights into the current research development of NIR-responsive materials with therapeutic potential and prospects aimed at overcoming challenges to improve the therapeutic efficacy and safety in the dynamic field of NIR-responsive drug delivery.
Collapse
Affiliation(s)
- Abhijit Karmakar
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Akshay Silswal
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Apurba Lal Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| |
Collapse
|
9
|
Turkmen Koc SN, Rezaei Benam S, Aral IP, Shahbazi R, Ulubayram K. Gold nanoparticles-mediated photothermal and photodynamic therapies for cancer. Int J Pharm 2024; 655:124057. [PMID: 38552752 DOI: 10.1016/j.ijpharm.2024.124057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Cancer remains one of the major causes of death globally, with one out of every six deaths attributed to the disease. The impact of cancer is felt on psychological, physical, and financial levels, affecting individuals, communities, and healthcare institutions. Conventional cancer treatments have many challenges and inadequacies. Nanomedicine, however, presents a promising solution by not only overcoming these problems but also offering the advantage of combined therapy for treatment-resistant cancers. Nanoparticles specifically engineered for use in nanomedicine can be efficiently targeted to cancer cells through a combination of active and passive techniques, leading to superior tumor-specific accumulation, enhanced drug availability, and reduced systemic toxicity. Among various nanoparticle formulations designed for cancer treatment, gold nanoparticles have gained prominence in the field of nanomedicine due to their photothermal, photodynamic, and immunologic effects without the need for photosensitizers or immunotherapeutic agents. To date, there is no comprehensive literature review that focuses on the photothermal, photodynamic, and immunologic effects of gold nanoparticles. In this review, significant attention has been devoted to examining the parameters pertaining to the structure of gold nanoparticles and laser characteristics, which play a crucial role in influencing the efficacy of photothermal therapy (PTT) and photodynamic therapy (PDT). Moreover, this article provides insights into the success of PTT and PDT mediated by gold nanoparticles in primary cancer treatment, as well as the immunological effects of PTT and PDT on metastasis and recurrence, providing a promising strategy for cancer therapy. In summary, gold nanoparticles, with their unique properties, have the potential for clinical application in various cancer therapies, including the treatment of primary cancer, recurrence and metastasis.
Collapse
Affiliation(s)
- Seyma Nur Turkmen Koc
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Türkiye
| | - Sanam Rezaei Benam
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Ipek Pınar Aral
- Department of Radiation Oncology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Reza Shahbazi
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA; Tumor Microenvironment & Metastasis, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, USA; Brown Center for Immunotherapy, Indiana University School of Medicine, Indianapolis, USA.
| | - Kezban Ulubayram
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Türkiye; Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye; Department of Bioengineering, Hacettepe University, Ankara, Türkiye.
| |
Collapse
|
10
|
Boselli L, Castagnola V, Armirotti A, Benfenati F, Pompa PP. Biomolecular Corona of Gold Nanoparticles: The Urgent Need for Strong Roots to Grow Strong Branches. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306474. [PMID: 38085683 DOI: 10.1002/smll.202306474] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/20/2023] [Indexed: 04/13/2024]
Abstract
Gold nanoparticles (GNPs) are largely employed in diagnostics/biosensors and are among the most investigated nanomaterials in biology/medicine. However, few GNP-based nanoformulations have received FDA approval to date, and promising in vitro studies have failed to translate to in vivo efficacy. One key factor is that biological fluids contain high concentrations of proteins, lipids, sugars, and metabolites, which can adsorb/interact with the GNP's surface, forming a layer called biomolecular corona (BMC). The BMC can mask prepared functionalities and target moieties, creating new surface chemistry and determining GNPs' biological fate. Here, the current knowledge is summarized on GNP-BMCs, analyzing the factors driving these interactions and the biological consequences. A partial fingerprint of GNP-BMC analyzing common patterns of composition in the literature is extrapolated. However, a red flag is also risen concerning the current lack of data availability and regulated form of knowledge on BMC. Nanomedicine is still in its infancy, and relying on recently developed analytical and informatic tools offers an unprecedented opportunity to make a leap forward. However, a restart through robust shared protocols and data sharing is necessary to obtain "stronger roots". This will create a path to exploiting BMC for human benefit, promoting the clinical translation of biomedical nanotools.
Collapse
Affiliation(s)
- Luca Boselli
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163, Italy
| | - Valentina Castagnola
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova, 16132, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova, 16132, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
11
|
Hu Q, Zuo H, Hsu JC, Zeng C, Zhou T, Sun Z, Cai W, Tang Z, Chen W. The Emerging Landscape for Combating Resistance Associated with Energy-Based Therapies via Nanomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308286. [PMID: 37971203 PMCID: PMC10872442 DOI: 10.1002/adma.202308286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Cancer represents a serious disease with significant implications for public health, imposing substantial economic burden and negative societal consequences. Compared to conventional cancer treatments, such as surgery and chemotherapy, energy-based therapies (ET) based on athermal and thermal ablation provide distinct advantages, including minimally invasive procedures and rapid postoperative recovery. Nevertheless, due to the complex pathophysiology of many solid tumors, the therapeutic effectiveness of ET is often limited. Nanotechnology offers unique opportunities by enabling facile material designs, tunable physicochemical properties, and excellent biocompatibility, thereby further augmenting the outcomes of ET. Numerous nanomaterials have demonstrated the ability to overcome intrinsic therapeutic resistance associated with ET, leading to improved antitumor responses. This comprehensive review systematically summarizes the underlying mechanisms of ET-associated resistance (ETR) and highlights representative applications of nanoplatforms used to mitigate ETR. Overall, this review emphasizes the recent advances in the field and presents a detailed account of novel nanomaterial designs in combating ETR, along with efforts aimed at facilitating their clinical translation.
Collapse
Affiliation(s)
- Qitao Hu
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Huali Zuo
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Jessica C. Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Cheng Zeng
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Tian Zhou
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Zhouyi Sun
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Zhe Tang
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyu Chen
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
12
|
Costa KMN, Barros LA, da Silva Soares IL, Oshiro-Junior JA. Potential of Nanomedicines as an Alternative for the Treatment of Colorectal Cancer - A Review. Anticancer Agents Med Chem 2024; 24:477-487. [PMID: 38265381 DOI: 10.2174/0118715206269415231128100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 01/25/2024]
Abstract
Colorectal cancer is the third most common cancer and the second in cases of cancer-related death. Polytherapy generates many adverse effects, leading the patient to give up. Nanotechnology has been studied in recent years to circumvent limitations. Groups composed of polymeric, lipid, and inorganic nanoparticles are the most purpose. Thus, the objective of this work is to bring information on how nanosystems can improve the chemotherapeutic treatment for colorectal cancer. Therefore, a search in journals such as "LILACS", "SciELO" and "PubMed/Medline" was performed, resulting in 25,000 articles found when applied the search engines "nanoparticle," "colorectal cancer," "malignant neoplasms," and "chemotherapy." After inclusion and exclusion factors, 24 articles remained, which were used as the basis for this integrative review. The results reveal that, regardless of the choice of matrix, nanoparticles showed an increase in bioavailability of the active, increasing the half-life by up to 13 times, modified release, as well as a significant reduction in tumor size, with cell viability up to 20% lower than the free drug tested, in different colorectal cancer cell lines, such as HCT-116, HT-29, and CaCo-2. However, more in vivo and clinical studies need to be performed, regardless of the formulation of its matrix, aiming at a higher rate of safety for patients and stability of the formulations, as well as knowledge of detailed indices of its pharmacokinetics and pharmacodynamics, seeking to avoid further damage to the recipient organism.
Collapse
Affiliation(s)
- Kammila Martins Nicolau Costa
- Post-graduation Program in Technological Development and Innovation in Medicines (PPgDITM) - Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | | | | | - João Augusto Oshiro-Junior
- Post-graduation Program in Technological Development and Innovation in Medicines (PPgDITM) - Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| |
Collapse
|
13
|
Tewari AB, Saini A, Sharma D. Extirpating the cancer stem cell hydra: Differentiation therapy and Hyperthermia therapy for targeting the cancer stem cell hierarchy. Clin Exp Med 2023; 23:3125-3145. [PMID: 37093450 DOI: 10.1007/s10238-023-01066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/02/2023] [Indexed: 04/25/2023]
Abstract
Ever since the discovery of cancer stem cells (CSCs), they have progressively attracted more attention as a therapeutic target. Like the mythical hydra, this subpopulation of cells seems to contribute to cancer immortality, spawning more cells each time that some components of the cancer cell hierarchy are destroyed. Traditional modalities focusing on cancer treatment have emphasized apoptosis as a route to eliminate the tumor burden. A major problem is that cancer cells are often in varying degrees of dedifferentiation contributing to what is known as the CSCs hierarchy and cells which are known to be resistant to conventional therapy. Differentiation therapy is an experimental therapeutic modality aimed at the conversion of malignant phenotype to a more benign one. Hyperthermia therapy (HT) is a modality exploiting the changes induced in cells by the application of heat produced to aid in cancer therapy. While differentiation therapy has been successfully employed in the treatment of acute myeloid leukemia, it has not been hugely successful for other cancer types. Mounting evidence suggests that hyperthermia therapy may greatly augment the effects of differentiation therapy while simultaneously overcoming many of the hard-to-treat facets of recurrent tumors. This review summarizes the progress made so far in integrating hyperthermia therapy with existing modules of differentiation therapy. The focus is on studies related to the successful application of both hyperthermia and differentiation therapy when used alone or in conjunction for hard-to-treat cancer cell niche with emphasis on combined approaches to target the CSCs hierarchy.
Collapse
Affiliation(s)
- Amit B Tewari
- Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| | - Anamika Saini
- Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| | - Deepika Sharma
- Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab, 140306, India.
| |
Collapse
|
14
|
Kumar PPP, Lim DK. Photothermal Effect of Gold Nanoparticles as a Nanomedicine for Diagnosis and Therapeutics. Pharmaceutics 2023; 15:2349. [PMID: 37765317 PMCID: PMC10534847 DOI: 10.3390/pharmaceutics15092349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Gold nanoparticles (AuNPs) have received great attention for various medical applications due to their unique physicochemical properties. AuNPs with tunable optical properties in the visible and near-infrared regions have been utilized in a variety of applications such as in vitro diagnostics, in vivo imaging, and therapeutics. Among the applications, this review will pay more attention to recent developments in diagnostic and therapeutic applications based on the photothermal (PT) effect of AuNPs. In particular, the PT effect of AuNPs has played an important role in medical applications utilizing light, such as photoacoustic imaging, photon polymerase chain reaction (PCR), and hyperthermia therapy. First, we discuss the fundamentals of the optical properties in detail to understand the background of the PT effect of AuNPs. For diagnostic applications, the ability of AuNPs to efficiently convert absorbed light energy into heat to generate enhanced acoustic waves can lead to significant enhancements in photoacoustic signal intensity. Integration of the PT effect of AuNPs with PCR may open new opportunities for technological innovation called photonic PCR, where light is used to enable fast and accurate temperature cycling for DNA amplification. Additionally, beyond the existing thermotherapy of AuNPs, the PT effect of AuNPs can be further applied to cancer immunotherapy. Controlled PT damage to cancer cells triggers an immune response, which is useful for obtaining better outcomes in combination with immune checkpoint inhibitors or vaccines. Therefore, this review examines applications to nanomedicine based on the PT effect among the unique optical properties of AuNPs, understands the basic principles, the advantages and disadvantages of each technology, and understands the importance of a multidisciplinary approach. Based on this, it is expected that it will help understand the current status and development direction of new nanoparticle-based disease diagnosis methods and treatment methods, and we hope that it will inspire the development of new innovative technologies.
Collapse
Affiliation(s)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
15
|
Xiong Y, Rao Y, Hu J, Luo Z, Chen C. Nanoparticle-Based Photothermal Therapy for Breast Cancer Noninvasive Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305140. [PMID: 37561994 DOI: 10.1002/adma.202305140] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Rapid advancements in materials science and nanotechnology, intertwined with oncology, have positioned photothermal therapy (PTT) as a promising noninvasive treatment strategy for cancer. The breast's superficial anatomical location and aesthetic significance render breast cancer a particularly pertinent candidate for the clinical application of PTT following melanoma. This review comprehensively explores the research conducted on the various types of nanoparticles employed in PTT for breast cancer and elaborates on their specific roles and mechanisms of action. The integration of PTT with existing clinical therapies for breast cancer is scrutinized, underscoring its potential for synergistic outcomes. Additionally, the mechanisms underlying PTT and consequential modifications to the tumor microenvironment after treatment are elaborated from a medical perspective. Future research directions are suggested, with an emphasis on the development of integrative platforms that combine multiple therapeutic approaches and the optimization of nanoparticle synthesis for enhanced treatment efficacy. The goal is to push the boundaries of PTT toward a comprehensive, clinically applicable treatment for breast cancer.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Yan Rao
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, Hubei, 430000, P. R. China
| | - Jiawei Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Zixuan Luo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| |
Collapse
|
16
|
Wang W, Zhong F, Wang D, Zhao Y, Peng D, Li S, Ning Q, Tang S, Yu CY, Wei H. Dual gatekeepers-modified mesoporous organic silica nanoparticles for synergistic photothermal-chemotherapy of breast cancer. J Colloid Interface Sci 2023; 646:118-128. [PMID: 37187045 DOI: 10.1016/j.jcis.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
HYPOTHESIS Construction of dual gatekeepers-functionalized mesoporous organic silica nanoparticles (MONs) with both physical and chemical mechanisms for modulated drug delivery properties provides one solution to the extracellular stability vs. intracellular high therapeutic efficiency of MONs that hold great potential for clinical translations. EXPERIMENTS We reported herein facile construction of diselenium-bridged MONs decorated with dual gatekeepers, i.e., azobenzene (Azo)/polydopamine (PDA) for both physical and chemical modulated drug delivery properties. Specifically, Azo can act as a physical barrier to block DOX in the mesoporous structure of MONs for extracellular safe encapsulation. The PDA outer corona serves not only as a chemical barrier with acidic pH-modulated permeability for double insurance of minimized DOX leakage in the extracellular blood circulation but also for inducing a PTT effect for synergistic PTT and chemotherapy of breast cancer. FINDINGS An optimized formulation, DOX@(MONs-Azo3)@PDA resulted in approximately 1.5 and 2.4 fold lower IC50 values than DOX@(MONs-Azo3) and (MONs-Azo3)@PDA controls in MCF-7 cells, respectively, and further mediated complete tumor eradication in 4T1 tumor-bearing BALB/c mice with insignificant systematic toxicity due to the synergistic PTT and chemotherapy with enhanced therapeutic efficiency.
Collapse
Affiliation(s)
- Wei Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Fengmin Zhong
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Dun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Yuqi Zhao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Dongdong Peng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Shuang Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System (2018TP1044), School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410000, China
| | - Shengsong Tang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China; Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System (2018TP1044), School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410000, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| |
Collapse
|
17
|
Giri PM, Banerjee A, Layek B. A Recent Review on Cancer Nanomedicine. Cancers (Basel) 2023; 15:cancers15082256. [PMID: 37190185 DOI: 10.3390/cancers15082256] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Cancer is one of the most prevalent diseases globally and is the second major cause of death in the United States. Despite the continuous efforts to understand tumor mechanisms and various approaches taken for treatment over decades, no significant improvements have been observed in cancer therapy. Lack of tumor specificity, dose-related toxicity, low bioavailability, and lack of stability of chemotherapeutics are major hindrances to cancer treatment. Nanomedicine has drawn the attention of many researchers due to its potential for tumor-specific delivery while minimizing unwanted side effects. The application of these nanoparticles is not limited to just therapeutic uses; some of them have shown to have extremely promising diagnostic potential. In this review, we describe and compare various types of nanoparticles and their role in advancing cancer treatment. We further highlight various nanoformulations currently approved for cancer therapy as well as under different phases of clinical trials. Finally, we discuss the prospect of nanomedicine in cancer management.
Collapse
Affiliation(s)
- Paras Mani Giri
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Anurag Banerjee
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
18
|
Freitas SC, Sanderson D, Caspani S, Magalhães R, Cortés-Llanos B, Granja A, Reis S, Belo JH, Azevedo J, Gómez-Gaviro MV, de Sousa CT. New Frontiers in Colorectal Cancer Treatment Combining Nanotechnology with Photo- and Radiotherapy. Cancers (Basel) 2023; 15:383. [PMID: 36672333 PMCID: PMC9856291 DOI: 10.3390/cancers15020383] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
Colorectal cancer is the third most common cancer worldwide. Despite recent advances in the treatment of this pathology, which include a personalized approach using radio- and chemotherapies in combination with advanced surgical techniques, it is imperative to enhance the performance of these treatments and decrease their detrimental side effects on patients' health. Nanomedicine is likely the pathway towards solving this challenge by enhancing both the therapeutic and diagnostic capabilities. In particular, plasmonic nanoparticles show remarkable potential due to their dual therapeutic functionalities as photothermal therapy agents and as radiosensitizers in radiotherapy. Their dual functionality, high biocompatibility, easy functionalization, and targeting capabilities make them potential agents for inducing efficient cancer cell death with minimal side effects. This review aims to identify the main challenges in the diagnosis and treatment of colorectal cancer. The heterogeneous nature of this cancer is also discussed from a single-cell point of view. The most relevant works in photo- and radiotherapy using nanotechnology-based therapies for colorectal cancer are addressed, ranging from in vitro studies (2D and 3D cell cultures) to in vivo studies and clinical trials. Although the results using nanoparticles as a photo- and radiosensitizers in photo- and radiotherapy are promising, preliminary studies showed that the possibility of combining both therapies must be explored to improve the treatment efficiency.
Collapse
Affiliation(s)
- Sara C. Freitas
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Daniel Sanderson
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Doctor Esquerdo 46, 28007 Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Sofia Caspani
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ricardo Magalhães
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | | | - Andreia Granja
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - João Horta Belo
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - José Azevedo
- Colorectal Surgery—Champalimaud Foundation, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisboa, Portugal
| | - Maria Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Doctor Esquerdo 46, 28007 Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Célia Tavares de Sousa
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- Departamento de Física Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid (UAM), Campus de Cantoblanco, C/ Francisco Tomas y Valiente, 7, 28049 Madrid, Spain
| |
Collapse
|
19
|
Gholami A, Shakerzadeh E, Chigo Anota E. Exploring the potential use of pristine and metal-encapsulated B36N36 fullerenes in delivery of β-lapachone anticancer drug: DFT approach. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
He X, Zhang S, Tian Y, Cheng W, Jing H. Research Progress of Nanomedicine-Based Mild Photothermal Therapy in Tumor. Int J Nanomedicine 2023; 18:1433-1468. [PMID: 36992822 PMCID: PMC10042261 DOI: 10.2147/ijn.s405020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
With the booming development of nanomedicine, mild photothermal therapy (mPTT, 42-45°C) has exhibited promising potential in tumor therapy. Compared with traditional PTT (>50°C), mPTT has less side effects and better biological effects conducive to tumor treatment, such as loosening the dense structure in tumor tissues, enhancing blood perfusion, and improving the immunosuppressive microenvironment. However, such a relatively low temperature cannot allow mPTT to completely eradicate tumors, and therefore, substantial efforts have been conducted to optimize the application of mPTT in tumor therapy. This review extensively summarizes the latest advances of mPTT, including two sections: (1) taking mPTT as a leading role to maximize its effect by blocking the cell defense mechanisms, and (2) regarding mPTT as a supporting role to assist other therapies to achieve synergistic antitumor curative effect. Meanwhile, the special characteristics and imaging capabilities of nanoplatforms applied in various therapies are discussed. At last, this paper puts forward the bottlenecks and challenges in the current research path of mPTT, and possible solutions and research directions in future are proposed correspondingly.
Collapse
Affiliation(s)
- Xiang He
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Shentao Zhang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
- Correspondence: Hui Jing; Wen Cheng, Department of Ultrasound, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, People’s Republic of China, Tel +86 13304504935; +86 13313677182, Email ;
| |
Collapse
|
21
|
Asad S, Jacobsen AC, Teleki A. Inorganic nanoparticles for oral drug delivery: opportunities, barriers, and future perspectives. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Figueiredo AQ, Rodrigues CF, Fernandes N, de Melo-Diogo D, Correia IJ, Moreira AF. Metal-Polymer Nanoconjugates Application in Cancer Imaging and Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3166. [PMID: 36144953 PMCID: PMC9503975 DOI: 10.3390/nano12183166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Metallic-based nanoparticles present a unique set of physicochemical properties that support their application in different fields, such as electronics, medical diagnostics, and therapeutics. Particularly, in cancer therapy, the plasmonic resonance, magnetic behavior, X-ray attenuation, and radical oxygen species generation capacity displayed by metallic nanoparticles make them highly promising theragnostic solutions. Nevertheless, metallic-based nanoparticles are often associated with some toxicological issues, lack of colloidal stability, and establishment of off-target interactions. Therefore, researchers have been exploiting the combination of metallic nanoparticles with other materials, inorganic (e.g., silica) and/or organic (e.g., polymers). In terms of biological performance, metal-polymer conjugation can be advantageous for improving biocompatibility, colloidal stability, and tumor specificity. In this review, the application of metallic-polymer nanoconjugates/nanohybrids as a multifunctional all-in-one solution for cancer therapy will be summarized, focusing on the physicochemical properties that make metallic nanomaterials capable of acting as imaging and/or therapeutic agents. Then, an overview of the main advantages of metal-polymer conjugation as well as the most common structural arrangements will be provided. Moreover, the application of metallic-polymer nanoconjugates/nanohybrids made of gold, iron, copper, and other metals in cancer therapy will be discussed, in addition to an outlook of the current solution in clinical trials.
Collapse
Affiliation(s)
- André Q. Figueiredo
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Carolina F. Rodrigues
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Natanael Fernandes
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ilídio J. Correia
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - André F. Moreira
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal
| |
Collapse
|
23
|
Fiorentini C, Sarti D, Guadagni S, Fiorentini G. Immune response and locoregional treatments for peritoneal carcinomatosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 371:97-116. [PMID: 35965002 DOI: 10.1016/bs.ircmb.2022.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Peritoneal Carcinomatosis (PC) is considered as a terminal disease with short survival. It is treated with palliative therapies, consisting of repeated drainages and sometimes instillation of chemotherapy. Since the nineties, surgery has been combined with more effective systemic chemotherapy, intraperitoneal chemotherapy and hyperthermic intraperitoneal chemotherapy (HIPEC) for the treatment of PC. This combination therapy significantly increases the overall survival of selected PC patients. The understanding of how intraperitoneal chemotherapy and HIPEC can cure patients is still unclear. Experts hypothesized that the efficacy is obtained by the ability of high peritoneal drug exposure and hyperthermia to directly kill cancer cells. Several studies indicate that cancer cells death directly influences the response of the immune system. For this reason, the protective effect of intraperitoneal chemotherapy and HIPEC could be mediated by its ability to kill cancer cells in an immuno-genic way, causing an efficient anticancer immune response. In this review, we investigate the role of the innate peritoneal or locoregional therapy-induced immune response in PC therapy.
Collapse
Affiliation(s)
- Caterina Fiorentini
- Department of Prevention and Sport Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Donatella Sarti
- Oncology Department, S. Maria Della Misericordia Hospital, ASUR1, Urbino, Italy
| | - Stefano Guadagni
- Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, L'Aquila, Italy
| | - Giammaria Fiorentini
- Department of Onco-Hematology, Azienda Ospedaliera "Ospedali Riuniti Marche Nord", Pesaro, Italy.
| |
Collapse
|
24
|
Alle M, Sharma G, Lee SH, Kim JC. Next-generation engineered nanogold for multimodal cancer therapy and imaging: a clinical perspectives. J Nanobiotechnology 2022; 20:222. [PMID: 35778747 PMCID: PMC9250257 DOI: 10.1186/s12951-022-01402-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the significant threats to human life. Although various latest technologies are currently available to treat cancer, it still accounts for millions of death each year worldwide. Thus, creating a need for more developed and novel technologies to combat this deadly condition. Nanoparticles-based cancer therapeutics have offered a promising approach to treat cancer effectively while minimizing adverse events. Among various nanoparticles, nanogold (AuNPs) are biocompatible and have proved their efficiency in treating cancer because they can reach tumors via enhanced permeability and retention effect. The size and shape of the AuNPs are responsible for their diverse therapeutic behavior. Thus, to modulate their therapeutic values, the AuNPs can be synthesized in various shapes, such as spheres, cages, flowers, shells, prisms, rods, clusters, etc. Also, attaching AuNPs with single or multiple targeting agents can facilitate the active targeting of AuNPs to the tumor tissue. The AuNPs have been much explored for photothermal therapy (PTT) to treat cancer. In addition to PTT, AuNPs-based nanoplatforms have been investigated for combinational multimodal therapies in the last few years, including photodynamic therapy, chemotherapy, radiotherapy, immunotherapy, etc., to ablate cancer cells. Thus, the present review focuses on the recent advancements in the functionalization of AuNPs-based nanoconstructs for cancer imaging and therapy using combinatorial multimodal approaches to treat various cancers.
Collapse
Affiliation(s)
- Madhusudhan Alle
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung-Hwan Lee
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
25
|
Zhang Y, Sun Y, Dong X, Wang QS, Zhu D, Mei L, Yan H, Lv F. A Platelet Intelligent Vehicle with Navigation for Cancer Photothermal-Chemotherapy. ACS NANO 2022; 16:6359-6371. [PMID: 35324149 DOI: 10.1021/acsnano.2c00453] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Controllable and visible delivery of therapeutic agents is critical for tumor precise therapy. Tumor targeting and deep penetration of therapeutic agents are still challenging issues for controllable delivery. Visible drug delivery with imaging navigation can optimize the treatment window for personalized medicine. Herein, a biomimetic platelet intelligent vehicle with navigation (IRDNP-PLT) was developed to achieve controllable and visible delivery with a navigation system, a driving system, and a loading system. The platelets acted as engines and drug repositories to exert the target driving and delivery functions. The fluorescent photothermal agent IR-820 was introduced in the platform to offer an imaging navigation for the intelligent platelet vehicle in addition to photothermal therapy. The nanodrug-loaded platelets enabled efficient drug loading and controlled release of the therapeutic payload by encapsulating photothermal-/pH-sensitive chemotherapeutic nanoparticles (PDA@Dox NPs). In in vivo experiments on 4T1 tumor-bearing mice models, IRDNP-PLT performed well in tumor targeting and showed excellent therapeutic efficacy and tumor recurrence prevention ability. The intelligent platelet vehicle achieved the functions of tumor targeting and deep penetration, fluorescence imaging guidance, photocontrolled drug release, and chemo-photothermal combination therapy, suggesting the advancement for tumor precise delivery and efficient therapy.
Collapse
Affiliation(s)
- Yan Zhang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Yuanchao Sun
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Xia Dong
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Qiang-Song Wang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Husheng Yan
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Feng Lv
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| |
Collapse
|
26
|
Li H, Sun Y, Gao LL, Tang YF, Zhao Z. The Treatment of Human Colon Xenografts Tumor in Mice with Platinum Nanosphere-5-Fluorouracil-Bovine Albumin. J Biomed Nanotechnol 2022; 18:778-787. [PMID: 35715920 DOI: 10.1166/jbn.2022.3271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Because 5-fluorouracil (FLU) has side effects in cancer treatment, the use of FLU in therapeutic activities is limited. To overcome this challenge, the use of nano-platforms for its targeting is f great interest in biomedical fields. For this purpose, to reduce the FLU toxicity and improve the its efficacy, platinum nanospheres (PtNS) with anti-cancer properties were used. After producing PtNS by hydrothermal method and loading FLU and bovine albumin (bAL) (PtNS-FLU-bAL), its physicochemical properties were investigated. After evaluating the drug release capability, the toxicity of PtNS-FLU-bAL on HCT-116 cells was assessed by MTT and flow-cytometry. Also, the effects of the nanospheres on tumor status, liver and kidney tissues were evaluated. The results indicate uniform size of the PtNS-FLU-bAL (79±2.04 nm) with spherical shape, loading of more than 50% of the FLU (in the ratio of 2:1 FLU to PtNS-bAL), optimal release of the FLU from the PtNS-FLU-bAL (83.1% in pH = 6), and the high toxicity of the PtNS-FLU-bAL on HCT-116 cells. Also, the toxicity mechanism indicated more apoptosis induction by increasing the expression of TNF-α, Bax, Fas, and Caspase-3 genes for PtNS-FLU-bAL compared to the free FLU. Moreover, the results showed a higher FLU concentration in cancerous tissue and a 1.5-fold reduction in tumor growth by the PtNS-FLU-bAL compared to the free FLU. Overall, the results show that the PtNS-FLU-bAL can enhance the success of colorectal cancer treatment effectively and safely.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yi Sun
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Li-Li Gao
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yong-Feng Tang
- Department of Pathology, Nanjing Medical University, Affiliated Nanjing Maternity and Child Health Care Hospital, Jiangsu, Nanjing 210004, China
| | - Zheng Zhao
- Department of Oncology, Shaanxi Cancer Hospital, Xian 710061, China
| |
Collapse
|
27
|
Numerical Simulation of Enhancement of Superficial Tumor Laser Hyperthermia with Silicon Nanoparticles. PHOTONICS 2021. [DOI: 10.3390/photonics8120580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biodegradable and low-toxic silicon nanoparticles (SiNPs) have potential in different biomedical applications. Previous experimental studies revealed the efficiency of some types of SiNPs in tumor hyperthermia. To analyse the feasibility of employing SiNPs produced by the laser ablation of silicon nanowire arrays in water and ethanol as agents for laser tumor hyperthermia, we numerically simulated effects of heating a millimeter-size nodal basal-cell carcinoma with embedded nanoparticles by continuous-wave laser radiation at 633 nm. Based on scanning electron microscopy data for the synthesized SiNPs size distributions, we used Mie theory to calculate their optical properties and carried out Monte Carlo simulations of light absorption inside the tumor, with and without the embedded nanoparticles, followed by an evaluation of local temperature increase based on the bioheat transfer equation. Given the same mass concentration, SiNPs obtained by the laser ablation of silicon nanowires in ethanol (eSiNPs) are characterized by smaller absorption and scattering coefficients compared to those synthesized in water (wSiNPs). In contrast, wSiNPs embedded in the tumor provide a lower overall temperature increase than eSiNPs due to the effect of shielding the laser irradiation by the highly absorbing wSiNPs-containing region at the top of the tumor. Effective tumor hyperthermia (temperature increase above 42 °C) can be performed with eSiNPs at nanoparticle mass concentrations of 3 mg/mL and higher, provided that the neighboring healthy tissues remain underheated at the applied irradiation power. The use of a laser beam with the diameter fitting the size of the tumor allows to obtain a higher temperature contrast between the tumor and surrounding normal tissues compared to the case when the beam diameter exceeds the tumor size at the comparable power.
Collapse
|
28
|
Lian S, Gao X, Song C, Li H, Lin J. Chemical Enhancement Effect of Icotinib-Au Complex Studied by Combined Density Functional Theory and Surface-Enhanced Raman Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12907-12918. [PMID: 34705473 DOI: 10.1021/acs.langmuir.1c01957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Icotinib is an epidermal growth factor receptor tyrosine kinase inhibitor used in the treatment of non-small cell lung cancer. The charge transfer effect between gold nanoparticles (AuNPs) and icotinib molecules can be used as a model to study the adsorption mechanism between molecules and metal. The adsorption of icotinib on the AuNP surface was confirmed by UV-vis and transmission electron microscopy (TEM) experiments. To explain the nature of chemisorption between icotinib and AuNPs from a theoretical perspective, the molecular correlation properties of the complex model of icotinib-Au6 were studied by the density functional theory method. By studying the molecular electrostatic potential of an icotinib molecule, four potential binding sites of the icotinib molecule were predicted. The calculation results of binding energy showed that the complex formed by chemisorption of icotinib through acetylene group and Au6 was the most stable one. The molecular frontier orbitals of icotinib and icotinib-Au6 confirmed that the charge transfer effect occurred on the acetylene group, benzene ring, and quinazoline ring of the icotinib molecule. The Herzberg-Teller surface selection rule was used to explain selective enhancement in the theoretically calculated Raman spectra. By comparing the spectra of theory and experiment, the cause of spectral peak shift and broadening that appeared in the surface-enhanced Raman scattering spectrum compared with the normal Raman spectrum was explained as well. This work would contribute to the development and application of the icotinib-Au drug carrier system.
Collapse
Affiliation(s)
- Shuai Lian
- School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022, China
| | - Xun Gao
- School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022, China
| | - Chao Song
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China
| | - Hui Li
- School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022, China
| | - Jingquan Lin
- School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022, China
| |
Collapse
|
29
|
Kemp JA, Kwon YJ. Cancer nanotechnology: current status and perspectives. NANO CONVERGENCE 2021; 8:34. [PMID: 34727233 PMCID: PMC8560887 DOI: 10.1186/s40580-021-00282-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 05/09/2023]
Abstract
Modern medicine has been waging a war on cancer for nearly a century with no tangible end in sight. Cancer treatments have significantly progressed, but the need to increase specificity and decrease systemic toxicities remains. Early diagnosis holds a key to improving prognostic outlook and patient quality of life, and diagnostic tools are on the cusp of a technological revolution. Nanotechnology has steadily expanded into the reaches of cancer chemotherapy, radiotherapy, diagnostics, and imaging, demonstrating the capacity to augment each and advance patient care. Nanomaterials provide an abundance of versatility, functionality, and applications to engineer specifically targeted cancer medicine, accurate early-detection devices, robust imaging modalities, and enhanced radiotherapy adjuvants. This review provides insights into the current clinical and pre-clinical nanotechnological applications for cancer drug therapy, diagnostics, imaging, and radiation therapy.
Collapse
Affiliation(s)
- Jessica A Kemp
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
30
|
Liu G, Yang L, Chen G, Xu F, Yang F, Yu H, Li L, Dong X, Han J, Cao C, Qi J, Su J, Xu X, Li X, Li B. A Review on Drug Delivery System for Tumor Therapy. Front Pharmacol 2021; 12:735446. [PMID: 34675807 PMCID: PMC8524443 DOI: 10.3389/fphar.2021.735446] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
In recent years, with the development of nanomaterials, the research of drug delivery systems has become a new field of cancer therapy. Compared with conventional antitumor drugs, drug delivery systems such as drug nanoparticles (NPs) are expected to have more advantages in antineoplastic effects, including easy preparation, high efficiency, low toxicity, especially active tumor-targeting ability. Drug delivery systems are usually composed of delivery carriers, antitumor drugs, and even target molecules. At present, there are few comprehensive reports on a summary of drug delivery systems applied for tumor therapy. This review introduces the preparation, characteristics, and applications of several common delivery carriers and expounds the antitumor mechanism of different antitumor drugs in delivery carriers in detail which provides a more theoretical basis for clinical application of personalized cancer nanomedicine in the future.
Collapse
Affiliation(s)
- Guoxiang Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fenghua Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Huaxin Yu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lingne Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Jingjing Han
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Jingyu Qi
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Junzhe Su
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaohui Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China.,Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
31
|
Chen L, Lin Y, Zhang Z, Yang R, Bai X, Liu Z, Luo Z, Zhou M, Zhong Z. A novel dual-prodrug carried by cyclodextrin inclusion complex for the targeting treatment of colon cancer. J Nanobiotechnology 2021; 19:329. [PMID: 34666761 PMCID: PMC8524854 DOI: 10.1186/s12951-021-01064-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND There is an obvious correlation between ulcerative colitis and colorectal cancer, and the risk of colorectal cancer in patients with ulcerative colitis is increasing. Therefore, the combination therapy of anti-inflammatory and anti-tumor drugs may show promising to inhibit colon cancer. 5-aminosalicylic acid (5-ASA) with anti-inflammatory function is effective for maintaining remission in patients with ulcerative colitis and may also reduce colorectal cancer risk. Histone deacetylase (HDAC) plays an essential role in the progression of colon cancer. Butyric acid (BA) is a kind of HDAC inhibitor and thus shows tumor suppression to colon cancer. However, the volatile and corrosive nature of BA presents challenges in practical application. In addition, its clinical application is limited due to its non-targeting ability and low bioavailability. We aimed to synthesize a novel dual-prodrug of 5-ASA and BA, referred as BBA, to synergistically inhibit colon cancer. Further, based on the fact that folate receptor (FR) is over-expressed in most solid tumors and it has been identified to be a cancer stem cell surface marker in colon cancer, we took folate as the targeting ligand and used carboxymethyl-β-cyclodextrin (CM-β-CD) to carry BBA and thus prepared a novel inclusion complex of BBA/FA-PEG-CM-β-CD. RESULTS It was found that BBA/FA-PEG-CM-β-CD showed significant inhibition in cell proliferation against colon cancer cells SW620. It showed a pro-longed in vivo circulation and mainly accumulated in tumor tissue. More importantly, BBA/FA-PEG-CM-β-CD gave great tumor suppression effect against nude mice bearing SW620 xenografts. CONCLUSIONS Therefore, BBA/FA-PEG-CM-β-CD may have clinical potential in colon cancer therapy.
Collapse
Affiliation(s)
- Lin Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.,Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Yan Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zijun Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ruisheng Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaosheng Bai
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhongbing Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhongling Luo
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Meiling Zhou
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
32
|
Medici S, Peana M, Coradduzza D, Zoroddu MA. Gold nanoparticles and cancer: detection, diagnosis and therapy. Semin Cancer Biol 2021; 76:27-37. [DOI: 10.1016/j.semcancer.2021.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023]
|