1
|
Hur J, Park H, Oh H, Jeong S, Cho J, Lee J, Chung S, Hong Y, Son JG. Fully Transparent and Distortion-Free Monotonically Stretchable Substrate by Nanostructure Alignment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414794. [PMID: 39668499 DOI: 10.1002/adma.202414794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/19/2024] [Indexed: 12/14/2024]
Abstract
Stretchable devices, garnering increasing attention as next-generation form factors, have a crucial problem in that vertical contraction occurs during stretching, causing image distortion of stretchable displays and discomfort in skin-attached devices. Previous structural strategies to mitigate vertical contraction, such as auxetic reentrants and wrinkles, suffer from the drawback that their structure becomes visible during stretching. In this study, this issue is addressed by unidirectionally aligning nanoscopic cylinders within block copolymer elastomer films. Employing a shear-rolling process at high temperatures on thick films of polystyrene-block-polyisobutylene-block-polystyrene thermoplastic elastomers, macroscopic mechanical anisotropy is achieved, resulting in completely transparent and monotonically stretchable substrates devoid of vertical or depth distortion during deformation. Significantly, the unidirectional orientation of high-modulus cylindrical nanostructures induces macroscopic mechanical anisotropy with a modulus ratio exceeding five times. While the Poisson's ratio of conventional elastic materials hovers around ≈0.5, this mechanical anisotropy minimizes vertical contraction, yielding a Poisson's ratio below 0.07. Moreover, owing to the negligible size of the nanocylinders compared to visible-light wavelengths, the substrate can be monotonically uniaxially stretched while maintaining high transmittance without introducing distortions, surface undulations, or haziness, resulting in distortion-free stretchable substrates.
Collapse
Affiliation(s)
- Jung Hur
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Hwaeun Park
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Inter University Semiconductor Research Center (ISRC), Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeongsu Oh
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sujin Jeong
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Inter University Semiconductor Research Center (ISRC), Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinhan Cho
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jonghwi Lee
- School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seungjun Chung
- School of Electrical Engineering, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yongtaek Hong
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Inter University Semiconductor Research Center (ISRC), Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Gon Son
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
2
|
Cetindag S, Bellini B, Li R, Tsai EHR, Nykypanchuk D, Doerk GS. On-Demand Selection of the Latent Domain Orientation in Spray-Deposited Block Copolymer Thin Films. ACS NANO 2025; 19:3726-3739. [PMID: 39794154 DOI: 10.1021/acsnano.4c14499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
With their ability to self-assemble spontaneously into well-defined nanoscale morphologies, block copolymer (BCP) thin films are a versatile platform to fabricate functional nanomaterials. An important challenge to wider deployment of BCPs in nanofabrication is combining precise control over the nanoscale domain orientation in BCP assemblies with scalable deposition techniques that are applicable to large-area, curved, and flexible substrates. Here, we show that spray-deposited smooth films of a nominally disordered BCP exhibit latent orientations, which can be prescriptively selected by controlling solvent evaporation during spray casting. Subsequent solvent vapor annealing triggers assembly toward highly ordered cylindrical morphologies along the pathway determined by solvent evaporation in the prior spray deposition stage. Faster evaporation promotes assembly of vertically oriented cylinders spanning the entire film thickness (100-300 nm). In comparison, slow solvent evaporation permits intermicellar aggregation and incipient cylinder formation in solution, which induces horizontal cylinder assembly upon annealing. The evaporatively controlled latent orientation mechanism presented herein elucidates how nonequilibrium phenomena during casting govern successive self-assembly pathways and facilitates a versatile method to dictate the domain orientation of BCP thin films on demand on flexible and highly curved substrates or in distinct pattern areas on the same substrate.
Collapse
Affiliation(s)
- Semih Cetindag
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Beatrice Bellini
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Esther H R Tsai
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Gregory S Doerk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
3
|
Nam WH, Hur J, Cho J, Ryu DY, Ahn H, Son JG. Macroscopic Monograin Nano-Gyroid Thin Films in 4-inch Scale Through Shear-Rolling and Subsequent Solvent Annealing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405717. [PMID: 39444082 DOI: 10.1002/smll.202405717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/03/2024] [Indexed: 10/25/2024]
Abstract
The gyroid structure from self-assembly is highly attractive for optical applications such as photonic crystals and metamaterials. However, due to the direction-dependent nature of these applications, achieving a monograin-level structure over a large area has remained challenging. In this study, the fabrication of unidirectionally oriented anisotropic nanocylinders of polystyrene-block-polydimethylsiloxane (PS-b-PDMS) is reported block copolymer thin films up to a 4-inch scale via a shear-rolling process, followed by solvent annealing to induce phase transition to nearly monograin gyroid structures. Grazing-incidence small-angle X-ray scattering (GISAXS) analysis and cross-sectional scanning electron microscope (SEM) images in the direction parallel to the shear-rolling direction reveal the preferential orientation with the (111) plane onto the YZ axis of the film, while only the (110) plane on the YZ axis of the film is observed in the perpendicular direction, with grain sizes approaching single-grain levels. For metamaterial applications, the PDMS domain is selectively removed, and gold is electroplated to produce monograin gold gyroid films.
Collapse
Affiliation(s)
- Woo Hyun Nam
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jung Hur
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Junghyun Cho
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory, POSTECH, Kyungbuk, Pohang, 37673, Republic of Korea
| | - Jeong Gon Son
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
4
|
Cho J, Oh J, Bang J, Koh JH, Jeong HY, Chung S, Son JG. Roll-to-plate 0.1-second shear-rolling process at elevated temperature for highly aligned nanopatterns. Nat Commun 2023; 14:8412. [PMID: 38110407 PMCID: PMC10728125 DOI: 10.1038/s41467-023-43766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/18/2023] [Indexed: 12/20/2023] Open
Abstract
The shear-rolling process is a promising directed self-assembly method that can produce high-quality sub-10 nm block copolymer line-space patterns cost-effectively and straightforwardly over a large area. This study presents a high temperature (280 °C) and rapid (~0.1 s) shear-rolling process that can achieve a high degree of orientation in a single process while effectively preventing film delamination, that can be applied to large-area continuous processes. By minimizing adhesion, normal forces, and ultimate shear strain of the polydimethylsiloxane pad, shearing was successfully performed without peeling up to 280 °C at which the chain mobility significantly increases. This method can be utilized for various high-χ block copolymers and surface neutralization processes. It enables the creation of block copolymer patterns with a half-pitch as small as 8 nm in a unidirectional way. Moreover, the 0.1-second rapid shear-rolling was successfully performed on long, 3-inch width polyimide flexible films to validate its potential for the roll-to-roll process.
Collapse
Affiliation(s)
- Junghyun Cho
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jinwoo Oh
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jai Hyun Koh
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hoon Yeub Jeong
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Seungjun Chung
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong Gon Son
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
5
|
Plank M, Frieß FV, Bitsch CV, Pieschel J, Reitenbach J, Gallei M. Modular Synthesis of Functional Block Copolymers by Thiol–Maleimide “Click” Chemistry for Porous Membrane Formation. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Martina Plank
- Ernst-Berl Institute of Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Florian Volker Frieß
- Chair in Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Carina Vera Bitsch
- Ernst-Berl Institute of Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Jens Pieschel
- Chair in Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Julija Reitenbach
- Ernst-Berl Institute of Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Markus Gallei
- Chair in Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany
- Saarene, Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| |
Collapse
|
6
|
Panda AS, Lee YC, Shastry T, Manesi GM, Avgeropoulos A, Ho RM. Controlled Orientation of Silicon-Containing Diblock Copolymer Thin Films by Substrate Functionalization Under Vacuum. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Aum Sagar Panda
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Yi-Chien Lee
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Thanmayee Shastry
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Gkreti-Maria Manesi
- Department of Materials Science Engineering, University of Ioannina, University Campus, Ioannina45110, Greece
| | - Apostolos Avgeropoulos
- Department of Materials Science Engineering, University of Ioannina, University Campus, Ioannina45110, Greece
| | - Rong-Ming Ho
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu30013, Taiwan
| |
Collapse
|
7
|
Singh M, Agrawal A, Wu W, Masud A, Armijo E, Gonzalez D, Zhou S, Terlier T, Zhu C, Strzalka J, Matyjaszewski K, Bockstaller M, Douglas JF, Karim A. Soft-Shear-Aligned Vertically Oriented Lamellar Block Copolymers for Template-Free Sub-10 nm Patterning and Hybrid Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12824-12835. [PMID: 35245016 DOI: 10.1021/acsami.1c23865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The template-free unidirectional alignment of lamellar block copolymers (l-BCPs) for sub-10 nm high-resolution patterning and hybrid multicomponent nanostructures is important for technological applications. We demonstrate a modified soft-shear-directed self-assembly (SDSA) approach for aligning pristine l-BCPs and l-BCPs with incorporated polymer-grafted nanoparticles (PGNPs), as well as the l-BCP conversion to aligned gold nanowires, and hybrid of metallic gold nanowire and dielectric silica nanoparticle in the form of line-dot nanostructures. The smallest patterns have a half-pitch as small as 9.8 nm. In all cases, soft-shear is achieved using a high-molecular-mass polymer topcoat layer, with support on a neutral bottom layer. We also show that the hybrid line-dot nanostructures have a red-shifted plasmonic response in comparison to neat gold nanowires. These template-free aligned BCPs and nanowires have potential use in nanopatterning applications, and the line-dot nanostructures should be useful in the sensing of biomolecules and other molecular species based on the plasmonic response of the nanowires.
Collapse
Affiliation(s)
- Maninderjeet Singh
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Aman Agrawal
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Wenjie Wu
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Ali Masud
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Edward Armijo
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Damian Gonzalez
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Shenghui Zhou
- Materials Science Program, University of Houston, Houston, Texas 77204, United States
| | - Tanguy Terlier
- SIMS Laboratory, Shared Equipment Authority, Rice University, Houston, Texas 77005, United States
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Joseph Strzalka
- X-Ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Michael Bockstaller
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jack F Douglas
- Material Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
8
|
Kim KH, Nam J, Choi J, Seo M, Bang J. From macromonomers to bottlebrush copolymers with sequence control: synthesis, properties, and applications. Polym Chem 2022. [DOI: 10.1039/d2py00126h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bottlebrush polymers (BBPs) are a type of comb-like macromolecules with densely grafted polymeric sidechains attached to the polymer backbones, and many intriguing properties and applications have been demonstrated due to...
Collapse
|
9
|
Cho J, Hwang M, Shin M, Oh J, Cho J, Son JG, Yeom B. Chiral Plasmonic Nanowaves by Tilted Assembly of Unidirectionally Aligned Block Copolymers with Buckling-Induced Microwrinkles. ACS NANO 2021; 15:17463-17471. [PMID: 34606232 DOI: 10.1021/acsnano.1c03752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chiral-structured nanoscale materials exhibit chiroptical properties with preferential absorptions of circularly polarized light. The distinctive optical responses of chiral materials have great potential for advanced optical and biomedical applications. However, the fabrication of three-dimensional structures with mirrored nanoscale geometry is still challenging. This study introduces chiral plasmonic nanopatterns in wavy shapes based on the unidirectional alignment of block copolymer thin films and their tilted transfer, combined with buckling processes. The cylindrical nanodomains of polystyrene-block-poly(2-vinylpyridine) thin films were unidirectionally aligned over a large area by the shear-rolling process. The aligned block copolymer thin films were transferred onto uniaxially prestrained polydimethylsiloxane films at certain angles relative to the stretching directions. The strain was then released to induce buckling. The aligned nanopatterns across the axis of the formed microwrinkles were selectively infiltrated with gold ions. After reduction by plasma treatment, chiral plasmonic nanowave patterns were fabricated with the presence of mirror-reflected circular dichroism spectra. This fabrication method does not require any lithography processing or innately chiral biomaterials, which can be advantageous over other conventional fabrication methods for artificial nanoscale chiral materials.
Collapse
Affiliation(s)
- Junghyun Cho
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Myonghoo Hwang
- Department of Chemical Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Minkyung Shin
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Chemical Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jinwoo Oh
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jinhan Cho
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong Gon Son
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Bongjun Yeom
- Department of Chemical Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
10
|
Robertson M, Zhou Q, Ye C, Qiang Z. Developing Anisotropy in Self-Assembled Block Copolymers: Methods, Properties, and Applications. Macromol Rapid Commun 2021; 42:e2100300. [PMID: 34272778 DOI: 10.1002/marc.202100300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/23/2021] [Indexed: 01/03/2023]
Abstract
Block copolymers (BCPs) self-assembly has continually attracted interest as a means to provide bottom-up control over nanostructures. While various methods have been demonstrated for efficiently ordering BCP nanodomains, most of them do not generically afford control of nanostructural orientation. For many applications of BCPs, such as energy storage, microelectronics, and separation membranes, alignment of nanodomains is a key requirement for enabling their practical use or enhancing materials performance. This review focuses on summarizing research progress on the development of anisotropy in BCP systems, covering a variety of topics from established aligning techniques, resultant material properties, and the associated applications. Specifically, the significance of aligning nanostructures and the anisotropic properties of BCPs is discussed and highlighted by demonstrating a few promising applications. Finally, the challenges and outlook are presented to further implement aligned BCPs into practical nanotechnological applications, where exciting opportunities exist.
Collapse
Affiliation(s)
- Mark Robertson
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Qingya Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Changhuai Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|