1
|
Paritmongkol W, Feng Z, Refaely-Abramson S, Tisdale WA, Kastl C, Maserati L. Layered Metal-Organic Chalcogenides: 2D Optoelectronics in 3D Self-Assembled Semiconductors. ACS NANO 2025; 19:12467-12477. [PMID: 40136016 PMCID: PMC11984305 DOI: 10.1021/acsnano.4c18493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
Molecular self-assembly offers an effective and scalable way to design nanostructured materials with tunable optoelectronic properties. In the past 30 years, organic chemistry has delivered a plethora of metal-organic structures based on the combination of organic groups, chalcogens, and a broad range of metals. Among these, several layered metal-organic chalcogenides (MOCs)─including "mithrene" (AgSePh)─recently emerged as interesting platforms to host 2D physics embedded in 3D crystals. Their combination of broad tunability, easy processability, and promising optoelectronic performance is driving a renewed interest in the more general material group of "low-dimensional" hybrids. In addition, the covalent MOC lattice provides higher stability compared with polar materials in operating devices. Here, we provide a perspective on the rise of 2D MOCs in terms of their synthesis approaches, 2D quantum confined exciton physics, and potential future applications in UV and X-ray photodetection, chemical sensors, and electrocatalysis.
Collapse
Affiliation(s)
- Watcharaphol Paritmongkol
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering (MSE), Vidyasirimedhi Institute
of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Zhifu Feng
- Istituto
Italiano di Tecnologia, Genova 16163, Italy
| | - Sivan Refaely-Abramson
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - William A. Tisdale
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Christoph Kastl
- Walter
Schottky Institute, TUM School of Natural Sciences, Technical University of Munich, Garching 85748, Germany
- Munich Center
for Quantum Science and Technology (MCQST), Munich 80799, Germany
| | - Lorenzo Maserati
- Istituto
Italiano di Tecnologia, Genova 16163, Italy
- Laboratorio
Energia Ambiente Piacenza (LEAP), Piacenza 29121, Italy
| |
Collapse
|
2
|
Lee WS, Cho Y, Paritmongkol W, Sakurada T, Ha SK, Kulik HJ, Tisdale WA. Mixed-Chalcogen 2D Silver Phenylchalcogenides (AgE 1-xE xPh; E = S, Se, Te). ACS NANO 2024; 18:35066-35074. [PMID: 39666312 DOI: 10.1021/acsnano.4c15118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Alloying is a powerful strategy for tuning the electronic band structure and optical properties of semiconductors. Here, we investigate the thermodynamic stability and excitonic properties of mixed-chalcogen alloys of two-dimensional (2D) hybrid organic-inorganic silver phenylchalcogenides (AgEPh; E = S, Se, Te). Using a variety of structural and optical characterization techniques, we demonstrate that the AgSePh-AgTePh system forms homogeneous alloys (AgSe1-xTexPh, 0 ≤ x ≤ 1) across all compositions, whereas the AgSPh-AgSePh and AgSPh-AgTePh systems exhibit distinct miscibility gaps. Density functional theory calculations reveal that chalcogen mixing is energetically unfavorable in all cases but comparable in magnitude to the ideal entropy of mixing at room temperature. Because AgSePh and AgTePh have the same crystal structure (which is different from AgSPh), alloying is predicted to be thermodynamically preferred over phase separation in the case of AgSePh-AgTePh, whereas phase separation is predicted to be more favorable than alloying for both the AgSPh-AgSePh and AgSPh-AgTePh systems, in agreement with experimental observations. Homogeneous AgSe1-xTexPh alloys exhibit continuously tunable excitonic absorption resonances in the ultraviolet-visible range, while the emission spectrum reveals competition between exciton delocalization (characteristic of AgSePh) and localization behavior (characteristic of AgTePh). Overall, these observations provide insight into the thermodynamics of 2D silver phenylchalcogenides and the effect of lattice composition on electron-phonon interactions in 2D hybrid organic-inorganic semiconductors.
Collapse
Affiliation(s)
- Woo Seok Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yeongsu Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Watcharaphol Paritmongkol
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tomoaki Sakurada
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Seung Kyun Ha
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - William A Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Yang H, Mandal S, Li B, Ghosh TK, Peterson JM, Guo P, Dou L, Chen M, Huang L. Slow Dephasing of Coherent Optical Phonons in Two-Dimensional Lead Organic Chalcogenides. J Am Chem Soc 2024; 146:33928-33936. [PMID: 39601525 DOI: 10.1021/jacs.4c12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Hybrid organic-inorganic semiconductors with strong electron-phonon interactions provide a programmable platform for developing a variety of electronic, optoelectronic, and quantum materials by controlling these interactions. However, in current hybrid semiconductors such as halide perovskites, anharmonic vibrations with rapid dephasing hinder the ability to coherently manipulate phonons. Here, we report the observation of long-lived coherent phonons in lead organic chalcogenides (LOCs), a new family of hybrid two-dimensional semiconductors. These materials feature harmonic phonon dynamics despite distorted lattices, combining long phonon dephasing times with tunable semiconducting properties. A dephasing time -up to 75 ps at 10 K, with up to ∼500 cycles of phonon oscillation between scattering events, was observed, corresponding to a dimensionless harmonicity parameter that is more than an order of magnitude larger than that of halide perovskites. The phonon dephasing time is significantly influenced by anharmonicity and centrosymmetry, both of which can be tuned through the design of the organic ligands enabled by the direct bonding between the organic and inorganic motifs. This research opens new opportunities for the manipulation of electronic properties with coherent phonons in hybrid semiconductors.
Collapse
Affiliation(s)
- Hanjun Yang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sagarmoy Mandal
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bowen Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Tushar Kanti Ghosh
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jonas Mark Peterson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Letian Dou
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ming Chen
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Lin XB, Wu CY, Han BY, Lee YC, Lin YF, Li SR, Sun SS, Li CT. Anion Effect on the Cu II-Neocuproine Mediator and Its Electrocatalysts for Dye-Sensitized Solar Cells: Polymeric Chalcogenides of PEDOT-PEDTT and [Ag 2(SePh) 2] n. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61820-61831. [PMID: 39303063 DOI: 10.1021/acsami.4c08861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The synthetical methodology for the [Cu(dmp)2]2+/1+ (dmp = 2,9-dimethyl-1,10-phenanthroline; neocuproine) complexes has been systematically investigated by using various copper precursors, including CuCl2, Cu(NO3)2, and Cu(ClO4)2. After an anion exchange to trifluoromethanesulfonimide (TFSI), the tetra-coordinated CuII(dmp)2(TFSI)2-Cu(ClO4)2 (7.43%) outperformed the penta-coordinated CuII(dmp)2(TFSI)(NO3)-Cu(NO3)2 (4.30%) and CuII(dmp)2(TFSI)(Cl)-CuCl2. Polymeric chalcogenides, including a conducting copolymeric electrode of PEDOT-PEDTT [PEDOT = poly(3,4-ethylenedioxythiophene); PEDTT = poly(3,4-ethylenedithiothiophene)] and a coordination polymeric electrode of silver bezeneselenolate ([Ag2(SePh)2]n; mithrene), are introduced as the electrocatalysts for [Cu(dmp)2]2+/1+ for the first time. After optimization, dye-sensitized solar cells (DSSCs) based on carbon cloth (CC)/AgSePh-30 (10.18%) showed superior electrocatalytic ability compared to the benchmark CC/Pt (7.43%) due to numerous active sites provided by electron-donating Se atoms, high film roughness, and bottom-up 2D charge transfer routes. The DSSC based on CC/PEDTT-50 (10.38%) also outperformed CC/Pt due to numerous active sites provided by electron-donating S atoms and proper energy band structure. This work sheds light on the future design and synthesis in Cu-complex mediators and functional polymeric chalcogenides for high-performance DSSCs.
Collapse
Affiliation(s)
- Xin-Bei Lin
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Road, Taipei 11677, Taiwan
| | - Chih-Ya Wu
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Road, Taipei 11677, Taiwan
| | - Bo-Yu Han
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Road, Taipei 11677, Taiwan
| | - Yu-Chien Lee
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Road, Taipei 11677, Taiwan
| | - Yin-Fan Lin
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Road, Taipei 11677, Taiwan
| | - Sie-Rong Li
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Shih-Sheng Sun
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Chun-Ting Li
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Road, Taipei 11677, Taiwan
| |
Collapse
|
5
|
Pavel MR, Chen Y, Santhiran A, Gi E, Ochoa-Romero K, Miller GJ, Guirado G, Rossini AJ, Vela J. Coloring Tetrahedral Semiconductors: Synthesis and Photoluminescence Enhancement of Ternary II-III 2-VI 4 Colloidal Nanocrystals. ACS ENERGY LETTERS 2024; 9:5012-5018. [PMID: 39416674 PMCID: PMC11474945 DOI: 10.1021/acsenergylett.4c02032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024]
Abstract
Ternary tetrahedral II-III2-VI4 semiconductors, where II is Zn or Cd, III In or Ga, and VI S, Se, or Te, are of interest in UV radiation detectors in medicine and space physics as well as CO2 photoreduction under visible light. We synthesize colloidal II-III2-VI4 semiconductor nanocrystals from readily available precursors and ascertain their ternary nature by structural and spectroscopic methods, including 77Se solid-state NMR spectroscopy. The pyramidally shaped nanocrystals range between 2 and 12 nm and exhibit optical gaps of 2-3.9 eV. In the presence of excess anions on the particle surface, treatment with Lewis acidic, Z-type ligands results in better passivation and enhanced photoluminescence. Electronic structure calculations reveal the most stable, lowest energy polymorphs and coloring patterns. This work will pave the way toward more environmentally friendly, ternary semiconductors for optoelectronics and electrocatalysis.
Collapse
Affiliation(s)
| | - Yunhua Chen
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011 United States
- Ames
National Laboratory, Ames, Iowa 50011 United States
| | - Anuluxan Santhiran
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011 United States
- Ames
National Laboratory, Ames, Iowa 50011 United States
| | - Eunbyeol Gi
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011 United States
- Ames
National Laboratory, Ames, Iowa 50011 United States
| | - Kerly Ochoa-Romero
- Departament
de Química, Universitat Autonòma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Gordon J. Miller
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011 United States
| | - Gonzalo Guirado
- Departament
de Química, Universitat Autonòma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Aaron J. Rossini
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011 United States
- Ames
National Laboratory, Ames, Iowa 50011 United States
| | - Javier Vela
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011 United States
- Ames
National Laboratory, Ames, Iowa 50011 United States
| |
Collapse
|
6
|
Yu N, Zhu Y, Wang T, Lin R, Li L, Yang G, Liu X, Li J, Wang J. Long-Chain Molecular Crystals Antimony(III) Alkanethiolates Sb(SC nH 2n+1) 3 ( n ≥ 12): Synthesis, Crystal and Electronic Structures, and Supramolecular Self-Assembly via Secondary Interactions. Inorg Chem 2024. [PMID: 39230943 DOI: 10.1021/acs.inorgchem.4c02454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Currently, there is not much success in solving the molecular and crystal structures of long-chain metal alkanethiolate complexes [M(SCnH2n+1)m] at the atomic level. Taking Sb(SC16H33)3 (1) as an example, we herein disclose the structural characteristics of long-chain trivalent antimony(III) alkanethiolates Sb(SCnH2n+1)3 (n ≥ 12) by single-crystal X-ray crystallography. Specifically, the Sb atom is three-coordinated by alkanethiolate ligands and a slightly distorted triangular pyramid SbS3 core is formed owing to the unique intramolecular stereochemistry of three alkyl chains, namely, two of them almost parallel aligning and the third chain extending alone around the SbS3 core. We further determine the conformation, spatial orientation and packing density of alkyl chains in 1 along with a comparison to those in other long-chain crystalline systems, and reveal the roles of intermolecular van der Waals and Sb···S secondary interactions in molecular self-assembly, which enables 1 to be a layer-structured molecular crystal with a monoclinic P21/c unit cell. The band structures and the atomic orbital contributions to the valence band maximum and conduction band minimum for 1 have also been evaluated by DFT calculations and rationally correlated with its optical absorption property. This study will help understand and discover new structures and structure-property relations of long-chain chemical systems.
Collapse
Affiliation(s)
- Nan Yu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yingqiu Zhu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Tingting Wang
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ruihan Lin
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Longhua Li
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Guowei Yang
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xianglong Liu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jianghua Li
- Zhenjiang Huayan Testing Technology Company Limited, Zhenjiang 212009, PR China
| | - Junli Wang
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
7
|
Nagaraju Myakala S, Rabl H, Schubert JS, Batool S, Ayala P, Apaydin DH, Cherevan A, Eder D. MOCHAs: An Emerging Class of Materials for Photocatalytic H 2 Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400348. [PMID: 38564790 DOI: 10.1002/smll.202400348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Production of green hydrogen (H2) is a sustainable process able to address the current energy crisis without contributing to long-term greenhouse gas emissions. Many Ag-based catalysts have shown promise for light-driven H2 generation, however, pure Ag-in its bulk or nanostructured forms-suffers from slow electron transfer kinetics and unfavorable Ag─H bond strength. It is demonstrated that the complexation of Ag with various chalcogenides can be used as a tool to optimize these parameters and reach improved photocatalytic performance. In this work, metal-organic-chalcogenolate assemblies (MOCHAs) are introduced as effective catalysts for light-driven hydrogen evolution reaction (HER) and investigate their performance and structural stability by examining a series of AgXPh (X = S, Se, and Te) compounds. Two catalyst-support sensitization strategies are explored: by designing MOCHA/TiO2 composites and by employing a common Ru-based photosensitizer. It is demonstrated that the heterogeneous approach yields stable HER performance but involves a catalyst transformation at the initial stage of the photocatalytic process. In contrast to this, the visible-light-driven MOCHA-dye dyad shows similar HER activity while also ensuring the structural integrity of the MOCHAs. The work shows the potential of MOCHAs in constructing photosystems for catalytic H2 production and provides a direct comparison between known AgXPh compounds.
Collapse
Affiliation(s)
| | - Hannah Rabl
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, Vienna, 1060, Austria
| | - Jasmin S Schubert
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, Vienna, 1060, Austria
| | - Samar Batool
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, Vienna, 1060, Austria
| | - Pablo Ayala
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, Vienna, 1060, Austria
| | - Dogukan H Apaydin
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, Vienna, 1060, Austria
| | - Alexey Cherevan
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, Vienna, 1060, Austria
| | - Dominik Eder
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, Vienna, 1060, Austria
| |
Collapse
|
8
|
Gu K, Wang T, Yang G, Yu N, Du C, Wang J. Inorganic-Organic Hybrid Layered Semiconductor AgSePh: Quasi-Solution Synthesis, Optical Properties, and Thermolysis Behavior. Inorg Chem 2024; 63:6465-6473. [PMID: 38528435 DOI: 10.1021/acs.inorgchem.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Two-dimensional inorganic-organic hybrid layered semiconductors are actively studied because of their naturally formed multiquantum well (MQW) structures and associated optical, photoelectric, and quantum optics characteristics. Silver benzeneselenolate (AgSePh, Ph = C6H5) is a new member of such hybrid layered materials, but has not fully been exploited. Herein, we present a quasi-solution method to prepare high quality free-standing AgSePh flake-like microcrystals by reacting diphenyl diselenide (Ph2Se2) with silver nanoparticles. The resultant AgSePh microflakes exhibit room-temperature (RT) resolvable MQW-induced quasi-particle quantization and interesting optical properties, such as three distinct excitonic resonance absorptions X1 (2.67 eV), X2 (2.71 eV), and X3 (2.83 eV) in the visible region, strong narrow-line width blue photoluminescence at ∼2.64 eV (470 nm) from the radiative recombination of the X1 exciton state, and a large exciton binding energy (∼0.35 eV). Furthermore, AgSePh microcrystals show high stability under water, oxygen, and heat environments, while above 220 °C, they will thermally decompose to silver and Ph2Se2 as evidenced by a combination of thermogravimetry and differential scanning calorimetry and pyrolysis-coupled gas chromatography-mass spectrometry studies. Finally, a comparison is extended between AgSePh and other metal benzeneselenolates, benzenethiolates, and alkanethiolates to clarify differences in their solubility, decomposition/melting temperature, and pyrolytic products.
Collapse
Affiliation(s)
- Kewei Gu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Tingting Wang
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Guowei Yang
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Nan Yu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chengchao Du
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Junli Wang
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
9
|
Muñoz J. Rational Design of Stimuli-Responsive Inorganic 2D Materials via Molecular Engineering: Toward Molecule-Programmable Nanoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305546. [PMID: 37906953 DOI: 10.1002/adma.202305546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/10/2023] [Indexed: 11/02/2023]
Abstract
The ability of electronic devices to act as switches makes digital information processing possible. Succeeding graphene, emerging inorganic 2D materials (i2DMs) have been identified as alternative 2D materials to harbor a variety of active molecular components to move the current silicon-based semiconductor technology forward to a post-Moore era focused on molecule-based information processing components. In this regard, i2DMs benefits are not only for their prominent physiochemical properties (e.g., the existence of bandgap), but also for their high surface-to-volume ratio rich in reactive sites. Nonetheless, since this field is still in an early stage, having knowledge of both i) the different strategies for molecularly functionalizing the current library of i2DMs, and ii) the different types of active molecular components is a sine qua non condition for a rational design of stimuli-responsive i2DMs capable of performing logical operations at the molecular level. Consequently, this Review provides a comprehensive tutorial for covalently anchoring ad hoc molecular components-as active units triggered by different external inputs-onto pivotal i2DMs to assess their role in the expanding field of molecule-programmable nanoelectronics for electrically monitoring bistable molecular switches. Limitations, challenges, and future perspectives of this emerging field which crosses materials chemistry with computation are critically discussed.
Collapse
Affiliation(s)
- Jose Muñoz
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| |
Collapse
|
10
|
Kotei PA, Paley DW, Oklejas V, Mittan-Moreau DW, Schriber EA, Aleksich M, Willson MC, Inoue I, Owada S, Tono K, Sugahara M, Inaba-Inoue S, Aquila A, Poitevin F, Blaschke JP, Lisova S, Hunter MS, Sierra RG, Gascón JA, Sauter NK, Brewster AS, Hohman JN. Engineering Supramolecular Hybrid Architectures with Directional Organofluorine Bonds. SMALL SCIENCE 2024; 4:2300110. [PMID: 39897162 PMCID: PMC11784642 DOI: 10.1002/smsc.202300110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/15/2023] [Indexed: 02/04/2025] Open
Abstract
Understanding how chemical modifications alter the atomic-scale organization of materials is of fundamental importance in materials engineering and the target of considerable efforts in computational prediction. Incorporating covalent and non-covalent interactions in designing crystals while "piggybacking" on the driving force of molecular self-assembly has augmented our efforts to understand the emergence of complex structures using directed synthesis. Here, we prepared microcrystalline powders of the silver 2-, 3-, and 4-fluorobenzenethiolates and resolved their structures by small molecule serial femtosecond X-ray crystallography (smSFX). These three compounds enable us to examine the emergence and role of supramolecular synthons in the crystal structures of three-dimensional metal-organic chalcogenolates (MOChas). The unique divergence in their optoelectronic, morphological, and structural behavior was assessed. The extent of C-H···F interactions and their influence on the structure and the observed trends in the thermal stability of the crystals were quantified through theoretical calculations and thermogravimetric analysis.
Collapse
Affiliation(s)
- Patience A. Kotei
- Institute of Materials ScienceUniversity of ConnecticutStorrsCT06269USA
- Department of ChemistryUniversity of ConnecticutStorrsCT06269USA
| | - Daniel W. Paley
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Vanessa Oklejas
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - David W. Mittan-Moreau
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Elyse A. Schriber
- Institute of Materials ScienceUniversity of ConnecticutStorrsCT06269USA
- Department of ChemistryUniversity of ConnecticutStorrsCT06269USA
| | - Mariya Aleksich
- Institute of Materials ScienceUniversity of ConnecticutStorrsCT06269USA
- Department of ChemistryUniversity of ConnecticutStorrsCT06269USA
| | - Maggie C. Willson
- Institute of Materials ScienceUniversity of ConnecticutStorrsCT06269USA
- Department of ChemistryUniversity of ConnecticutStorrsCT06269USA
| | - Ichiro Inoue
- Advanced Photon Technology DivisionRIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Shigeki Owada
- Advanced Photon Technology DivisionRIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
- XFEL Utilization DivisionJapan Synchrotron Radiation Research Institute1-1-1 KoutoSayoHyogo679-5198Japan
| | - Kensuke Tono
- Advanced Photon Technology DivisionRIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
- XFEL Utilization DivisionJapan Synchrotron Radiation Research Institute1-1-1 KoutoSayoHyogo679-5198Japan
| | - Michihiro Sugahara
- Advanced Photon Technology DivisionRIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Satomi Inaba-Inoue
- XFEL Utilization DivisionJapan Synchrotron Radiation Research Institute1-1-1 KoutoSayoHyogo679-5198Japan
- Structural Biology Research CenterPhoton FactoryInstitute of Materials Structure ScienceHigh Energy Accelerator Research Organization1-1 OhoTsukubaIbaraki305-0801Japan
| | - Andrew Aquila
- Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Frédéric Poitevin
- Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Johannes P. Blaschke
- National Energy Research Scientific Computing CenterLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Stella Lisova
- Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Mark S. Hunter
- Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Raymond G. Sierra
- Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - José A. Gascón
- Department of ChemistryUniversity of ConnecticutStorrsCT06269USA
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - James Nathan Hohman
- Institute of Materials ScienceUniversity of ConnecticutStorrsCT06269USA
- Department of ChemistryUniversity of ConnecticutStorrsCT06269USA
| |
Collapse
|
11
|
Sakurada T, Cho Y, Paritmongkol W, Lee WS, Wan R, Su A, Shcherbakov-Wu W, Müller P, Kulik HJ, Tisdale WA. 1D Hybrid Semiconductor Silver 2,6-Difluorophenylselenolate. J Am Chem Soc 2023; 145:5183-5190. [PMID: 36811999 DOI: 10.1021/jacs.2c11896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Organic-inorganic hybrid materials present new opportunities for creating low-dimensional structures with unique light-matter interaction. In this work, we report a chemically robust yellow emissive one-dimensional (1D) semiconductor, silver 2,6-difluorophenylselenolate─AgSePhF2(2,6), a new member of the broader class of hybrid low-dimensional semiconductors, metal-organic chalcogenolates. While silver phenylselenolate (AgSePh) crystallizes as a two-dimensional (2D) van der Waals semiconductor, introduction of fluorine atoms at the (2,6) position of the phenyl ring induces a structural transition from 2D sheets to 1D chains. Density functional theory calculations reveal that AgSePhF2 (2,6) has strongly dispersive conduction and valence bands along the 1D crystal axis. Visible photoluminescence centered around λp ≈ 570 nm at room temperature exhibits both prompt (110 ps) and delayed (36 ns) components. The absorption spectrum exhibits excitonic resonances characteristic of low-dimensional hybrid semiconductors, with an exciton binding energy of approximately 170 meV as determined by temperature-dependent photoluminescence. The discovery of an emissive 1D silver organoselenolate highlights the structural and compositional richness of the chalcogenolate material family and provides new insights for molecular engineering of low-dimensional hybrid organic-inorganic semiconductors.
Collapse
Affiliation(s)
- Tomoaki Sakurada
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yeongsu Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Watcharaphol Paritmongkol
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Woo Seok Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ruomeng Wan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Annlin Su
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wenbi Shcherbakov-Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Peter Müller
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - William A Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Microwave-assisted synthesis of metal-organic chalcogenolate assemblies as electrocatalysts for syngas production. Commun Chem 2023; 6:43. [PMID: 36859623 PMCID: PMC9977941 DOI: 10.1038/s42004-023-00843-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Today, many essential industrial processes depend on syngas. Due to a high energy demand and overall cost as well as a dependence on natural gas as its precursor, alternative routes to produce this valuable mixture of hydrogen and carbon monoxide are urgently needed. Electrochemical syngas production via two competing processes, namely carbon dioxide (CO2) reduction and hydrogen (H2) evolution, is a promising method. Often, noble metal catalysts such as gold or silver are used, but those metals are costly and have limited availability. Here, we show that metal-organic chalcogenolate assemblies (MOCHAs) combine several properties of successful electrocatalysts. We report a scalable microwave-assisted synthesis method for highly crystalline MOCHAs ([AgXPh] ∞: X = Se, S) with high yields. The morphology, crystallinity, chemical and structural stability are thoroughly studied. We investigate tuneable syngas production via electrocatalytic CO2 reduction and find the MOCHAs show a maximum Faraday efficiency (FE) of 55 and 45% for the production of carbon monoxide and hydrogen, respectively.
Collapse
|
13
|
Ye C, Li Z, Chang Z, Wu S, Sun Y, Xu W. Dual-Emission 2D Blue Luminescent Organic Silver Chalcogenide for Highly Selective Pb 2+ Detection in an Aqueous Medium. Inorg Chem 2023; 62:2334-2341. [PMID: 36695316 DOI: 10.1021/acs.inorgchem.2c04113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Crystalline organic metal chalcogenides (OMCs) are a class of organic-inorganic hybrid semiconducting materials with continuous M-X (X = S, Se, Te) networks formed by the combination of metal nodes and chalcogen atoms from the organic ligands, which display great potentials in the fields of optoelectronics, catalysis, sensing, as well as energy conversion and storage. Here, we synthesized a wave-like 2D OMC material, [(AgBF4)2Me6BHS]n (Ag-BHSMe), from AgBF4 and 1,2,3,4,5,6-hexa(methylselanyl)benzene (Me6BHS) through a simple homogeneous reaction. In the solid state, Ag-BHSMe exhibits both fluorescence emission at room temperature and phosphorescent emission at 77 K. TEM, SEM, and confocal microscopy revealed that it is an intrinsic blue luminescent microcrystalline material. In addition, we found that it exhibited a highly selective fluorescence enhancement response to Pb2+ in an aqueous solution in the range of 10-4 to 10-2 mol L-1, which demonstrates its potential as a turn-on probe for the detection of lead ions.
Collapse
Affiliation(s)
- Chunhui Ye
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| | - Ze Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| | - Zixin Chang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| | - Sha Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| | - Yimeng Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Wei Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
14
|
Lee WS, Cho Y, Powers ER, Paritmongkol W, Sakurada T, Kulik HJ, Tisdale WA. Light Emission in 2D Silver Phenylchalcogenolates. ACS NANO 2022; 16:20318-20328. [PMID: 36416726 DOI: 10.1021/acsnano.2c06204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Silver phenylselenolate (AgSePh, also known as "mithrene") and silver phenyltellurolate (AgTePh, also known as "tethrene") are two-dimensional (2D) van der Waals semiconductors belonging to an emerging class of hybrid organic-inorganic materials called metal-organic chalcogenolates. Despite having the same crystal structure, AgSePh and AgTePh exhibit a strikingly different excitonic behavior. Whereas AgSePh exhibits narrow, fast luminescence with a minimal Stokes shift, AgTePh exhibits comparatively slow luminescence that is significantly broadened and red-shifted from its absorption minimum. Using time-resolved and temperature-dependent absorption and emission microspectroscopy, combined with subgap photoexcitation studies, we show that exciton dynamics in AgTePh films are dominated by an intrinsic self-trapping behavior, whereas dynamics in AgSePh films are dominated by the interaction of band-edge excitons with a finite number of extrinsic defect/trap states. Density functional theory calculations reveal that AgSePh has simple parabolic band edges with a direct gap at Γ, whereas AgTePh has a saddle point at Γ with a horizontal splitting along the Γ-N1 direction. The correlation between the unique band structure of AgTePh and exciton self-trapping behavior is unclear, prompting further exploration of excitonic phenomena in this emerging class of hybrid 2D semiconductors.
Collapse
Affiliation(s)
- Woo Seok Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Yeongsu Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Eric R Powers
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Watcharaphol Paritmongkol
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Tomoaki Sakurada
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - William A Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
15
|
Chang W, Wang J, Zhang J, Ling Q, Li Y, Wang J. High Performance Gold Nanorods@DNA Self-Assembled Drug-Loading System for Cancer Thermo-Chemotherapy in the Second Near-Infrared Optical Window. Pharmaceutics 2022; 14:pharmaceutics14051110. [PMID: 35631696 PMCID: PMC9145609 DOI: 10.3390/pharmaceutics14051110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
In terms of synergistic cancer therapy, biological nanomaterials with a second near-infrared (NIR-II) window response can greatly increase photothermal effects and photoacoustic imaging performance. Herein, we report a novel stimuli-responsive multifunctional drug-loading system which was constructed by integrating miniature gold nanorods (GNR) as the NIR-II photothermal nanorods and cyclic ternary aptamer (CTA) composition as a carrier for chemotherapy drugs. In this system, doxorubicin hydrochloride (DOX, a chemotherapy drug) binds to the G-C base pairs of the CTA, which exhibited a controlled release behavior based on the instability of G-C base pairs in the slightly acidic tumor microenvironment. Upon the 1064 nm (NIR-II biowindow) laser irradiation, the strong photothermal and promoted cargo release properties endow gold nanorods@CTA (GNR@CTA) nanoparticles displaying excellent synergistic anti-cancer effect. Moreover, the GNR@CTA of NIR also possesses thermal imaging and photoacoustic (PA) imaging properties due to the strong NIR region absorbance. This work enables to obtaining a stimuli-responsive “all-in-one” nanocarrier, which are promising candidate for bimodal imaging diagnosis and chemo-photothermal synergistic therapy.
Collapse
Affiliation(s)
- Wei Chang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (W.C.); (J.W.); (J.Z.); (Q.L.)
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Faculty of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Junfeng Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (W.C.); (J.W.); (J.Z.); (Q.L.)
| | - Jing Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (W.C.); (J.W.); (J.Z.); (Q.L.)
| | - Qing Ling
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (W.C.); (J.W.); (J.Z.); (Q.L.)
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Faculty of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Yumei Li
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
- Correspondence: (Y.L.); (J.W.); Tel.: +86-(13)-055-271-587 (Y.L.); +86-(13)-055-165-161-176 (J.W.)
| | - Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (W.C.); (J.W.); (J.Z.); (Q.L.)
- Correspondence: (Y.L.); (J.W.); Tel.: +86-(13)-055-271-587 (Y.L.); +86-(13)-055-165-161-176 (J.W.)
| |
Collapse
|