1
|
Asadi Tokmedash M, Kim C, Chavda AP, Li A, Robins J, Min J. Engineering multifunctional surface topography to regulate multiple biological responses. Biomaterials 2025; 319:123136. [PMID: 39978049 PMCID: PMC11893264 DOI: 10.1016/j.biomaterials.2025.123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Accepted: 01/23/2025] [Indexed: 02/22/2025]
Abstract
Surface topography or curvature plays a crucial role in regulating cell behavior, influencing processes such as adhesion, proliferation, and gene expression. Recent advancements in nano- and micro-fabrication techniques have enabled the development of biomimetic systems that mimic native extracellular matrix (ECM) structures, providing new insights into cell-adhesion mechanisms, mechanotransduction, and cell-environment interactions. This review examines the diverse applications of engineered topographies across multiple domains, including antibacterial surfaces, immunomodulatory devices, tissue engineering scaffolds, and cancer therapies. It highlights how nanoscale features like nanopillars and nanospikes exhibit bactericidal properties, while many microscale patterns can direct stem cell differentiation and modulate immune cell responses. Furthermore, we discuss the interdisciplinary use of topography for combined applications, such as the simultaneous regulation of immune and tissue cells in 2D and 3D environments. Despite significant advances, key knowledge gaps remain, particularly regarding the effects of topographical cues on multicellular interactions and dynamic 3D contexts. This review summarizes current fabrication methods, explores specific and interdisciplinary applications, and proposes future research directions to enhance the design and utility of topographically patterned biomaterials in clinical and experimental settings.
Collapse
Affiliation(s)
| | - Changheon Kim
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ajay P Chavda
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Adrian Li
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob Robins
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jouha Min
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Xu S, Zhang Z, Zhou X, Liao Y, Peng Z, Meng Z, Nüssler AK, Ma L, Xia H, Liu L, Yang W. Gouqi-derived Nanovesicles (GqDNVs) promoted MC3T3-E1 cells proliferation and improve fracture healing. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156755. [PMID: 40252435 DOI: 10.1016/j.phymed.2025.156755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Lycium barbarum L., also known as Gouqi, a traditional Chinese herbal medicine, is widely utilized in health care products and clinical therapies. Its muscle and bone strengthening efficacy has been recorded in medical classics for a long time. In addition, plant exosome-like nanovesicles (PELNVs) have attracted more and more attention owing to their biological traits. Therefore, we intended to explore the functions, regulatory role, and underlying mechanism of Gouqi-derived Nanovesicles (GqDNVs) on fracture healing. METHODS In this study, we employed the sucrose density gradient differential ultracentrifugation to isolate GqDNVs. The effects of GqDNVs on the proliferation and differentiation of MC3T3-E1 cells were evaluated using the CCK-8 assay, ALP activity measurement, and cell scratch assay. Additionally, leveraging a fracture mouse model, we utilized Micro-CT, immunological staining, and histologic analyses to comprehensively assess the impact of GqDNVs on fracture healing in mice. RESULTS GqDNVs stimulated cell viability, increased ALP activity, and promoted cellular osteogenic protein expression (OPN, ALP, and RUNX2). Subsequently, in the mouse fracture model, trabecular thickness, and bone marrow density were increased in the GqDNVs treatment group after 28 days of injection. Meanwhile, the expressions of OPN and BGP were significantly elevated after both 14 and 28 days. Additionally, the expressions of p-PI3K/PI3K, p-Akt/Akt, p-mTOR/mTOR, p-4EBP1/4EBP1 and p-p70S6K/ p70S6K were also increased after14 days of treatment. CONCLUSIONS GqDNVs effectively promoted the proliferation and differentiation of MC3T3-E1 cells. Furthermore, GqDNVs could improve fracture healing, which is associated with PI3K/Akt/mTOR/p70S6K/4EBP1 signaling pathway.
Collapse
Affiliation(s)
- Shiyin Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Zixuan Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Xiaolei Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Zitong Meng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, Tübingen 72076, Germany
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.
| |
Collapse
|
3
|
Xiang B, Zhang S, Zhao IS, Gan X, Zhang Y. Microenvironmental Modulation for Therapeutic Efficacy of Extracellular Vesicles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2503027. [PMID: 40145773 PMCID: PMC12079496 DOI: 10.1002/advs.202503027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/04/2025] [Indexed: 03/28/2025]
Abstract
Extracellular vesicles (EVs) hold significant promise for the prevention and treatment of various diseases. However, the translation of EV-based therapies into clinical practice faces considerable challenges, particularly in terms of production yield and therapeutic efficacy. Recent studies have emphasized the heterogeneity of EVs and the influence of parental cell microenvironmental signals on their biogenesis, cargo composition, and therapeutic outcomes. This review offers a comprehensive overview of strategies to optimize the therapeutic efficacy of EVs through physical, biochemical, and mechanical modulation. Additionally, it explores how microenvironmental signals affect EV cargoes and the mechanisms by which these signals can improve therapeutic efficacy. The review also addresses current challenges and potential solutions to accelerate the clinical translation of EV therapies. Ultimately, it highlights the potential of microenvironmental modulation in unlocking the full therapeutic capacity of EVs, providing key insights into their production and clinical use for treating various diseases.
Collapse
Affiliation(s)
- Bilu Xiang
- School of DentistryShenzhen University Medical SchoolShenzhen518055China
- Institute of Oral ScienceShenzhen UniversityShenzhen518055China
| | - Shiying Zhang
- School of DentistryShenzhen University Medical SchoolShenzhen518055China
| | - Irene Shuping Zhao
- School of DentistryShenzhen University Medical SchoolShenzhen518055China
- Institute of Oral ScienceShenzhen UniversityShenzhen518055China
| | - Xueqi Gan
- State Key Laboratory of Oral DiseaseNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Yang Zhang
- School of DentistryShenzhen University Medical SchoolShenzhen518055China
- Institute of Oral ScienceShenzhen UniversityShenzhen518055China
- School of Biomedical EngineeringShenzhen University Medical SchoolShenzhen518055China
| |
Collapse
|
4
|
Huang H, Xiao L, Fang L, Lei M, Liu Z, Gao S, Lei Q, Lei J, Wei R, Lei Y, Xue L, Geng Z, Cai L, Yan F. Static Topographical Cue Combined with Dynamic Fluid Stimulation Enhances the Macrophage Extracellular Vesicle Yield and Therapeutic Potential for Bone Defects. ACS NANO 2025; 19:8667-8691. [PMID: 39998493 DOI: 10.1021/acsnano.4c15201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Extracellular vesicles (EVs) hold promise for tissue regeneration, but their low yield and limited therapeutic efficacy hinder clinical translation. Bioreactors provide a larger culture surface area and stable environment for large-scale EV production, yet their ability to enhance EV therapeutic efficacy is limited. Physical stimulation, by inducing cell differentiation and modulating EV cargo composition, offers a more efficient, cost-effective, and reproducible approach compared to the cargo loading of EVs and biochemical priming of parental cells. Herein, the effects of a 3D-printed perfusion bioreactor with a topographical cue on the macrophage EV yield and bioactivity were assessed. The results indicate that the bioreactor increased the EV yield 12.5-fold and enhanced bioactivity in promoting osteogenic differentiation and angiogenesis via upregulated miR-210-3p. Mechanistically, fluid shear stress activates Piezo1, triggering Ca2+ influx and Yes-associated protein (YAP) nuclear translocation, promoting EV secretion and enhancing macrophage M2 polarization in conjunction with morphological changes guided by aligned topography. Moreover, a porous electrospun membrane-hydrogel composite scaffold loaded with bioreactor-derived EVs exhibited outstanding efficacy in promoting osteogenic differentiation and angiogenesis in a rat cranial defect model. This study presents a scalable, cost-effective, and stable platform for the production of therapeutic EVs, potentially overcoming key challenges in translating EV-based therapies to the clinic.
Collapse
Affiliation(s)
- Huayi Huang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 169 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China
| | - Lingfei Xiao
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 169 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China
| | - Lucheng Fang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China
| | - Ming Lei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 169 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China
| | - Zhibo Liu
- Plastic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009 Zhejiang, China
| | - Shijie Gao
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
| | - Qingjian Lei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 169 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China
| | - Jun Lei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 169 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China
| | - Renxiong Wei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 169 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China
| | - Yifeng Lei
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan 430072, Hubei, China
| | - Longjian Xue
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan 430072, Hubei, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 169 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China
| | - Feifei Yan
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 169 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China
| |
Collapse
|
5
|
Lin TI, Hsieh PY, Lin HJ, Chiang CK, Sheu JJC, Chang WT, Liau I, Hsu HY. Soy Protein-Cultured Mesenchymal Stem Cell-Secreted Extracellular Vesicles Target the Neurovascular Unit: Insights from a Zebrafish Brain Injury Model. ACS Biomater Sci Eng 2025; 11:1432-1444. [PMID: 40000145 PMCID: PMC11897944 DOI: 10.1021/acsbiomaterials.4c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
Cerebral vascular disorders often accompany hypoxia-induced brain injury. In this study, we develop a zebrafish model of hypoxia-induced cerebral vascular injury to replicate the associated phenotypic changes, including cerebrovascular damage, neuronal apoptosis, and neurological dysfunction. We then explored the therapeutic potential of extracellular vesicles derived from Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) cultured on soy protein-coated surfaces. These vesicles demonstrated superior recovery efficacy, especially in restoring the blood-brain barrier integrity and improving neurological function. Our findings suggest that these potent therapeutic extracellular vesicles, easily produced from WJ-MSCs cultured in the presence of soy proteins, may mitigate hypoxia-induced brain injury by decreasing the severity of vascular disorder caused by oxidative stress. Protein-protein interactome analysis further suggests that multiple signaling pathways are likely involved in restoring normal neurovascular unit function.
Collapse
Affiliation(s)
- Tai-I Lin
- Department
of Applied Chemistry and Institute of Molecular Science, National Yang-Ming Chiao-Tung University, Hsinchu 300093, Taiwan
| | - Pei-Ying Hsieh
- Department
of Applied Chemistry and Institute of Molecular Science, National Yang-Ming Chiao-Tung University, Hsinchu 300093, Taiwan
| | - Hui-Jen Lin
- Department
of Applied Chemistry and Institute of Molecular Science, National Yang-Ming Chiao-Tung University, Hsinchu 300093, Taiwan
| | - Cheng-Kang Chiang
- Department
of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Institute
of Biomedical Sciences, National Sun Yat-Sen
University, Kaohsiung 804201, Taiwan
| | - Wei-Tien Chang
- National
Taiwan University Hospital/National Taiwan University, Taipei 100233, Taiwan
| | - Ian Liau
- Department
of Applied Chemistry and Institute of Molecular Science, National Yang-Ming Chiao-Tung University, Hsinchu 300093, Taiwan
- Center
for Emergent Functional Matter Science, National Yang-Ming Chiao-Tung University, Hsinchu 300093, Taiwan
| | - Hsin-Yun Hsu
- Department
of Applied Chemistry and Institute of Molecular Science, National Yang-Ming Chiao-Tung University, Hsinchu 300093, Taiwan
- Center
for Emergent Functional Matter Science, National Yang-Ming Chiao-Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
6
|
Qin B, Bao D, Liu Y, Zeng S, Deng K, Liu H, Fu S. Engineered exosomes: a promising strategy for tendon-bone healing. J Adv Res 2024; 64:155-169. [PMID: 37972886 PMCID: PMC11464473 DOI: 10.1016/j.jare.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Due to the spatiotemporal complexity of the composition, structure, and cell population of the tendon-bone interface (TBI), it is difficult to achieve true healing. Recent research is increasingly focusing on engineered exosomes, which are a promising strategy for TBI regeneration. AIM OF REVIEW This review discusses the physiological and pathological characteristics of TBI and the application and limitations of natural exosomes in the field of tendon-bone healing. The definition, loading strategies, and spatiotemporal properties of engineered exosomes were elaborated. We also summarize the application and future research directions of engineered exosomes in the field of tendon-bone healing. KEY SCIENTIFIC CONCEPTS OF REVIEW Engineered exosomes can spatially deliver cargo to targeted sites and temporally realize the sustained release of therapeutic molecules in TBI. This review expounds on the multidifferentiation of engineered exosomes for tendon-bone healing, which effectively improves the biological and biomechanical properties of TBI. Engineered exosomes could be a promising strategy for tendon-bone healing.
Collapse
Affiliation(s)
- Bo Qin
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Dingsu Bao
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China; Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China
| | - Yang Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Shengqiang Zeng
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China; Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China
| | - Kai Deng
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China.
| | - Shijie Fu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China.
| |
Collapse
|
7
|
Chen M, Li Y, Zhang M, Ge S, Feng T, Chen R, Shen J, Li R, Wang Z, Xie Y, Wang D, Liu J, Lin Y, Chang F, Chen J, Sun X, Cheng D, Huang X, Wu F, Zhang Q, Cai P, Yin P, Zhang L, Tang P. Histone deacetylase inhibition enhances extracellular vesicles from muscle to promote osteogenesis via miR-873-3p. Signal Transduct Target Ther 2024; 9:256. [PMID: 39343927 PMCID: PMC11439940 DOI: 10.1038/s41392-024-01976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/12/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Regular physical activity is widely recognized for reducing the risk of various disorders, with skeletal muscles playing a key role by releasing biomolecules that benefit multiple organs and tissues. However, many individuals, particularly the elderly and those with clinical conditions, are unable to engage in physical exercise, necessitating alternative strategies to stimulate muscle cells to secrete beneficial biomolecules. Histone acetylation and deacetylation significantly influence exercise-induced gene expression, suggesting that targeting histone deacetylases (HDACs) could mimic some exercise responses. In this study, we explored the effects of the HDAC inhibitor Trichostatin A (TSA) on human skeletal muscle myoblasts (HSMMs). Our findings showed that TSA-induced hyperacetylation enhanced myotube fusion and increased the secretion of extracellular vesicles (EVs) enriched with miR-873-3p. These TSA-EVs promoted osteogenic differentiation in human bone marrow mesenchymal stem cells (hBMSCs) by targeting H2 calponin (CNN2). In vivo, systemic administration of TSA-EVs to osteoporosis mice resulted in significant improvements in bone mass. Moreover, TSA-EVs mimicked the osteogenic benefits of exercise-induced EVs, suggesting that HDAC inhibition can replicate exercise-induced bone health benefits. These results demonstrate the potential of TSA-induced muscle-derived EVs as a therapeutic strategy to enhance bone formation and prevent osteoporosis, particularly for individuals unable to exercise. Given the FDA-approved status of various HDAC inhibitors, this approach holds significant promise for rapid clinical translation in osteoporosis treatment.
Collapse
Affiliation(s)
- Ming Chen
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yi Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Mingming Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Siliang Ge
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Taojin Feng
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ruijing Chen
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Junmin Shen
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ran Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Zhongqi Wang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yong Xie
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Duanyang Wang
- The Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiang Liu
- The Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuan Lin
- The Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feifan Chang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Junyu Chen
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xinyu Sun
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Dongliang Cheng
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xiang Huang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Fanfeng Wu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Qinxiang Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Pingqiang Cai
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Pengbin Yin
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Licheng Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Peifu Tang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| |
Collapse
|
8
|
Gao J, Zhu D, Fan Y, Liu H, Shen Z. Human Umbilical Cord Mesenchymal Stem Cells-Derived Extracellular Vesicles for Rat Jawbone Regeneration in Periapical Periodontitis. ACS Biomater Sci Eng 2024; 10:5784-5795. [PMID: 39164977 DOI: 10.1021/acsbiomaterials.4c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Extracellular vesicles derived from mesenchymal stem cells (MSCs-EVs) have great potential for bone remodeling and anti-inflammatory therapy. For the repair and reconstruction of inflammatory jawbone defects caused by periapical periodontitis, bone meal filling after debridement is commonly used in the clinic. However, this treatment has disadvantages such as large individual differences and the need for surgical operation. Therefore, it is of great significance to search for other bioactive substances that can promote jawbone regeneration in periapical periodontitis. Herein, it is found that CT results showed that local injection of human umbilical cord mesenchymal stem cells-derived extracellular vesicles (HUC-MSCs-EVs) and bone meal filling into the alveolar bone defect area could promote bone tissue regeneration using a rat model of a jawbone defect in periapical periodontitis. Histologically, the new periodontal tissue in the bone defect area was thicker, and the number of blood vessels was higher by local injection of HUC-MSCs-EVs, and fewer inflammatory cells and osteoclasts were formed compared to bone meal filling. In vitro, HUC-MSCs-EVs can be internalized by rat bone marrow mesenchymal stem cells (BMSCs), enhancing the ability for proliferation and migration of BMSCs. Additionally, 20 μg/mL HUC-MSCs-EVs can facilitate the expression of osteogenic genes and proteins including runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and osteopontin (OPN). In summary, in vivo and in vitro experiments showed that HUC-MSCs-EVs can promote bone regeneration in periapical periodontitis, and the effect of tissue regeneration is better than that of traditional bone meal treatment. Therefore, local injection of HUC-MSCs-EVs may be an effective method to promote jawbone regeneration in periapical periodontitis.
Collapse
Affiliation(s)
- Jiahui Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei 230001, China
| | - Dongao Zhu
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yue Fan
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Honghong Liu
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zuojun Shen
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei 230001, China
| |
Collapse
|
9
|
Zhang M, Mi M, Hu Z, Li L, Chen Z, Gao X, Liu D, Xu B, Liu Y. Polydopamine-Based Biomaterials in Orthopedic Therapeutics: Properties, Applications, and Future Perspectives. Drug Des Devel Ther 2024; 18:3765-3790. [PMID: 39219693 PMCID: PMC11363944 DOI: 10.2147/dddt.s473007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Polydopamine is a versatile and modifiable polymer, known for its excellent biocompatibility and adhesiveness. It can also be engineered into a variety of nanoparticles and biomaterials for drug delivery, functional modification, making it an excellent choice to enhance the prevention and treatment of orthopedic diseases. Currently, the application of polydopamine biomaterials in orthopedic disease prevention and treatment is in its early stages, despite some initial achievements. This article aims to review these applications to encourage further development of polydopamine for orthopedic therapeutic needs. We detail the properties of polydopamine and its biomaterial types, highlighting its superior performance in functional modification on nanoparticles and materials. Additionally, we also explore the challenges and future prospects in developing optimal polydopamine biomaterials for clinical use in orthopedic disease prevention and treatment.
Collapse
Affiliation(s)
- Min Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Man Mi
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zilong Hu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Lixian Li
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zhiping Chen
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Di Liu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Bilian Xu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Yanzhi Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| |
Collapse
|
10
|
Meng W, Nie Y, Zhang J, Qin L, Liu X, Ma T, Wu J. Enhancing bioactivity and biocompatibility of polyetheretherketone (PEEK) for dental and maxillofacial implants: A novel sequential soaking process. Heliyon 2024; 10:e33381. [PMID: 39027560 PMCID: PMC11255662 DOI: 10.1016/j.heliyon.2024.e33381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Polyetheretherketone (PEEK) exhibits excellent biocompatibility, fatigue resistance, and an elastic modulus similar to bone, presenting broad application prospects in the field of dental and maxillofacial implants. However, the bioinertness of PEEK limits its applications. In this study, we developed a method to generate biocompatible and bioactive PEEK through a simple sequential soaking process, aimed at inducing bone differentiation and enhancing antibacterial properties. Initially, a three-dimensional (3D) porous network was introduced on the PEEK surface by soaking in concentrated sulfuric acid and water. Subsequently, the sulfonated PEEK surface was treated with oxygen plasma, followed by immersion in a dopamine solution to coat a polydopamine (PDA) layer. Finally, polydopamine phosphate ester-modified 3D porous PEEK was obtained through the reaction of phosphoryl chloride with surface phenolic hydroxyl groups. Systematic studies were conducted using scanning electron microscopy, X-ray photoelectron spectroscopy, water contact angle analysis, cell proliferation and adhesion, osteogenic gene expression detection, alkaline phosphatase staining, alizarin red staining, and bacterial culture. Overall, compared to unmodified PEEK, the modified PEEK significantly enhanced in vitro cell proliferation and adhesion, osteogenic differentiation, and antibacterial properties. The simple surface modification measures combined in this study may represent a promising technology and could facilitate the application of PEEK in dental and maxillofacial implants.
Collapse
Affiliation(s)
- Wenqing Meng
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Yifei Nie
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Jiajia Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Ludan Qin
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Xueye Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Tongtong Ma
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Junling Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| |
Collapse
|
11
|
Fang F, Yang J, Wang J, Li T, Wang E, Zhang D, Liu X, Zhou C. The role and applications of extracellular vesicles in osteoporosis. Bone Res 2024; 12:4. [PMID: 38263267 PMCID: PMC10806231 DOI: 10.1038/s41413-023-00313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 01/25/2024] Open
Abstract
Osteoporosis is a widely observed condition characterized by the systemic deterioration of bone mass and microarchitecture, which increases patient susceptibility to fragile fractures. The intricate mechanisms governing bone homeostasis are substantially impacted by extracellular vesicles (EVs), which play crucial roles in both pathological and physiological contexts. EVs derived from various sources exert distinct effects on osteoporosis. Specifically, EVs released by osteoblasts, endothelial cells, myocytes, and mesenchymal stem cells contribute to bone formation due to their unique cargo of proteins, miRNAs, and cytokines. Conversely, EVs secreted by osteoclasts and immune cells promote bone resorption and inhibit bone formation. Furthermore, the use of EVs as therapeutic modalities or biomaterials for diagnosing and managing osteoporosis is promising. Here, we review the current understanding of the impact of EVs on bone homeostasis, including the classification and biogenesis of EVs and the intricate regulatory mechanisms of EVs in osteoporosis. Furthermore, we present an overview of the latest research progress on diagnosing and treating osteoporosis by using EVs. Finally, we discuss the challenges and prospects of translational research on the use of EVs in osteoporosis.
Collapse
Affiliation(s)
- Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jie Yang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jiahe Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tiantian Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Erxiang Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Shu T, Wang X, Li M, Ma S, Cao J, Sun G, Lai T, Liu S, Li A, Qu Z, Pei D. Nanoscaled Titanium Oxide Layer Provokes Quick Osseointegration on 3D-Printed Dental Implants: A Domino Effect Induced by Hydrophilic Surface. ACS NANO 2024; 18:783-797. [PMID: 38117950 DOI: 10.1021/acsnano.3c09285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Three-dimensional printing is a revolutionary strategy to fabricate dental implants. Especially, 3D-printed dental implants modified with nanoscaled titanium oxide layer (H-SLM) have impressively shown quick osseointegration, but the accurate mechanism remains elusive. Herein, we unmask a domino effect that the hydrophilic surface of the H-SLM facilitates blood wetting, enhances the blood shear rate, promotes blood clotting, and changes clot features for quick osseointegration. Combining computational fluid dynamic simulation and biological verification, we find a blood shear rate during blood wetting of the hydrophilic H-SLM 1.2-fold higher than that of the raw 3D-printed implant, which activates blood clot formation. Blood clots formed on the hydrophilic H-SLM demonstrate anti-inflammatory and pro-osteogenesis effects, leading to a 1.5-fold higher bone-to-implant contact and a 1.8-fold higher mechanical anchorage at the early stage of osseointegration. This mechanism deepens current knowledge between osseointegration speed and implant surface characteristics, which is instructive in surface nanoscaled modification of multiple 3D-printed intrabony implants.
Collapse
Affiliation(s)
- Tianyu Shu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xueliang Wang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meng Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shaoyang Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiao Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guo Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tao Lai
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shaobao Liu
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhiguo Qu
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
13
|
Shi H, Yang Y, Xing H, Jia J, Xiong W, Guo S, Yang S. Exosomal non-coding RNAs: Emerging insights into therapeutic potential and mechanisms in bone healing. J Tissue Eng 2024; 15:20417314241286606. [PMID: 39371940 PMCID: PMC11456177 DOI: 10.1177/20417314241286606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Exosomes are nano-sized extracellular vesicles (EVs) released by diverse types of cells, which affect the functions of targeted cells by transporting bioactive substances. As the main component of exosomes, non-coding RNA (ncRNA) is demonstrated to impact multiple pathways participating in bone healing. Herein, this review first introduces the biogenesis and secretion of exosomes, and elucidates the role of the main cargo in exosomes, ncRNAs, in mediating intercellular communication. Subsequently, the potential molecular mechanism of exosomes accelerating bone healing is elucidated from the following four aspects: macrophage polarization, vascularization, osteogenesis and osteoclastogenesis. Then, we systematically introduce construction strategies based on modified exosomes in bone regeneration field. Finally, the clinical trials of exosomes for bone healing and the challenges of exosome-based therapies in the biomedical field are briefly introduced, providing solid theoretical frameworks and optimization methods for the clinical application of exosomes in orthopedics.
Collapse
Affiliation(s)
- Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yang Yang
- Department of Rehabilitation, The First Hospital of China Medical University, Shenyang, China
| | - Hao Xing
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jialin Jia
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Affiliated Hospital of Medical College of Shihezi University, Shihezi, Xinjiang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Zheng W, Wu D, Zhang Y, Luo Y, Yang L, Xu X, Luo F. Multifunctional modifications of polyetheretherketone implants for bone repair: A comprehensive review. BIOMATERIALS ADVANCES 2023; 154:213607. [PMID: 37651963 DOI: 10.1016/j.bioadv.2023.213607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Polyetheretherketone (PEEK) has emerged as a highly promising orthopedic implantation material due to its elastic modulus which is comparable to that of natural bone. This polymer exhibits impressive properties for bone implantation such as corrosion resistance, fatigue resistance, self-lubrication and chemical stability. Significantly, compared to metal-based implants, PEEK implants have mechanical properties that are closer to natural bone, which can mitigate the "stress shielding" effect in bone implantation. Nevertheless, PEEK is incapable of inducing osteogenesis due to its bio-inert molecular structure, thereby hindering the osseointegration process. To optimize the clinical application of PEEK, researchers have been working on promoting its bioactivity and endowing this polymer with beneficial properties, such as antibacterial, anti-inflammatory, anti-tumor, and angiogenesis-promoting capabilities. Considering the significant growth of research on PEEK implants over the past 5 years, this review aims to present a timely update on PEEK's modification methods. By highlighting the latest advancements in PEEK modification, we hope to provide guidance and inspiration for researchers in developing the next generation bone implants and optimizing their clinical applications.
Collapse
Affiliation(s)
- Wenzhuo Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dongxu Wu
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiangrui Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Wang K, Frey N, Garcia A, Man K, Yang Y, Gualerzi A, Clemens ZJ, Bedoni M, LeDuc PR, Ambrosio F. Nanotopographical Cues Tune the Therapeutic Potential of Extracellular Vesicles for the Treatment of Aged Skeletal Muscle Injuries. ACS NANO 2023; 17:19640-19651. [PMID: 37797946 PMCID: PMC10603813 DOI: 10.1021/acsnano.3c02269] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
Skeletal muscle regeneration relies on the tightly temporally regulated lineage progression of muscle stem/progenitor cells (MPCs) from activation to proliferation and, finally, differentiation. However, with aging, MPC lineage progression is disrupted and delayed, ultimately causing impaired muscle regeneration. Extracellular vesicles (EVs) have attracted broad attention as next-generation therapeutics for promoting tissue regeneration. As a next step toward clinical translation, strategies to manipulate EV effects on downstream cellular targets are needed. Here, we developed an engineering strategy to tune the therapeutic potential of EVs using nanotopographical cues. We found that EVs released by young MPCs cultured on flat substrates (fEVs) promoted the proliferation of aged MPCs while EVs released by MPCs cultured on nanogratings (nEVs) promoted myogenic differentiation. We then employed a bioengineered 3D muscle aging model to optimize the administration protocol and test the therapeutic potential of fEVs and nEVs in a high-throughput manner. We found that the sequential administration first of fEVs during the phase of MPC proliferative expansion (i.e., 1 day after injury) followed by nEV administration at the stage of MPC differentiation (i.e., 3 days after injury) enhanced aged muscle regeneration to a significantly greater extent than fEVs and nEVs delivered either in isolation or mixed. The beneficial effects of the sequential EV treatment strategy were further validated in vivo, as evidenced by increased myofiber size and improved functional recovery. Collectively, our study demonstrates the ability of topographical cues to tune EV therapeutic potential and highlights the importance of optimizing the EV administration strategy to accelerate aged skeletal muscle regeneration.
Collapse
Affiliation(s)
- Kai Wang
- Discovery
Center for Musculoskeletal Recovery, Schoen
Adams Research Institute at Spaulding, Charlestown, Massachusetts 02129, United States
- Department
of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts 02129, United States
- Department
of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Nolan Frey
- Department
of Biological Sciences, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Andres Garcia
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Kun Man
- Department
of Biomedical Engineering, University of
North Texas, Denton, Texas 76207, United States
| | - Yong Yang
- Department
of Biomedical Engineering, University of
North Texas, Denton, Texas 76207, United States
| | - Alice Gualerzi
- IRCCS
Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Zachary J. Clemens
- Department
of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Marzia Bedoni
- IRCCS
Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Philip R. LeDuc
- Department
of Biological Sciences, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Computational Biology, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Fabrisia Ambrosio
- Discovery
Center for Musculoskeletal Recovery, Schoen
Adams Research Institute at Spaulding, Charlestown, Massachusetts 02129, United States
- Department
of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts 02129, United States
- Department
of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
16
|
Karmakar R, Dey S, Alam A, Khandelwal M, Pati F, Rengan AK. Attributes of Nanomaterials and Nanotopographies for Improved Bone Tissue Engineering and Regeneration. ACS APPLIED BIO MATERIALS 2023; 6:4020-4041. [PMID: 37691480 DOI: 10.1021/acsabm.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Bone tissue engineering (BTE) is a multidisciplinary area that can solve the limitation of conventional grafting methods by developing viable and biocompatible bone replacements. The three essential components of BTE, i.e., Scaffold material and Cells and Growth factors altogether, facilitate support and guide for bone formation, differentiation of the bone tissues, and enhancement in the cellular activities and bone regeneration. However, there is a scarcity of the appropriate materials that can match the mechanical property as well as functional similarity to native tissue, considering the bone as hard tissue. In such scenarios, nanotechnology can be leveraged upon to achieve the desired aspects of BTE, and that is the key point of this review article. This review article examines the significant areas of nanotechnology research that have an impact on regeneration of bone: (a) scaffold with nanomaterials helps to enhance physicochemical interactions, biocompatibility, mechanical stability, and attachment; (b) nanoparticle-based approaches for delivering bioactive chemicals, growth factors, and genetic material. The article begins with the introduction of components and healing mechanisms of bone and the factors associated with them. The focus of this article is on the various nanotopographies that are now being used in scaffold formation, by describing how they are made, and how these nanotopographies affect the immune system and potential underlying mechanisms. The advantages of 4D bioprinting in BTE by using nanoink have also been mentioned. Additionally, we have investigated the importance of an in silico approach for finding the interaction between drugs and their related receptors, which can help to formulate suitable systems for delivery. This review emphasizes the role of nanoscale approach and how it helps to increase the efficacy of parameters of scaffold as well as drug delivery system for tissue engineering and bone regeneration.
Collapse
Affiliation(s)
- Rounik Karmakar
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Sreenath Dey
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Aszad Alam
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Mudrika Khandelwal
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| |
Collapse
|
17
|
Wang Y, Lin Q, Zhang H, Wang S, Cui J, Hu Y, Liu J, Li M, Zhang K, Zhou F, Jing Y, Geng Z, Su J. M2 macrophage-derived exosomes promote diabetic fracture healing by acting as an immunomodulator. Bioact Mater 2023; 28:273-283. [PMID: 37303851 PMCID: PMC10247878 DOI: 10.1016/j.bioactmat.2023.05.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023] Open
Abstract
Diabetes mellitus is a chronically inflamed disease that predisposes to delayed fracture healing. Macrophages play a key role in the process of fracture healing by undergoing polarization into either M1 or M2 subtypes, which respectively exhibit pro-inflammatory or anti-inflammatory functions. Therefore, modulation of macrophage polarization to the M2 subtype is beneficial for fracture healing. Exosomes perform an important role in improving the osteoimmune microenvironment due to their extremely low immunogenicity and high bioactivity. In this study, we extracted the M2-exosomes and used them to intervene the bone repair in diabetic fractures. The results showed that M2-exosomes significantly modulate the osteoimmune microenvironment by decreasing the proportion of M1 macrophages, thereby accelerating diabetic fracture healing. We further confirmed that M2-exosomes induced the conversion of M1 macrophages into M2 macrophages by stimulating the PI3K/AKT pathway. Our study offers a fresh perspective and a potential therapeutic approach for M2-exosomes to improve diabetic fracture healing.
Collapse
Affiliation(s)
- Yili Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Qiushui Lin
- Department of Spine Surgery, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Jin Cui
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jinlong Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Mengmeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Kun Zhang
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Suzhou Innovation Center of Shanghai University, Suzhou, 215000, Jiangsu, China
- Shaoxing Institute of Technology at Shanghai University, Shaoxing, 312000, Zhejiang, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
18
|
Bighetti-Trevisan RL, Ferraz EP, Silva MBF, Zatta GC, de Almeida MB, Rosa AL, Beloti MM. Effect of osteoblasts on osteoclast differentiation and activity induced by titanium with nanotopography. Colloids Surf B Biointerfaces 2023; 229:113448. [PMID: 37451224 DOI: 10.1016/j.colsurfb.2023.113448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Titanium with nanotopography (Ti Nano) favors osteoblast differentiation and attenuates the osteoclast inhibitory effects on osteoblasts. Because the interactions between nanotopography and osteoclasts are underexplored, the aims of this study were to evaluate the effects of Ti Nano on osteoclast differentiation and activity, and the influence of osteoblasts on osteoclast-Ti Nano interaction. The discs were conditioned with a mixture of 10 N H2SO4 and 30% aqueous H2O2 to create Ti Nano and non-conditioned Ti discs were used as control (Ti Control). Osteoclasts were cultured on Ti Control and Ti Nano in the presence of osteoblasts in an indirect co-culture system. Also, osteoclasts were cultured on polystyrene and calcium phosphate plates in conditioned media by osteoblasts grown on Ti Control and Ti Nano. While Ti Control exhibited an irregular and smooth surface, Ti Nano presented nanopores distributed throughout the whole surface. Additionally, anisotropy was higher on Ti Nano than Ti Control. Nanotopography favored the gene expression of osteoclast markers but inhibited osteoclast differentiation and activity, and the presence of osteoblasts enhanced the effects of Ti Nano on osteoclasts. Such findings were mimicked by conditioned medium of osteoblasts cultured on Ti Nano, which reduced the osteoclast differentiation and activity. In conclusion, our results indicated that nanotopography regulates osteoblast-osteoclast crosstalk and further investigations should focus the impact of these bone cell interactions on Ti osseointegration.
Collapse
Affiliation(s)
| | - Emanuela Prado Ferraz
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | | | - Guilherme Crepi Zatta
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Marcelo Barros de Almeida
- School of Electrical Engineering, Federal University of Uberlândia, Uberlândia, 38408-100 MG, Brazil
| | - Adalberto Luiz Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Marcio Mateus Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil.
| |
Collapse
|
19
|
Zhao C, Yang C, Lou Q, Yan J, Wang X, Chang J. The memory effect of micro/nano-structures activating osteogenic differentiation of BMSCs. J Mater Chem B 2023; 11:3816-3822. [PMID: 37092687 DOI: 10.1039/d3tb00337j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Degradable bioceramics such as hydroxyapatite (HA) are usually used as bone grafts due to their excellent osteoconductive ability. Recent studies have proved that decorated micro/nano-structures on HA could enhance its osteogenic capacity by directly activating osteogenic differentiation of bone marrow-derived stem cells (BMSCs) or by indirectly activating the osteoimmune microenvironment. However, it is still unclear whether the degradation process of HA affects the activation effect of micro/nano-structures. In this study, we first demonstrate that the enhanced osteogenic properties activated by micro/nano-structures could be memorized and continue to play a role even after the removal of micro/nano-structures. More interestingly, this topography-triggered osteogenic memory effect (TTOME) could be regulated through the stimulation time, indicating the importance of the rational maintenance of micro/nano-structures as well as the degradation process of bioceramics. These findings provide a perspective of the design of bone implants with a biodegradable surface topography.
Collapse
Affiliation(s)
- Cancan Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, P. R. China.
| | - Chen Yang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Qun Lou
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, P. R. China.
| | - Jiashu Yan
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, P. R. China.
| | - Xudong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, P. R. China.
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| |
Collapse
|
20
|
Man K, Eisenstein NM, Hoey DA, Cox SC. Bioengineering extracellular vesicles: smart nanomaterials for bone regeneration. J Nanobiotechnology 2023; 21:137. [PMID: 37106449 PMCID: PMC10134574 DOI: 10.1186/s12951-023-01895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
In the past decade, extracellular vesicles (EVs) have emerged as key regulators of bone development, homeostasis and repair. EV-based therapies have the potential to circumnavigate key issues hindering the translation of cell-based therapies including functional tissue engraftment, uncontrolled differentiation and immunogenicity issues. Due to EVs' innate biocompatibility, low immunogenicity, and high physiochemical stability, these naturally-derived nanoparticles have garnered growing interest as potential acellular nanoscale therapeutics for a variety of diseases. Our increasing knowledge of the roles these cell-derived nanoparticles play, has made them an exciting focus in the development of novel pro-regenerative therapies for bone repair. Although these nano-sized vesicles have shown promise, their clinical translation is hindered due to several challenges in the EV supply chain, ultimately impacting therapeutic efficacy and yield. From the biochemical and biophysical stimulation of parental cells to the transition to scalable manufacture or maximising vesicles therapeutic response in vivo, a multitude of techniques have been employed to improve the clinical efficacy of EVs. This review explores state of the art bioengineering strategies to promote the therapeutic utility of vesicles beyond their native capacity, thus maximising the clinical potential of these pro-regenerative nanoscale therapeutics for bone repair.
Collapse
Affiliation(s)
- Kenny Man
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Neil M Eisenstein
- Research and Clinical Innovation, Royal Centre for Defence Medicine, ICT Centre, Vincent Drive, Birmingham, B15 2SQ, UK
- Institute of Translational Medicine, University of Birmingham, Heritage Building, Mindelsohn Way, Birmingham, B15 2TH, UK
| | - David A Hoey
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin, D02 R590, Ireland
- Dept. of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College, Dublin 2, D02 DK07, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre, Trinity College Dublin & RCSI, Dublin 2, D02 VN51, Dublin, Ireland
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
21
|
Wang Y, Liu L, Le Z, Tay A. Analysis of Nanomedicine Efficacy for Osteoarthritis. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yuwen Wang
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Ling Liu
- Institute of Health Innovation and Technology National University of Singapore Singapore 117599 Singapore
| | - Zhicheng Le
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Andy Tay
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
- Institute of Health Innovation and Technology National University of Singapore Singapore 117599 Singapore
- Tissue Engineering Programme National University of Singapore Singapore 117510 Singapore
| |
Collapse
|
22
|
Nanoporous Titanium Enriched with Calcium and Phosphorus Promotes Human Oral Osteoblast Bioactivity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106212. [PMID: 35627749 PMCID: PMC9141428 DOI: 10.3390/ijerph19106212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022]
Abstract
Implant surfaces are known to influence the osseointegration process; therefore, their modifications represent an important subject of investigation. On this basis, the purpose of this study was to evaluate the response of human oral osteoblasts (hOBs) to three different GR4 titanium discs: Machined, double-etched (Osteopore), and double-etched, surface-enriched with calcium and phosphorus (CaP) (Nanopore). The superficial topography was investigated with scanning electron microscopy (SEM) and the sessile drop technique. To test cellular response and osteoinductive properties, the following points were evaluated: (i) proliferation by MTS assay after 2 and 5 days; (ii) adhesion by multiphoton microscopy at day 2; (iii) the interaction with Ti discs by blue toluidine staining at day 5; (iv) alkaline phosphatase (ALP) activity by ALP assay after 14 days; (v) calcium deposition by alizarin red staining and by cetylpyridinium chloride after 14 days. The SEM analysis showed that Nanopore and Osteopore surfaces were characterized by the same micro-topography. Nanopore and Osteopore discs, compared to Machined, stimulated higher osteoblast proliferation and showed more osteoinductive properties by promoting the ALP activity and calcium deposition. In conclusion, the CaP treatment on DAE surfaces seemed to favor the oral osteoblast response, encouraging their use for in vivo applications.
Collapse
|