1
|
He X, Li X, Wang C, Li J, Song X, Zhu G, Li X, Zhang Y, Zhu X, Shao J, Zhang M, Xu H. Ultralow-resistance and self-sterilization biodegradable nanofibrous membranes for efficient PM 0.3 removal and machine learning-assisted health management. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135862. [PMID: 39293169 DOI: 10.1016/j.jhazmat.2024.135862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/01/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
The development of multifunctional nanofibrous membranes (NFMs) that enable anti-viral protection during air purification and respiratory disease diagnosis for health management is of increasing importance. Herein, we unraveled a heterostructure-enhanced electro-induced stereocomplexation (HEIS) strategy to fabrication of poly(lactic acid) (PLA) NFMs enabling a combination of efficient PM removal, respiratory monitoring and self-sterilization. The strategy involved an electro-induced stereocomplexation (EIS) approach to trigger the generation of hydrogen bonds between enantiomeric poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA) chains, promoting CO dipole alignment and molecular polarization during electrospinning. This was further enhanced by incorporation of Ag-doped TiO2 (Ag-TIO) nanodielectrics to promote the electroactivity and surface activity, conferring profound refinement of PLA nanofibers (from 460 nm to an ultralow level of 168 nm) and high porosities of over 91 %. Arising from the sustainable generation of plentiful charges based on triboelectric nanogenerator (TENG) mechanisms, the electroactive PLA NFMs exhibited remarkable triboelectric properties even in high-humidity environments (80 %RH), excellent PM0.3 filtration efficiency with an ultralow pressure drop (93.1 %, 31.8 Pa, 32 L/min), and 100 % antimicrobial efficiency against both E. coli and S. aureus. Moreover, a deep-learning algorithm based on convolutional neural network (CNN) was proposed to recognize various respiratory patterns. The proposed strategy confers the biodegradable NFMs an unusual combination of ultralow-resistance air purification and machine learning-assisted health management, signifying promising prospects in environmental protection and personal healthcare.
Collapse
Affiliation(s)
- Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China.
| | - Xinyu Li
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Cunmin Wang
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Jiaqi Li
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xinyi Song
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Guiying Zhu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xiang Li
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yifan Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xuanjin Zhu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jiang Shao
- School of Architecture & Design, China University of Mining and Technology, Xuzhou 221116, China
| | - Mingming Zhang
- China Academy of Safety Science & Technology, Beijing 100012, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China.
| |
Collapse
|
2
|
Kuddushi M, Malek N, Xu BB, Wang X, Zheng B, Unsworth LD, Xu J, Zhang X. Transparent and Mechanically Robust Janus Nanofiber Membranes for Open Wound Healing and Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63389-63403. [PMID: 39509431 DOI: 10.1021/acsami.4c16217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The electrospun nanofiber membrane has demonstrated great potential for wound management due to its porous structure, large surface area, mechanical strength, and barrier properties. However, there is a need to develop transparent bioactive nanofibers with strong mechanical properties to facilitate the monitoring of the healing process. In this study, we present an electrospinning-based method for creating transparent (∼80-90%), strong (∼11-13 MPa), and Janus nanofiber membranes. The innovative square pattern architecture of the membrane includes a thin hydrophobic polycaprolactone layer on top of a layer of hydrophilic ethylene-vinyl alcohol nanofiber, which enables the absorption of excess biofluid from the wound and exhibits Janus wettability for water. Furthermore, incorporating 5% chitosan into the composition of the nanofibers accelerates the healing process through its antioxidant properties and antimicrobial activity against various bacteria, including drug-resistant strains. The developed membrane also demonstrates skin-repairing function, quick blood clotting (around 145 ± 12 s), and biocompatibility with keratinocyte (≥90%), as well as in vitro quick cell migration (∼24 h). With a tensile strength of 11-13 MPa, the membrane effectively adheres to the knee joint even after running 4 km. These optimal properties of the electrospun nanofiber membrane make it suitable for effective wound management and inspection of the healing process, without the need for frequent dressing changes.
Collapse
Affiliation(s)
- Muzammil Kuddushi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Naved Malek
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, U.K
| | - Xihua Wang
- Department of Electrical and Computer Engineering, University of Alberta, 9211 116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Bin Zheng
- Surgical Simulation Research Lab, Department of Surgery, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW, Australia, Sydney, NSW 2052, Australia
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
3
|
Zhu M, Liu S, Yang C, He Y, Huang Y, Yu Y, Yu W. Innovative transparent silk-melamine formaldehyde film with enhanced corrosion resistance and high tensile strength for surface decoration. Int J Biol Macromol 2024; 282:137559. [PMID: 39537078 DOI: 10.1016/j.ijbiomac.2024.137559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/27/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Transparent films with reduced light reflection and excellent wear resistance are crucial for applications that require anti-reflective properties without causing environmental harm. However, the preparation process of conventional anti-reflective films is relatively complicated. This paper proposes a simple method to prepare transparent film based on silk fabrics and melamine formaldehyde (MF) resins. The silk fabric's lattice structure serves as a frame, while the MF resin provides transparency and corrosion resistance as a functional filler. The resulting composite films, produced via hot pressing, exhibit excellent tensile strength (up to 617.4 MPa), anti-abrasion properties, and improved flexibility compared to pure MF films. Importantly, these films achieve a high transmittance (>85%) and a significant haze (ranging from 71.8% to 94.9%), with the silk fiber content primarily influencing scattering and haze levels while minimally affecting light transmittance. Additionally, the films demonstrate good pollution resistance and environmental friendliness, allowing contaminants to be removed after 5 h, and exhibit a TVOC emission of less than 0.1 mg/m3. These findings indicate that the developed composite films are promising candidates for wood surface decoration and applications that benefit from haze, such as anti-glare products. This work not only provides a straightforward method for creating flexible, anti-reflective transparent films utilizing natural fibers but also contributes to advancing sustainable practices in material design.
Collapse
Affiliation(s)
- Mengjia Zhu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Shiqin Liu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Chan Yang
- AICA Guangdong Company Limited, Zhaoqing 526105, China
| | - Yingqi He
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yuxiang Huang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Yanglun Yu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Wenji Yu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
4
|
Tang X, Zhang Z, Jing L, Luan K, Zhang T, Zhou S, Zhu Y, Li L, Ye J. Synthesis of a Quaternary Ammonium-Halamine and Preparation on the Modified Nanofibrous Filter with Superior Sterilization, Air Filtration, and Biodegradability. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59245-59255. [PMID: 39428615 DOI: 10.1021/acsami.4c12239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The outbreak of the 2019 coronavirus pandemic has raised worldwide attention about self-protection from airborne diseases. Air filtration and wearing mask have been proven to be effective measures in reducing the pathogenic aerosol's transmission. Those lead to an increasing demand of high-efficient filters. However, the nonbiodegradable polymeric materials used in filters can accumulate in landfills or ecosystems, potentially causing pollution after improper disposals. Sustainable and biodegradable alternatives to current filter materials are urgently needed. Yet, very few commercial filters meet these needs. In this paper, a novel quaternary ammonium-halamine compound containing Schiff base and a sandwich-structured preparation strategy were developed. The obtained multifunctional filter consists of a PLA fleece as a support layer, an antimicrobial coating for bactericidal function, and a nanofibrous membrane for the particle removal. The filter demonstrates strong bactericidal properties, killing 97% of Escherichia coli and Staphylococcus aureus at a biocide concentration of only 1 mg/mL. It can rapidly kill bacteria within 5 min contact without leaching antimicrobial substances. Furthermore, it boasts a filtration performance with a success rate over 99.99% and a pressure drop of 45 Pa, which surpasses that of commercial N95 filters for PM0.3. Even under humid conditions, it maintains excellent filtration performance. Our reusability testing result of the developed filters shows that a simple halogenation treatment can renew the halamines and restore the filter's antimicrobial activity. The filters can degrade in natural soil. The successful development of this sustainable and biodegradable filter material offers a new alternative for high-performance air quality control that protect public health.
Collapse
Affiliation(s)
- Xin Tang
- School of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China
- College of Sericulture, Textiles and Biomass Sciences, Chongqing Biomass Fiber Materials and Modern Textile Engineering Technology Research Center, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Zaixing Zhang
- School of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China
- Jiangsu Ruilante New Materials Co., Ltd., Yangzhou 211400, China
| | - Lingxiao Jing
- College of Sericulture, Textiles and Biomass Sciences, Chongqing Biomass Fiber Materials and Modern Textile Engineering Technology Research Center, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Yibin Pingshan Fanglian Technology Development Co., Ltd., Yibin 645350, China
| | - Kun Luan
- State Key Lab of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Shanghai 200050, China
| | - Tonghua Zhang
- College of Sericulture, Textiles and Biomass Sciences, Chongqing Biomass Fiber Materials and Modern Textile Engineering Technology Research Center, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Sha Zhou
- School of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China
| | - Yifan Zhu
- School of Computing, College of Engineering, Computing and Cybernetics, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Lifan Li
- College of Sericulture, Textiles and Biomass Sciences, Chongqing Biomass Fiber Materials and Modern Textile Engineering Technology Research Center, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Jiapeng Ye
- College of Sericulture, Textiles and Biomass Sciences, Chongqing Biomass Fiber Materials and Modern Textile Engineering Technology Research Center, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Li X, Lin Y, Zhao C, Meng N, Bai Y, Wang X, Yu J, Ding B. Biodegradable Polyurethane Derived from Hydroxylated Polylactide with Superior Mechanical Properties. Polymers (Basel) 2024; 16:1809. [PMID: 39000664 PMCID: PMC11243797 DOI: 10.3390/polym16131809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Developing biodegradable polyurethane (PU) materials as an alternative to non-degradable petroleum-based PU is a crucial and challenging task. This study utilized lactide as the starting material to synthesize polylactide polyols (PLA-OH). PLA-based polyurethanes (PLA-PUs) were successfully synthesized by introducing PLA-OH into the PU molecular chain. A higher content of PLA-OH in the soft segments resulted in a substantial improvement in the mechanical attributes of the PLA-PUs. This study found that the addition of PLA-OH content significantly improved the tensile stress of the PU from 5.35 MPa to 37.15 MPa and increased the maximum elongation to 820.8%. Additionally, the modulus and toughness of the resulting PLA-PU were also significantly improved with increasing PLA-OH content. Specifically, the PLA-PU with 40% PLA-OH exhibited a high modulus of 33.45 MPa and a toughness of 147.18 MJ m-3. PLA-PU films can be degraded to carbon dioxide and water after 6 months in the soil. This highlights the potential of synthesizing PLA-PU using biomass-renewable polylactide, which is important in green and sustainable chemistry.
Collapse
Affiliation(s)
- Xueqin Li
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yanyan Lin
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Cengceng Zhao
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Na Meng
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Ying Bai
- Textile Industry Science and Technology Development Center, Beijing 100020, China
| | - Xianfeng Wang
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
6
|
Bae J, Lee J, Hwang WT, Youn DY, Song H, Ahn J, Nam JS, Jang JS, Kim DW, Jo W, Kim TS, Suk HJ, Bae PK, Kim ID. Advancing Breathability of Respiratory Nanofilter by Optimizing Pore Structure and Alignment in Nanofiber Networks. ACS NANO 2024; 18:1371-1380. [PMID: 38060408 DOI: 10.1021/acsnano.3c06060] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Respiratory masks are the primary and most effective means of protecting individuals from airborne hazards such as droplets and particulate matter during public engagements. However, conventional electrostatically charged melt-blown microfiber masks typically require thick and dense membranes to achieve high filtration efficiency, which in turn cause a significant pressure drop and reduce breathability. In this study, we have developed a multielectrospinning system to address this issue by manipulating the pore structure of nanofiber networks, including the use of uniaxially aligned nanofibers created via an electric-field-guided electrospinning apparatus. In contrast to the common randomly collected microfiber membranes, partially aligned dual-nanofiber membranes, which are fabricated via electrospinning of a random 150 nm nanofiber base layer and a uniaxially aligned 450 nm nanofiber spacer layer on a roll-to-roll collector, offer an efficient way to modulate nanofiber membrane pore structures. Notably, the dual-nanofiber configuration with submicron pore structure exhibits increased fiber density and decreased volume density, resulting in an enhanced filtration efficiency of over 97% and a 50% reduction in pressure drop. This leads to the highest quality factor of 0.0781. Moreover, the submicron pore structure within the nanofiber networks introduces an additional sieving filtration mechanism, ensuring superior filtration efficiency under highly humid conditions and even after washing with a 70% ethanol solution. The nanofiber mask provides a sustainable solution for safeguarding the human respiratory system, as it effectively filters and inactivates human coronaviruses while utilizing 130 times fewer polymeric materials than melt-blown filters. This reusability of our filters and their minimum usage of polymeric materials would significantly reduce plastic waste for a sustainable global society.
Collapse
Affiliation(s)
- Jaehyeong Bae
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Jiyoung Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Won-Tae Hwang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Doo-Young Youn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyunsub Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jong-Seok Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ji-Soo Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Doo-Won Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Woosung Jo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyeon-Jeong Suk
- Department of Industrial Design, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Pan-Kee Bae
- BioNano Health Guard Research Center, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Zhao C, Liu G, Lin Y, Li X, Meng N, Wang X, Fu S, Yu J, Ding B. Diphylleia Grayi-Inspired Intelligent Temperature-Responsive Transparent Nanofiber Membranes. NANO-MICRO LETTERS 2024; 16:65. [PMID: 38175378 PMCID: PMC10766919 DOI: 10.1007/s40820-023-01279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024]
Abstract
Nanofiber membranes (NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a great challenge due to the enormous reflection and incredibly poor transmission generated by the nanofiber-air interface. In this research, we report a general strategy for the preparation of flexible temperature-responsive transparent (TRT) membranes, which achieves a rapid transformation of NFMs from opaque to highly transparent under a narrow temperature window. In this process, the phase change material eicosane is coated on the surface of the polyurethane nanofibers by electrospray technology. When the temperature rises to 37 °C, eicosane rapidly completes the phase transition and establishes the light transmission path between the nanofibers, preventing light loss from reflection at the nanofiber-air interface. The resulting TRT membrane exhibits high transmittance (> 90%), and fast response (5 s). This study achieves the first TRT transition of NFMs, offering a general strategy for building highly transparent nanofiber materials, shaping the future of next-generation intelligent temperature monitoring, anti-counterfeiting measures, and other high-performance devices.
Collapse
Affiliation(s)
- Cengceng Zhao
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Gaohui Liu
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yanyan Lin
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Xueqin Li
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Na Meng
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Xianfeng Wang
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Shaoju Fu
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Jianyong Yu
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Bin Ding
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
8
|
Ke L, Yang T, Liang C, Guan X, Li T, Jiao Y, Tang D, Huang D, Li S, Zhang S, He X, Xu H. Electroactive, Antibacterial, and Biodegradable Poly(lactic acid) Nanofibrous Air Filters for Healthcare. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37378641 DOI: 10.1021/acsami.3c05834] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Poly(lactic acid) (PLA)-based nanofibrous membranes (NFMs) hold great potential in the field of biodegradable filters for air purification but are largely limited by the relatively low electret properties and high susceptibility to bacteria. Herein, we disclosed a facile approach to the fabrication of electroactive and antibacterial PLA NFMs impregnated with a highly dielectric photocatalyst. In particular, the microwave-assisted doping (MAD) protocol was employed to yield Zn-doped titanium dioxide (Zn-TIO), featuring the well-defined anatase phase, a uniform size of ∼65 nm, and decreased band gap (3.0 eV). The incorporation of Zn-TIO (2, 6, and 10 wt %) into PLA gave rise to a significant refinement of the electrospun nanofibers, decreasing from the highest diameter of 581 nm for pure PLA to the lowest value of 264 nm. More importantly, dramatical improvements in the dielectric constants, surface potential, and electret properties were simultaneously achieved for the composite NFMs, as exemplified by a nearly 94% increase in surface potential for 3-day-aged PLA/Zn-TIO (90/10) compared with that of pure PLA. The well regulation of morphological features and promotion of electroactivity contributed to a distinct increase in the air filtration performance, as demonstrated by 98.7% filtration of PM0.3 with the highest quality factor of 0.032 Pa-1 at the airflow velocity of 32 L/min for PLA/Zn-TIO (94/6), largely surpassing pure PLA (89.4%, 0.011 Pa-1). Benefiting from the effective generation of reactive radicals and gradual release of Zn2+ by Zn-TIO, the electroactive PLA NFMs were ready to profoundly inactivate Escherichia coli and Staphylococcus epidermidis. The exceptional combination of remarkable electret properties and excellent antibacterial performance makes the PLA membrane filters promising for healthcare.
Collapse
Affiliation(s)
- Lv Ke
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Ting Yang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Chenyu Liang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xin Guan
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Tian Li
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yang Jiao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Daoyuan Tang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Donghui Huang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Shihang Li
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Shenghui Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| |
Collapse
|
9
|
Synthesis of Transparent Electrospun Composite Nanofiber Membranes by Asymmetric Solvent Evaporation Process. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
10
|
Preparation of transparent, amphiphobic and recyclable electrospun window screen air filter for high-efficiency particulate matters capture. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Shen R, Guo Y, Wang S, Tuerxun A, He J, Bian Y. Biodegradable Electrospun Nanofiber Membranes as Promising Candidates for the Development of Face Masks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1306. [PMID: 36674061 PMCID: PMC9858797 DOI: 10.3390/ijerph20021306] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Aerosol particles, such as the widespread COVID-19 recently, have posed a great threat to humans. Combat experience has proven that masks can protect against viruses; however, the epidemic in recent years has caused serious environmental pollution from plastic medical supplies, especially masks. Degradable filters are promising candidates to alleviate this problem. Degradable nanofiber filters, which are developed by the electrospinning technique, can achieve superior filtration performance. This review focuses on the basic introduction to air filtration, the general aspects of face masks, and nanofibers. Furthermore, the progress of the state of art degradable electrospun nanofiber filters have been summarized, such as silk fibroin (SF), polylactic acid (PLA), chitosan, cellulose, and zein. Finally, the challenges and future development are highlighted.
Collapse
Affiliation(s)
| | | | | | | | | | - Ye Bian
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| |
Collapse
|
12
|
Zhu M, Yu J, Li Z, Ding B. Self‐Healing Fibrous Membranes. Angew Chem Int Ed Engl 2022; 61:e202208949. [DOI: 10.1002/anie.202208949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Miaomiao Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
- Innovation Center for Textile Science and Technology Donghua University Shanghai 201620 China
| | - Zhaoling Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
- Key Laboratory of Textile Science and Technology Ministry of Education College of Textiles Donghua University Shanghai 201620 China
- Innovation Center for Textile Science and Technology Donghua University Shanghai 201620 China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
- Innovation Center for Textile Science and Technology Donghua University Shanghai 201620 China
| |
Collapse
|
13
|
Yang C, Jiang X, Gao X, Wang H, Li L, Hussain N, Xie J, Cheng Z, Li Z, Yan J, Zhong M, Zhao L, Wu H. Saving 80% Polypropylene in Facemasks by Laser-Assisted Melt-Blown Nanofibers. NANO LETTERS 2022; 22:7212-7219. [PMID: 36054509 DOI: 10.1021/acs.nanolett.2c02693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ongoing coronavirus (COVID-19) pandemic requires enormous production of facemasks and related personal protection materials, thereby increasing the amount of nondegradable plastic waste. The core material for facemasks is melt-blown polypropylene (PP) fiber. Each disposable facemask consumes ∼0.7 g of PP fibers, resulting in annual global consumption and disposal of more than 1 150 000 tons of PP fibers annually. Herein, we developed a laser-assisted melt-blown (LAMB) technique to manufacture PP nanofibers with a quality factor of 0.17 Pa-1 and significantly reduced the filter's weight. We demonstrated that a standard surgical facemask could be made with only 0.13 g of PP nanofibers, saving approximately 80% of the PP materials used in commercial facemasks. Theoretical analysis and modeling were also conducted to understand the LAMB process. Importantly, nanofibers can be easily scaled up for mass production by upgrading traditional melt blown line with scanning laser-assisted melt-blown (SLAMB).
Collapse
Affiliation(s)
- Chong Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xinyu Jiang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xue Gao
- College of Chemistry and Material Engineering, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Naveed Hussain
- Department of Electrical Engineering and Computer Science, The Henry Samueli School of Engineering, University of California, Irvine, California 92617, United States
| | - Jiawang Xie
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zekun Cheng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ziwei Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jianfeng Yan
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Minlin Zhong
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lihao Zhao
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hui Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Lei M, Zhang S, Zhou H, Wan H, Lu Y, Lin S, Sun J, Qu X, Liu C. Electrical Signal Initiates Kinetic Assembly of Collagen to Construct Optically Transparent and Geometry Customized Artificial Cornea Substitutes. ACS NANO 2022; 16:10632-10646. [PMID: 35802553 DOI: 10.1021/acsnano.2c02291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Corneal transplantation is an effective treatment for reconstructing injured corneas but is very limited due to insufficient donors, which has led to a growing demand for development of artificial corneal substitutes (ACSs). Collagen is a potential building block for ACS fabrication, whereas technically there are limited capabilities to control the collagen assembly for creating highly transparent collagen ACSs. Here, we report an electro-assembly technique to kinetically control collagen assembly on the nanoscale that allows the yielding collagen ACSs with structure determined superior optics. Structurally, the kinetically electro-assembled collagen (KEA-Col) is composed of partially aligned microfibrils (∼10 nm in diameter) with compacted lamellar organization. Optical analysis reveals that such microstructure is directly responsible for its optimal light transmittance by reducing light scattering. Moreover, this method allows the creation of complex three-dimensional geometries and thus is convenient to customize collagen ACSs with specific curvatures to meet refractive power requirements. Available properties (e.g., optics and mechanics) of cross-linked KEA-Cols were studied to meet the clinical requirement as ACSs, and in vitro tests further proved their beneficial characteristics of cell growth and migration. An in vivo study established a rabbit lamellar keratectomy corneal wound model and demonstrated the customized collagen ACSs can adapt to the defective cornea and support epithelial healing as well as stroma integration and reconstruction with lower immunoreaction compared with commercial xenografts, which suggests its promising application prospects. More broadly, this work illustrates the potential for enlisting electrical signals to mediate collagen's assembly and microstructure organization for specific structural functionalization for regenerative medicine.
Collapse
Affiliation(s)
- Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shaohua Zhang
- Eye Institute and Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Hang Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haoran Wan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Lu
- Eye Institute and Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Shaoliang Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianguo Sun
- Eye Institute and Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
15
|
Zhu M, Yu J, Li Z, Ding B. Self‐Healing Fibrous Membranes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Miaomiao Zhu
- Donghua University College of Materials Science and Engineering CHINA
| | - Jianyong Yu
- Donghua University Innovation Center for Textile Science and Technology CHINA
| | - Zhaoling Li
- Donghua University College of Textiles CHINA
| | - Bin Ding
- Donghua University College of Textiles 2999 North Renmin Road, Songjiang District 201620 Shanghai CHINA
| |
Collapse
|
16
|
Deng Y, Lu T, Zhang X, Zeng Z, Tao R, Qu Q, Zhang Y, Zhu M, Xiong R, Huang C. Multi-hierarchical nanofiber membrane with typical curved-ribbon structure fabricated by green electrospinning for efficient, breathable and sustainable air filtration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|