1
|
Chen Z, Tai Y, Deng C, Sun Y, Chen H, Luo T, Lin J, Chen W, Xu H, Song G, Tang Q, Lu J, Zhu X, Wen S, Wang J. Innovative sarcoma therapy using multifaceted nano-PROTAC-induced EZH2 degradation and immunity enhancement. Biomaterials 2025; 321:123344. [PMID: 40262462 DOI: 10.1016/j.biomaterials.2025.123344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 04/05/2025] [Accepted: 04/12/2025] [Indexed: 04/24/2025]
Abstract
Sarcomas are highly malignant tumors characterized by their heterogeneity and resistance to conventional therapies, which significantly limit treatment options. EZH2 is highly expressed in sarcomas, but targeting it is difficult. In this study, we uncovered the non-canonical transcriptional mechanisms of EZH2 in sarcoma and highlighted the essential role of EZH2 in regulating YAP1 through non-canonical transcriptional pathways in the progression of sarcoma. Building on this, we developed YM@VBM, a novel and versatile nano-PROTAC (proteolysis-targeting chimera), by integrating a polyphenol-vanadium oxide system with the EZH2 degrader YM281 PROTAC, encapsulated in methoxy polyethylene glycol-NH2 to enhance biocompatibility. To further facilitate targeted drug delivery to tumors, YM@VBM nano-PROTACs were incorporated into microneedle patches. Our engineered YM@VBM exhibited multiple functionalities, including the peroxidase-like activity to generate reactive oxygen species, depletion of glutathione, and photothermal effects, specifically targeting sarcoma characteristics. YM@VBM significantly enhanced targeting efficacy via inducing potent EZH2 degradation. Most importantly, it can also activate anti-tumor immunity via excluding myeloid-derived suppressor cells, maturing dendritic cells, and forming tertiary lymphoid structures. Hence, we reveal that YM@VBM presents a promising treatment strategy for sarcoma, offering a multifaceted approach to combat this challenging malignancy.
Collapse
Affiliation(s)
- Zhihao Chen
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Yi Tai
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China; Surgical Department of Colorectal Cancer, Zhejiang Cancer Hospital, 1st BanShan East Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, PR China
| | - Chuangzhong Deng
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Yameng Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Hongmin Chen
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Tianqi Luo
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Jiaming Lin
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Weiqing Chen
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Huaiyuan Xu
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Guohui Song
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Qinglian Tang
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Jinchang Lu
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Xiaojun Zhu
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China.
| | - Jin Wang
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China.
| |
Collapse
|
2
|
Liu S, Ren Z, Yan M, Ye W, Hu Y. Strategies to enhance the penetration of nanomedicine in solid tumors. Biomaterials 2025; 321:123315. [PMID: 40185056 DOI: 10.1016/j.biomaterials.2025.123315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Nanomedicine was previously regarded as a promising solution in the battle against cancer. Over the past few decades, extensive research has been conducted to exploit nanomedicine for overcoming tumors. Unfortunately, despite these efforts, nanomedicine has not yet demonstrated its ability to cure tumors, and the research on nanomedicine has reached a bottleneck. For a significant period of time, drug delivery strategies have primarily focused on targeting nanomedicine delivery to tumors while neglecting its redistribution within solid tumors. The uneven distribution of nanomedicine within solid tumors results in limited therapeutic effects on most tumor cells and significantly hampers the efficiency of drug delivery and treatment outcomes. Therefore, this review discusses the challenges faced by nanomedicine in penetrating solid tumors and provides an overview of current nanotechnology strategies (alleviating penetration resistance, size regulation, tumor cell transport, and nanomotors) that facilitate enhanced penetration of nanomedicine into solid tumors. Additionally, we discussed the potential role of nanobionics in promoting effective penetration of nanomedicine.
Collapse
Affiliation(s)
- Sen Liu
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Zhendong Ren
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Manqi Yan
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Wei Ye
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
3
|
Demissie GG, Chen YC, Ciou SY, Hsu SH, Wang CY, Huang CC, Chang HT, Lee YC, Chang JY. Hypoxia-Targeted-Therapy: Mussel-inspired hollow polydopamine nanocarrier containing MoS 2 nanozyme and tirapazamine with anti-angiogenesis property for synergistic tumor therapy. J Colloid Interface Sci 2025; 685:396-414. [PMID: 39855086 DOI: 10.1016/j.jcis.2025.01.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Photothermal therapy (PTT) using thermal and tumor microenvironment-responsive reagents is promising for cancer treatment. This study demonstrates an effective PTT nanodrug consisting of hollow-structured, thermally sensitive polydopamine nanobowls (HPDA NB), molybdenum sulfide (MoS2) nanozyme, and tirapazamine (TPZ; a hypoxia-responsive drug), with a structure of HPDA@TPZ/MoS NBs, which is hereafter denoted as HPTZMoS NBs. With the Fenton-like activity, the HPTZMoS NBs in the presence of H2O2 catalyze the formation of hydroxyl radicals, providing chemodynamic therapy (CDT) effect and deactivating glutathione. Under acidic conditions, HPTZMoS NBs facilitate the release of sulfide ions (S2-) and TPZ, providing a combination of chemotherapy (CT) and hydrogen sulfide (H2S) gas therapy (GT). Under an 808-nm NIR laser irradiation, the HPTZMoS NBs efficiently convert photo energy to thermal energy, providing PTT and improved CDT, CT, and GT effects. Upon treatment with an NIR laser and H2O2, a synergistic effect leads to substantial tumor cell eradication. Additionally, HPTZMoS NBs disrupt vascular endothelial growth factor (VEGF-A165)-induced cell migration in human umbilical vein endothelial cells through its strong interaction with VEGF-A165. In vivo studies in 4T1-tumor-bearing mice confirm that HPTZMoS NBs induces significant tumor destruction through a combination of PTT, hyperthermia-induced CDT, GT, and CT pathways. This study presents a multifaceted, highly selective nanotherapy platform with potent anti-angiogenesis properties, holding significant promise for future clinical applications.
Collapse
Affiliation(s)
- Girum Getachew Demissie
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335 Taiwan
| | - Yi-Chia Chen
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335 Taiwan
| | - Sin-Yi Ciou
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335 Taiwan
| | - Shih-Hao Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110 Taiwan
| | - Chen-Yow Wang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202224 Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202224 Taiwan
| | - Huan-Tsung Chang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 33302 Taiwan; Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302 Taiwan; Center for Advanced Biomaterials and Technology Innovation, Chang Gung University, Taoyuan 33302 Taiwan; Division of Breast Surgery, Department of General Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan.
| | - Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110 Taiwan.
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335 Taiwan.
| |
Collapse
|
4
|
Tao J, Ning W, Lu W, Wang R, Zhou H, Zhang H, Xu J, Wang S, Teng Z, Wang L. Smart self-transforming nano-systems for overcoming biological barrier and enhancing tumor treatment efficacy. J Control Release 2025; 380:85-107. [PMID: 39880041 DOI: 10.1016/j.jconrel.2025.01.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Nanomedicines need to overcome multiple biological barriers in the body to reach the target area. However, traditional nanomedicines with constant physicochemical properties are not sufficient to meet the diverse and sometimes conflicting requirements during in vivo transport, making it difficult to penetrate various biological barriers, resulting in suboptimal drug delivery efficiency. Smart self-transforming nano-systems (SSTNs), capable of altering their own physicochemical properties (including size, charge, hydrophobicity, stiffness, morphology, etc.) under different physiological conditions, hold the potential to break through multiple biological barriers, thereby improving drug delivery efficiency and the efficacy of cancer treatment. In this review, we first summarize the design strategies of five most popular SSTNs (such as size-, charge-, hydrophilicity-, stiffness-, and morphology-self-transforming nano-systems), and then delve into their biomedical applications in enhancing circulation time, tissue penetration, and cellular uptake. Finally, we discuss the opportunities and challenges that SSTNs face in the future for cancer treatment and diagnosis.
Collapse
Affiliation(s)
- Jun Tao
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Weiqing Ning
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Wei Lu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Rui Wang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Hui Zhou
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Hongru Zhang
- Key Laboratory of Agricultural Product Processing and Quality Control, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, PR China
| | - Jiayi Xu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Shouju Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 211166, PR China.
| | - Zhaogang Teng
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China.
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China.
| |
Collapse
|
5
|
Chen D, Du Y, Wang X, Li H, Wu X, Kuang X, Li C, Zhao J, Xiong Y, Sun M, Tu J, Liu S, Sun C. Phase-separating Pt(IV)-graft-glycopeptides sequentially sensing pH and redox for deep tumor penetration and targeting chemotherapy. J Control Release 2025; 379:743-756. [PMID: 39832748 DOI: 10.1016/j.jconrel.2025.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/23/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Active-targeting nanomedicines have been widely employed in cancer treatment for increasing therapeutic index. However, the limited permeability caused by the binding site barrier (BSB) and size hindrances compromises their clinical antitumor efficacy in patients. Herein, learning from the liquid-liquid phase separation (LLPS) of bio-macromolecules, we report phase-separating glycopeptides (HEP) from polyhistidine (PHis) grafted hyaluronic acid (HA), which can sense the tumor extracellular pH and concomitantly overcome size and BSB dilemmas for enhanced tumor penetration. HEP aggregates into nanodroplets in solution at neutral pH. Upon reaching the acidic extracellular environment of tumors, the pH-responsive PHis triggers a phase separation, converting the coacervate nanodroplets into monomeric glycopeptides. This enables HEP conjugated with the platinum prodrug (HEPPt) to deeply penetrate into tumors by overcoming the BSB effect arising from the interaction between nanodroplets and cluster of differentiation 44 (CD44), as well as resolving the size challenges. Moreover, HEPPt in monomeric states exhibits promoted cellular uptake after pH-triggered phase separation, attributed to the transmembrane effect of exposed PHis. Subsequently, the rapid release of Pt(II), triggered by tumor intracellular reducing environment, exerts excellent antitumor activity. The phase-separating glycopeptides represent a promising platform for improving tumor penetration and intracellular delivery of therapeutic agents.
Collapse
Affiliation(s)
- Dali Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Yunai Du
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Xitong Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Huihong Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Xinjiao Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Xiaoqin Kuang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Chunjiayu Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Jianing Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Yerong Xiong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Minjie Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China.
| | - Jiasheng Tu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China.
| | - Siyan Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Chunmeng Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
6
|
Dong Y, Guo L, Song L, Liu T, Zheng G, Zheng M, Li B. Two-Dimensional MXenes Surface Engineering Nanoplatform for PTT-Chemotherapy Synergistic Tumor Therapy. Int J Nanomedicine 2025; 20:1983-1998. [PMID: 39968062 PMCID: PMC11834670 DOI: 10.2147/ijn.s487405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025] Open
Abstract
Background Triple-negative breast cancer (TNBC) has a high early recurrence rate and poor prognosis. Given its insensitivity to traditional systemic chemotherapy, there is an urgent need for new therapeutic strategies for effective treatment. This paper reports the development of a novel two-dimensional MXene composite nanoplatform for efficient synergistic chemotherapy and photothermal therapy of TNBC. Results To achieve surface functionalization of MXene, we developed a surface nanopore engineering strategy, enabling the uniform coating of a thin mesoporous silica layer on the two-dimensional Ti3C2 MXene surface. This strategy endows MXenes with well-defined mesopores for on-demand drug release/delivery and enhanced hydrophilicity/dispersibility. Systematic in vitro and in vivo evaluations demonstrate that Ti3C2@MSNs have high active targeting capability upon entering tumors, and through the synergistic chemotherapy of the mesoporous shell and the photothermal therapy of the Ti3C2 MXene core, tumors can be completely eradicated with no significant recurrence. Conclusion This study provides a new strategy for developing MXene-based composite nano drug delivery systems to effectively combat TNBC.
Collapse
Affiliation(s)
- Yang Dong
- Department of Breast Surgery, Breast Cancer Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, People’s Republic of China
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Liang Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
| | - Lu Song
- Department of Breast Surgery, Breast Cancer Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, People’s Republic of China
| | - Tingting Liu
- Department of Breast Surgery, Breast Cancer Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, People’s Republic of China
| | - Gang Zheng
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Meizhu Zheng
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Baojiang Li
- Department of Breast Surgery, Breast Cancer Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, People’s Republic of China
| |
Collapse
|
7
|
Li Y, Duan Y, Li Y, Gu Y, Zhou L, Xiao Z, Yu X, Cai Y, Cheng E, Liu Q, Jiang Y, Yang Q, Zhang F, Lei Q, Yang B. Cascade loop of ferroptosis induction and immunotherapy based on metal-phenolic networks for combined therapy of colorectal cancer. EXPLORATION (BEIJING, CHINA) 2025; 5:20230117. [PMID: 40040829 PMCID: PMC11875444 DOI: 10.1002/exp.20230117] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/07/2024] [Indexed: 03/06/2025]
Abstract
Cancer immunotherapy is the most promising method for tumor therapy, while ferroptosis could activate the immunogenicity of cancer and strengthen the cellular immune response. However, limited by the complex tumor microenvironment, the abundant glutathione (GSH) and low reactive oxygen species (ROS) seriously weaken ferroptosis and the immune response. Herein, the authors report photothermal metal-phenolic networks (MPNs) supplied with buthionine sulfoximine (BSO) by reducing levels of GSH and then trapping the tumor cells in the ferroptosis and immunotherapy cascade loop to eliminate colorectal cancer (CRC). The MPNs coated with the model antigen ovalbumin can accumulate at the tumor site, mediate immunogenic cell death (ICD) under NIR irradiation, and initiate tumoricidal immunity. Then the activated CD8+ T cells would release IFN-γ to inhibit GPX4 and promote the immunogenic ferroptosis induced by Fe3+ and BSO. Finally, the tumor cells at intertumoral and intratumoral levels would be involved in the ferroptosis-dominated cancer-immunity circle for CRC eradication, resulting in outstanding therapeutic outcomes in both primary and distant tumor models. Overall, this strategy employs a photothermal nanoplatform to rapidly stimulate ICD and restrain the oxidation defense system, which provides a promising approach to significantly amplify the "cascade loop" of ferroptosis induction and immunotherapy for treatment of CRC.
Collapse
Affiliation(s)
- Yuwei Li
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Yuxi Duan
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Yunyi Li
- Department of NephrologyFirst Affiliated Hospital of Jinan UniversityGuangzhouPeople's Republic of China
| | - Yuan Gu
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Lu Zhou
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Zhongting Xiao
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Xinying Yu
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Yanjun Cai
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Erzhuo Cheng
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Qianqian Liu
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Yong Jiang
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Quan Yang
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Feng Zhang
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Qi Lei
- Provincial Key Laboratory of Allergy and Clinical ImmunologyThe Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Bin Yang
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
8
|
Chen Z, Huang L, Gao D, Bao Z, Hu D, Zheng W, Chen J, Liao J, Zheng H, Sheng Z. High Spatiotemporal Near-Infrared II Fluorescence Lifetime Imaging for Quantitative Detection of Clinical Tumor Margins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411272. [PMID: 39652447 PMCID: PMC11791973 DOI: 10.1002/advs.202411272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/11/2024] [Indexed: 02/05/2025]
Abstract
Accurate detection of tumor margins is essential for successful cancer surgery. While indocyanine green (ICG)-based near-infrared (NIR) fluorescence (FL) surgical navigation enhances the visual identification of tumor margins, its accuracy remains subjective, underscoring the need for quantitative approaches. In this study, a high spatiotemporal fluorescence lifetime (FLT) imaging technology is developed in the second near-infrared window (NIR-II, 1000-1700 nm) for quantitative tumor margin detection, utilizing folate receptor-targeted ICG nanoprobes (FPH-ICG). FPH-ICG exhibits a significantly prolonged NIR-II FLT (750 ± 7 ps vs 260 ± 3 ps) and increased NIR-II FL brightness (FPH-ICG/ICG = 3.8). In vitro and in vivo studies confirm that FPH-ICG specifically targets folate receptor-α (FRα) on SK-OV-3 ovarian cancer cells, achieving high-contrast NIR-II FL imaging with a signal-to-background ratio of 10.8. Notably, NIR-II FLT imaging demonstrates superior accuracy (90%) and consistency in defining tumor margins compared to NIR-II FL imaging (58%) in both SK-OV-3 tumor-bearing mice and clinical tumor samples. These findings underscore the potential of NIR-II FLT imaging as a quantitative tool for guiding surgical tumor margin detection.
Collapse
Affiliation(s)
- Zhen Chen
- State Key Laboratory of Radio Frequency Heterogeneous IntegrationCollege of Electronics and Information EngineeringShenzhen UniversityShenzhen518060P. R. China
- Research Center for Advanced Detection Materials and Medical Imaging DevicesPaul C. Lauterbur Research Center for Biomedical Imaging Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- Institute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P. R. China
| | - Linjian Huang
- Research Center for Biomedical Optics and Molecular ImagingShenzhen Key Laboratory for Molecular ImagingGuangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology Key Laboratory of Biomedical Imaging Science and SystemShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Duyang Gao
- Research Center for Advanced Detection Materials and Medical Imaging DevicesPaul C. Lauterbur Research Center for Biomedical Imaging Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Zhouzhou Bao
- Department of Obstetrics and GynecologyShanghai Key Laboratory of Gynecologic OncologyRen Ji Hospital School of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Dehong Hu
- Research Center for Advanced Detection Materials and Medical Imaging DevicesPaul C. Lauterbur Research Center for Biomedical Imaging Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Wei Zheng
- Research Center for Biomedical Optics and Molecular ImagingShenzhen Key Laboratory for Molecular ImagingGuangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology Key Laboratory of Biomedical Imaging Science and SystemShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Jing Chen
- State Key Laboratory of Radio Frequency Heterogeneous IntegrationCollege of Electronics and Information EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Jiuling Liao
- Research Center for Biomedical Optics and Molecular ImagingShenzhen Key Laboratory for Molecular ImagingGuangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology Key Laboratory of Biomedical Imaging Science and SystemShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Hairong Zheng
- Research Center for Advanced Detection Materials and Medical Imaging DevicesPaul C. Lauterbur Research Center for Biomedical Imaging Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Zonghai Sheng
- Research Center for Advanced Detection Materials and Medical Imaging DevicesPaul C. Lauterbur Research Center for Biomedical Imaging Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| |
Collapse
|
9
|
Olivieri Jr P, Assis IF, Lima AF, Hassan SA, Torquato RJ, Hayashi JY, Tashima AK, Nader HB, Salvati A, Justo GZ, Sousa AA. Glycocalyx Interactions Modulate the Cellular Uptake of Albumin-Coated Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:7365-7377. [PMID: 39470630 PMCID: PMC11577421 DOI: 10.1021/acsabm.4c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024]
Abstract
Albumin-based nanoparticles (ABNPs) represent promising drug carriers in nanomedicine due to their versatility and biocompatibility, but optimizing their effectiveness in drug delivery requires understanding their interactions with and uptake by cells. Notably, albumin interacts with the cellular glycocalyx, a phenomenon particularly studied in endothelial cells. This observation suggests that the glycocalyx could modulate ABNP uptake and therapeutic efficacy, although this possibility remains unrecognized. In this study, we elucidate the critical role of the glycocalyx in the cellular uptake of a model ABNP system consisting of silica nanoparticles (NPs) coated with native, cationic, and anionic albumin variants (BSA, BSA+, and BSA-). Using various methodologies-including fluorescence anisotropy, dynamic light scattering, microscale thermophoresis, surface plasmon resonance spectroscopy, and computer simulations─we found that both BSA and BSA+, but not BSA-, interact with heparin, a model glycosaminoglycan (GAG). To explore the influence of albumin-GAG interactions on NP uptake, we performed comparative uptake studies in wild-type and GAG-mutated Chinese hamster ovary cells (CHO), along with complementary approaches such as enzymatic GAG cleavage in wild-type cells, chemical inhibition, and competition assays with exogenous heparin. We found that the glycocalyx enhances the cell uptake of NPs coated with BSA and BSA+, while serving as a barrier to the uptake of NPs coated with BSA-. Furthermore, we showed that harnessing albumin-GAG interactions increases cancer cell death induced by paclitaxel-loaded albumin-coated NPs. These findings underscore the importance of albumin-glycocalyx interactions in the rational design and optimization of albumin-based drug delivery systems.
Collapse
Affiliation(s)
- Paulo
H. Olivieri Jr
- Department
of Biochemistry, Federal University of São
Paulo, São
Paulo, São Paulo 04044-020, Brazil
| | - Isabela F. Assis
- Department
of Biochemistry, Federal University of São
Paulo, São
Paulo, São Paulo 04044-020, Brazil
| | - Andre F. Lima
- Department
of Biochemistry, Federal University of São
Paulo, São
Paulo, São Paulo 04044-020, Brazil
| | - Sergio A. Hassan
- Bioinformatics
and Computational Biosciences Branch, OCICB, National Institute of
Allergy and Infectious Diseases, National
Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ricardo J.S. Torquato
- Department
of Biochemistry, Federal University of São
Paulo, São
Paulo, São Paulo 04044-020, Brazil
| | - Jackelinne Y. Hayashi
- Department
of Biochemistry, Federal University of São
Paulo, São
Paulo, São Paulo 04044-020, Brazil
| | - Alexandre K. Tashima
- Department
of Biochemistry, Federal University of São
Paulo, São
Paulo, São Paulo 04044-020, Brazil
| | - Helena B. Nader
- Department
of Biochemistry, Federal University of São
Paulo, São
Paulo, São Paulo 04044-020, Brazil
| | - Anna Salvati
- Department
of Nanomedicine & Drug Targeting, Groningen Research Institute
of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Giselle Z. Justo
- Department
of Biochemistry, Federal University of São
Paulo, São
Paulo, São Paulo 04044-020, Brazil
| | - Alioscka A. Sousa
- Department
of Biochemistry, Federal University of São
Paulo, São
Paulo, São Paulo 04044-020, Brazil
| |
Collapse
|
10
|
Sun X, Li D, Lv Y, Zhang M, Qiao D, Zhang Z, Ren H, Zhang Y, Yang Z, Gao J. Nanomaterials for the Diagnosis and Treatment of Triple-Negative Breast Cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2019. [PMID: 39654400 DOI: 10.1002/wnan.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/13/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
In recent years, the diagnosis and treatment at the early stages significantly raise the survival rate of breast cancer patients. Moreover, antibody drugs pave the way toward precision target therapy. However, the treatment and survival of triple-negative breast cancer (TNBC) patients is still worrying, which needs further understanding and study. During the last several years, nanomaterials attracted extensive research interests in TNBC diagnosis and therapy. In this review, we summarize recent advances of nanomaterial-based strategies for diagnosing and treating TNBC. Specifically, treatments for TNBC utilizing nanomaterials are classified into monotherapy, combined therapy, and multimodal therapy based on the complexity of the treatment. Nanomaterials also offer the opportunity to integrating diagnosis with treatment, which are introduced and summarized in this review. By summarizing the design principles in detail, some insights into the challenges and opportunities are provided to inspire further research and clinical translation in this field. The scope of this review is to summarize the development of nanomaterials for diagnosis and treatment of TNBC, and to discuss future directions to improve the clinical outcome of TNBC patients.
Collapse
Affiliation(s)
- Xuan Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, People's Republic of China
| | - Dandan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Yue Lv
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Mengnan Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Dianhe Qiao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Zuyuan Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Han Ren
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Ying Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
11
|
Zheng L, Zeng Z, Zhao Y, Liu X, Huai Z, Zhang X, Sun Z, Zhang JZH. HSADab: A comprehensive database for human serum albumin. Int J Biol Macromol 2024; 277:134289. [PMID: 39084442 DOI: 10.1016/j.ijbiomac.2024.134289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Human Serum Albumin (HSA), the most abundant protein in human body fluids, plays a crucial role in the transportation, absorption, metabolism, distribution, and excretion of drugs, significantly influencing their therapeutic efficacy. Despite the importance of HSA as a drug target, the available data on its interactions with external agents, such as drug-like molecules and antibodies, are limited, posing challenges for molecular modeling investigations and the development of empirical scoring functions or machine learning predictors for this target. Furthermore, the reported entries in existing databases often contain major inconsistencies due to varied experiments and conditions, raising concerns about data quality. To address these issues, a pioneering database, HSADab, was established through an extensive review of >30,000 scientific publications published between 1987 and 2023. The database encompasses over 5000 affinity data points at multiple temperatures and >130 crystal structures, including both ligand-bound and apo forms. The current HSADab resource (www.hsadab.cn) serves as a reliable foundation for validating molecular simulation protocols, such as traditional virtual screening workflows using docking, end-point, and al-chemical free energy techniques. Additionally, it provides a valuable data source for the implementation of machine learning predictors, including plasma protein binding models and plasma protein-based drug design models.
Collapse
Affiliation(s)
- Lei Zheng
- NYU-ECNU Center for Computational Chemistry and Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning, NYU Shanghai, Shanghai 200062, China; Department of Chemistry, New York University, NY NY10003, USA.
| | - Zhaoyi Zeng
- NYU-ECNU Center for Computational Chemistry and Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning, NYU Shanghai, Shanghai 200062, China.
| | - Yao Zhao
- Department of Cardiovasology, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Xiao Liu
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Zhe Huai
- Clickmab Biotechnology Research Center, Beijing 100094, China.
| | - Xudong Zhang
- Department of Chemistry, New York University, NY NY10003, USA.
| | - Zhaoxi Sun
- Changping Laboratory, Beijing 102206, China.
| | - John Z H Zhang
- NYU-ECNU Center for Computational Chemistry and Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning, NYU Shanghai, Shanghai 200062, China; Department of Chemistry, New York University, NY NY10003, USA; Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
12
|
López-Estévez AM, Sanjurjo L, Turrero Á, Arriaga I, Abrescia NGA, Poveda A, Jiménez-Barbero J, Vidal A, Torres D, Alonso MJ. Nanotechnology-assisted intracellular delivery of antibody as a precision therapy approach for KRAS-driven tumors. J Control Release 2024; 373:277-292. [PMID: 39019086 DOI: 10.1016/j.jconrel.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
The Kirsten Rat Sarcoma Virus (KRAS) oncoprotein, one of the most prevalent mutations in cancer, has been deemed undruggable for decades. The hypothesis of this work was that delivering anti-KRAS monoclonal antibody (mAb) at the intracellular level could effectively target the KRAS oncoprotein. To reach this goal, we designed and developed tLyP1-targeted palmitoyl hyaluronate (HAC16)-based nanoassemblies (HANAs) adapted for the association of bevacizumab as a model mAb. Selected candidates with adequate physicochemical properties (below 150 nm, neutral surface charge), and high drug loading capacity (>10%, w/w) were adapted to entrap the antiKRASG12V mAb. The resulting antiKRASG12V-loaded HANAs exhibited a bilayer composed of HAC16 polymer and phosphatidylcholine (PC) enclosing a hydrophilic core, as evidenced by cryogenic-transmission electron microscopy (cryo-TEM) and X-ray photoelectron spectroscopy (XPS). Selected prototypes were found to efficiently engage the target KRASG12V and, inhibit proliferation and colony formation in KRASG12V-mutated lung cancer cell lines. In vivo, a selected formulation exhibited a tumor growth reduction in a pancreatic tumor-bearing mouse model. In brief, this study offers evidence of the potential to use nanotechnology for developing anti-KRAS precision therapy and provides a rational framework for advancing mAb intracellular delivery against intracellular targets.
Collapse
Affiliation(s)
- Ana M López-Estévez
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Lucía Sanjurjo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ángela Turrero
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Iker Arriaga
- Structure and Cell Biology of Viruses Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Nicola G A Abrescia
- Structure and Cell Biology of Viruses Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Ana Poveda
- Chemical Glycobiology Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Jesús Jiménez-Barbero
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain; Chemical Glycobiology Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Anxo Vidal
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Dolores Torres
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
13
|
Gao Y, Luo Y, Chen W, Xue X, Xiao C, Wei K. Theranostic Nanoplatform Based on Polydopamine-Coated Magnetic Mesoporous Silicon for Precise Cancer Triplex Nanotherapy and Multimodal Imaging. Anal Chem 2024; 96:13557-13565. [PMID: 39115161 DOI: 10.1021/acs.analchem.4c02244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Although targeted therapy has revolutionized oncotherapy, engineering a versatile oncotherapy nanoplatform integrating both diagnostics and therapeutics has always been an intractable challenge to overcome the limitations of monotherapy. Herein, a theranostics platform based on DI/MP-MB has successfully realized the fluorescence detection of disease marker miR-21 and the gene/photothermal/chemo triple synergetic cancer therapy, which can trace the tumor through photothermal and fluorescence dual-mode imaging and overcome the limitations of monotherapy to improve the treatment efficiency of tumors. DI/MP-MB was prepared by magnetic mesoporous silicon nanoparticles (M-MSNs) loaded with doxorubicin (Dox) and new indocyanine green (IR820), and subsequently coating polydopamine as a "gatekeeper", followed by the surface adsorbed with molecular beacons capable of targeting miR-21 for responsive imaging. Under the action of enhanced permeability retention and external magnetic field, DI/MP-MB were targeted and selectively accumulated in the tumor. MiR-21 MB hybridized with miR-21 to form a double strand, which led to the desorption of miR-21 MB from the polydopamine surface and the fluorescence recovery to realize gene silencing and fluorescence imaging for tracking the treatment process. Meanwhile, with the response to the near-infrared irradiation and the tumor's microacid environment, the outer layer polydopamine will decompose, releasing Dox and IR820 to realize chemotherapy and photothermal therapy. Finally, the ability of DI/MP-MB to efficiently suppress tumor growth was comprehensively assessed and validated both in vitro and in vivo. Noteworthily, the excellent anticancer efficiency by the synergistic effect of gene/photothermal/chemo triple therapy of DI/MP-MB makes it an ideal nanoplatform for tumor therapy and imaging.
Collapse
Affiliation(s)
- Yuanyuan Gao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yujia Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Wenyu Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Xinrui Xue
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Chujie Xiao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Kun Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
14
|
Tang L, Yin Y, Zhang Z, Fu C, Cao Y, Liu H, Feng J, Gao J, Shang J, Wang W. Size-switchable and dual-targeting nanomedicine for cancer chemoimmunotherapy by potentiating deep tumor penetration and antitumor immunity. CHEMICAL ENGINEERING JOURNAL 2024; 493:152590. [DOI: 10.1016/j.cej.2024.152590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Jiang Q, He J, Zhang H, Chi H, Shi Y, Xu X. Recent advances in the development of tumor microenvironment-activatable nanomotors for deep tumor penetration. Mater Today Bio 2024; 27:101119. [PMID: 38966042 PMCID: PMC11222818 DOI: 10.1016/j.mtbio.2024.101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 06/08/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer represents a significant threat to human health, with the use of traditional chemotherapy drugs being limited by their harsh side effects. Tumor-targeted nanocarriers have emerged as a promising solution to this problem, as they can deliver drugs directly to the tumor site, improving drug effectiveness and reducing adverse effects. However, the efficacy of most nanomedicines is hindered by poor penetration into solid tumors. Nanomotors, capable of converting various forms of energy into mechanical energy for self-propelled movement, offer a potential solution for enhancing drug delivery to deep tumor regions. External force-driven nanomotors, such as those powered by magnetic fields or ultrasound, provide precise control but often necessitate bulky and costly external equipment. Bio-driven nanomotors, propelled by sperm, macrophages, or bacteria, utilize biological molecules for self-propulsion and are well-suited to the physiological environment. However, they are constrained by limited lifespan, inadequate speed, and potential immune responses. To address these issues, nanomotors have been engineered to propel themselves forward by catalyzing intrinsic "fuel" in the tumor microenvironment. This mechanism facilitates their penetration through biological barriers, allowing them to reach deep tumor regions for targeted drug delivery. In this regard, this article provides a review of tumor microenvironment-activatable nanomotors (fueled by hydrogen peroxide, urea, arginine), and discusses their prospects and challenges in clinical translation, aiming to offer new insights for safe, efficient, and precise treatment in cancer therapy.
Collapse
Affiliation(s)
- Qianyang Jiang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jiahuan He
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Hairui Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Haorui Chi
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Yi Shi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Xiaoling Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| |
Collapse
|
16
|
Gou Z, Tang K, Zeng C, Yuan H, Zhang C, Huang Y, Qu T, Xin Q, Zhao Y, Zeng G, Yang J, Xie P, Yang ST, Tang X. Photothermal therapy of xenografted tumor by carbon nanoparticles-Fe(II) complex. Colloids Surf B Biointerfaces 2024; 240:113968. [PMID: 38788472 DOI: 10.1016/j.colsurfb.2024.113968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Due to the unique structure, carbon nanomaterials could convert near-infrared (NIR) light into heat efficiently in tumor ablation using photothermal therapy (PTT). However, none of them has been applied in clinical treatment, because they have not been approved for clinical evaluations and the precise temperature control facility is scarce. In this study, we designed a temperature-responsive controller for PTT and used carbon nanoparticles-Fe(II) complex (CNSI-Fe) as photothermal conversion agent (PTA) for PTT of tumor in vitro and in vivo. CNSI-Fe was an innovative drug under the evaluations in clinical trials. CNSI-Fe showed excellent photothermal conversion ability in water to increase the water temperature by 40 °C within 5 min under irradiation of 808 nm laser at 0.5 W/cm2. The temperature was precisely controlled at 52 °C for both in vitro and in vivo tumor inhibition. CNSI-Fe with NIR irradiation showed higher tumor cell inhibition than CNSI. In tumor bearing mice, CNSI-Fe with NIR irradiation achieved an inhibition rate of 84.7 % and 71.4 % of them were completely cured. Mechanistically, CNSI-Fe under NIR irradiation induced the radical generation, oxidative damage and ferroptosis to kill tumor. In addition, CNSI-Fe showed good biosafety during PTT according to hematological, serum biological and histopathological examinations. These results indicated that the combination of chemotherapy and PTT provided higher antitumor efficiency using CNSI-Fe as PTA.
Collapse
Affiliation(s)
- Zehui Gou
- Department of Medical Ultrasound, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Kexin Tang
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu, China
| | - Cheng Zeng
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu, China
| | - Huahui Yuan
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu, China
| | - Chun Zhang
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu, China
| | - Yuanfang Huang
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu, China
| | - Ting Qu
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu, China
| | - Qian Xin
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu, China
| | - Yufeng Zhao
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu, China
| | - Guangfu Zeng
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu, China
| | - Jinmei Yang
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu, China
| | - Ping Xie
- State Key Laboratory of Oral Diseases, West China, College of Stomatology, Sichuan University, Chengdu, China
| | - Sheng-Tao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| | - Xiaohai Tang
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu, China.
| |
Collapse
|
17
|
Sun Q, Li Y, Shen W, Shang W, Xu Y, Yang J, Chen J, Gao W, Wu Q, Xu F, Yang Y, Yin D. Breaking-Down Tumoral Physical Barrier by Remotely Unwrapping Metal-Polyphenol-Packaged Hyaluronidase for Optimizing Photothermal/Photodynamic Therapy-Induced Immune Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310673. [PMID: 38284224 DOI: 10.1002/adma.202310673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/18/2024] [Indexed: 01/30/2024]
Abstract
The therapy of solid tumors is often hindered by the compact and rigid tumoral extracellular matrix (TECM). Precise reduction of TECM by hyaluronidase (HAase) in combination with nanotechnology is promising for solid tumor therapeutics, yet remains an enormous challenge. Inspired by the treatment of iron poisoning, here a remotely unwrapping strategy is proposed of metal-polyphenol-packaged HAase (named PPFH) by sequentially injecting PPFH and a clinically used iron-chelator deferoxamine (DFO). The in situ dynamic disassembly of PPFH can be triggered by the intravenously injected DFO, resulting in the release, reactivation, and deep penetration of encapsulated HAase inside tumors. Such a cost-effective HAase delivery strategy memorably improves the subsequent photothermal and photodynamic therapy (PTT/PDT)-induced intratumoral infiltration of cytotoxic T lymphocyte cells and the cross-talk between tumor and tumor-draining lymph nodes (TDLN), thereby decreasing the immunosuppression and optimizing tumoricidal immune response that can efficiently protect mice from tumor growth, metastasis, and recurrence in multiple mouse cancer models. Overall, this work presents a proof-of-concept of the dynamic disassembly of metal-polyphenol nanoparticles for extracellular drug delivery as well as the modulation of TECM and immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Quanwei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Yunlong Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230021, China
| | - Wencui Shang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Yujing Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Jinming Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Jie Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Wenheng Gao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Fan Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230031, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230021, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, China
| |
Collapse
|
18
|
He Q, Li C, Ou Y, Pan Y, Yang X, Wang J, Liao H, Xiong X, Liu L, Sun C. A novel NIR fluorescent probe inhibits melanoma progression through apoptosis and ERK/DRP1-mediated mitochondrial fission. Bioorg Chem 2024; 145:107218. [PMID: 38377820 DOI: 10.1016/j.bioorg.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Melanoma, a highly metastatic malignant tumour, necessitated early detection and intervention. This study focuses on a hemicyanine fluorescent probe activated by near-infrared (NIR) light for bioimaging and targeted mitochondrial action in melanoma cells. IR-418, our newly designed hemicyanine-based NIR fluorescent probe, demonstrated effective targeting of melanoma cell mitochondria for NIR imaging. In vitro and in vivo experiments revealed IR-418's inhibition of melanoma growth through the promotion of mitochondrial apoptosis (Bax/Bcl-2/Cleaved Caspase pathway). Moreover, IR-418 inhibited melanoma metastasis by inhibiting mitochondrial fission through the ERK/DRP1 pathway. Notably, IR-418 mitigated abnormal ATL and ASL elevations caused by tumours without inflicting significant organ damage, indicating its high biocompatibility. In conclusion, IR-418, a novel hemicyanine-based NIR fluorescent probe targeting the mitochondria, exhibits significant fluorescence imaging capability, anti-melanoma proliferation, anti-melanoma lung metastasis activities and high biosafety. Therefore, it has significant potential in the early diagnosis and treatment of melanoma.
Collapse
Affiliation(s)
- Qingqing He
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Changqiang Li
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yangrulan Ou
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yifan Pan
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xun Yang
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jianv Wang
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Hongye Liao
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
19
|
Tian Y, Cheng T, Sun F, Zhou Y, Yuan C, Guo Z, Wang Z. Effect of biophysical properties of tumor extracellular matrix on intratumoral fate of nanoparticles: Implications on the design of nanomedicine. Adv Colloid Interface Sci 2024; 326:103124. [PMID: 38461766 DOI: 10.1016/j.cis.2024.103124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/11/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Nanomedicine has a profound impact on various research domains including drug delivery, diagnostics, theranostics, and regenerative medicine. Nevertheless, the clinical translation of nanomedicines for solid cancer remains limited due to the abundant physiological and pathological barriers in tumor that hinder the intratumoral penetration and distribution of these nanomedicines. In this article, we review the dynamic remodeling of tumor extracellular matrix during the tumor progression, discuss the impact of biophysical obstacles within tumors on the penetration and distribution of nanomedicines within the solid tumor and collect innovative approaches to surmount these obstacles for improving the penetration and accumulation of nanomedicines in tumor. Furthermore, we dissect the challenges and opportunities of the respective approaches, and propose potential avenues for future investigations. The purpose of this review is to provide a perspective guideline on how to effectively enhance the penetration of nanomedicines within tumors using promising methods.
Collapse
Affiliation(s)
- Yachao Tian
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Guoru Biotechnology Co., Ltd., Xiangfang District, Harbin City 150030, China; School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yaxin Zhou
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chao Yuan
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
20
|
Cheng Q, Shi X, Chen Y, Li Q, Wang J, Li H, Wang L, Wang Z. Tumor Microenvironment-Activatable Nanosystem Capable of Overcoming Multiple Therapeutic Obstacles for Augmenting Immuno/Metal-Ion Therapy. ACS NANO 2024; 18:8996-9010. [PMID: 38477219 DOI: 10.1021/acsnano.3c12745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Abnormal tumor microenvironment (TME) imposes barriers to nanomedicine penetration into tumors and evolves tumor-supportive nature to provide tumor cell protection, seriously weakening the action of antitumor nanomedicines and posing significant challenges to their development. Here, we engineer a TME-activatable size-switchable core-satellite nanosystem (Mn-TI-Ag@HA) capable of increasing the effective dose of therapeutic agents in deep-seated tumors while reversing tumor-supportive microenvironment for augmenting immuno/metal-ion therapy. When activated by TME, the nanosystem disintegrates, allowing ultrasmall-sized Ag nanoparticles to become unbound and penetrate deep into solid tumors. Simultaneously, the nanosystem produces O2 and releases TGF-β inhibitors in situ to drive macrophage M2-to-M1 polarization, increasing intratumoral H2O2 concentration, and ultimately augmenting metal-ion therapy by accelerating hypertoxic Ag+ production. The nanosystem can overcome multiple obstacles that aid in tumor resistance to nanomedicine, demonstrating effective tumor penetration, TME regulation, and tumor inhibition effects. It can provoke long-term immunological memory effects against tumor rechallenge when combined with immune checkpoint inhibitor anti-PD-1. This work provides a paradigm for designing efficient antitumor nanomedicines.
Collapse
Affiliation(s)
- Qian Cheng
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Xiaolei Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Yuzhe Chen
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Qilin Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Jiawei Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Heli Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| |
Collapse
|
21
|
Zhang C, Yang K, Yang G. Design strategies for enhancing antitumor efficacy through tumor microenvironment exploitation using albumin-based nanosystems: A review. Int J Biol Macromol 2024; 258:129070. [PMID: 38163506 DOI: 10.1016/j.ijbiomac.2023.129070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
The tumor microenvironment (TME) is a complex and dynamic system that plays a crucial role in regulating cancer progression, treatment response, and the emergence of acquired resistance mechanisms. The TME is usually featured by severe hypoxia, low pH values, high hydrogen peroxide (H2O2) concentrations, and overproduction of glutathione (GSH). The current development of intelligent nanosystems that respond to TME has shown great potential to enhance the efficacy of cancer treatment. As one of the functional macromolecules explored in this field, albumin-based nanocarriers, known for their inherent biocompatibility, serves as a cornerstone for constructing diverse therapeutic platforms. In this paper, we present a comprehensive overview of the latest advancements in the design strategies of albumin nanosystems, aiming to enhance cancer therapy by harnessing various features of solid tumors, including tumor hypoxia, acidic pH, the condensed extracellular matrix (ECM) network, excessive GSH, high glucose levels, and tumor immune microenvironment. Furthermore, we highlight representative designs of albumin-based nanoplatforms by exploiting the TME that enhance a broad range of cancer therapies, such as chemotherapy, phototherapy, radiotherapy, immunotherapy, and other tumor therapies. Finally, we discuss the existing challenges and future prospects in direction of albumin-based nanosystems for the practical applications in advancing enhanced cancer treatments.
Collapse
Affiliation(s)
- Cai Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guangbao Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
22
|
Shen X, Pan D, Gong Q, Gu Z, Luo K. Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives. Bioact Mater 2024; 32:445-472. [PMID: 37965242 PMCID: PMC10641097 DOI: 10.1016/j.bioactmat.2023.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Effective tumor treatment depends on optimizing drug penetration and accumulation in tumor tissue while minimizing systemic toxicity. Nanomedicine has emerged as a key solution that addresses the rapid clearance of free drugs, but achieving deep drug penetration into solid tumors remains elusive. This review discusses various strategies to enhance drug penetration, including manipulation of the tumor microenvironment, exploitation of both external and internal stimuli, pioneering nanocarrier surface engineering, and development of innovative tactics for active tumor penetration. One outstanding strategy is organelle-affinitive transfer, which exploits the unique properties of specific tumor cell organelles and heralds a potentially transformative approach to active transcellular transfer for deep tumor penetration. Rigorous models are essential to evaluate the efficacy of these strategies. The patient-derived xenograft (PDX) model is gaining traction as a bridge between laboratory discovery and clinical application. However, the journey from bench to bedside for nanomedicines is fraught with challenges. Future efforts should prioritize deepening our understanding of nanoparticle-tumor interactions, re-evaluating the EPR effect, and exploring novel nanoparticle transport mechanisms.
Collapse
Affiliation(s)
- Xiaoding Shen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
23
|
Chan WJ, Li H. Recent advances in nano/micro systems for improved circulation stability, enhanced tumor targeting, penetration, and intracellular drug delivery: a review. Biomed Phys Eng Express 2024; 10:022001. [PMID: 38086099 DOI: 10.1088/2057-1976/ad14f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
In recent years, nanoparticles (NPs) have been extensively developed as drug carriers to overcome the limitations of cancer therapeutics. However, there are several biological barriers to nanomedicines, which include the lack of stability in circulation, limited target specificity, low penetration into tumors and insufficient cellular uptake, restricting the active targeting toward tumors of nanomedicines. To address these challenges, a variety of promising strategies were developed recently, as they can be designed to improve NP accumulation and penetration in tumor tissues, circulation stability, tumor targeting, and intracellular uptake. In this Review, we summarized nanomaterials developed in recent three years that could be utilized to improve drug delivery for cancer treatments.
Collapse
Affiliation(s)
- Wei-Jen Chan
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Huatian Li
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| |
Collapse
|
24
|
Xu S, Qian Z, Zhao N, Yuan W. Thermoresponsive injectable self-healing hydrogel containing polydopamine-coated Fe/Mo-doped TiO 2 nanoparticles for efficient synergistic sonodynamic-chemodynamic-photothermal-chemo therapy. J Colloid Interface Sci 2024; 654:1431-1446. [PMID: 37922629 DOI: 10.1016/j.jcis.2023.10.145] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
A smart hydrogel loading multifunctional nanoparticles and anticancer drugs was designed to achieve synergistic therapy against tumors with high efficiency and specificity. The thermoresponsive injectable self-healing hydrogel was prepared through the Schiff base between aldehyde-functionalized poly(2-(2-methoxyethoxy) ethyl methacrylate)-co-oligo(ethylene glycol) methacrylate-co-2-hydroxyethyl methacrylate) (P(MEO2MA-co-OEGMA-co-HEMA), APMOH) and hydroxypropyl chitosan (HPCS). The polydopamine-coated Fe/Mo-doped titanium dioxide nanoparticles (PDA@dTiO2 NPs) were prepared and dispersed into the hydrogel with anticancer drug doxorubicin (DOX). PDA@dTiO2 NPs as sonosensitizers can convert oxygen into singlet oxygen (1O2) under ultrasound (US) irradiation, achieving sonodynamic therapy (SDT). They were also considered nanoenzymes, generating oxygen to supply an oxygen source for SDT, producing hydroxyl radical (·OH) to achieve chemodynamic therapy (CDT), and eliminating glutathione (GSH) to enhance the level of oxidative stress. After near-infrared (NIR) irradiation, the temperature of the hydrogel increased due to the photothermal ability of the polydopamine (PDA) layer. When the temperature reached the hydrogel's lower critical solution temperature (LCST), the hydrophilic-hydrophobic transformation occurred, and the hydrogel volume contracted. Consequently, the release rate of PDA@dTiO2 NPs and DOX increased, improving the therapeutic effects. The nanocomposite hydrogel system can achieve synergistic sonodynamic-chemodynamic-photothermal-chemo therapy (SDT-CDT-PTT-CT) for tumors, providing a novel platform for synergistic tumor treatment.
Collapse
Affiliation(s)
- Sicheng Xu
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Zhiyi Qian
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Nuoya Zhao
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China.
| |
Collapse
|
25
|
Jiang T, Wang J, Xie L, Zhou S, Huang Y, Chen Y, Gao X, Xiao W, Chen J. Biguanide-anchored albumin-based nanoplatform inhibits epithelial-mesenchymal transition and reduces the stemness phenotype for metastatic cancer therapy. Acta Biomater 2023; 171:565-579. [PMID: 37716479 DOI: 10.1016/j.actbio.2023.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
In clinical chemotherapy, albumin-bound paclitaxel (Abraxane) can improve the tumor targeting property and therapeutic efficacy of paclitaxel (PTX) against orthotopic malignancies. However, patients with metastatic cancer have a poor prognosis, probably due to the instability, chemoresistance, and inability of albumin-bound paclitaxel to alter the tumor microenvironment. Here we propose a new biguanide-modified albumin-based nanoplatform that encapsulates paclitaxel for the effective treatment of metastatic cancer. The PTX is encapsulated in poly (lactic-co-glycolic acid) cores coated with biguanide-modified albumin (HSA-NH). The functionalized nanoparticles (HSA-NH NPs) exhibit a remarkable stable profile with low drug release (P < 0.05 versus Abraxane), target tumor tissues, suppress epithelial-mesenchymal transition (EMT) events for anti-metastatic effects, and reduce the phenotype of cancer stem cells. As a result, HSA-NH NPs effectively prolong animal survival (55 days) by inhibiting not only primary tumor growth but also metastasis. This study provides proof of concept that the biguanide-anchored albumin-based nanoplatform encapsulating PTX is a powerful, safe, and clinically translational strategy for the treatment of metastatic cancer. STATEMENT OF SIGNIFICANCE: Albumin-bound paclitaxel (Abraxane) can increase paclitaxel's tumor targeting and therapeutic efficacy in clinical cancer treatments such as breast cancer. However, the instability, chemoresistance, and lack of tumor microenvironment modulation of albumin-bound paclitaxel may lead to poor therapeutic efficacy in metastatic cancer patients. Here we develop biguanide-anchored albumin-based nanoplatforms that encapsulate paclitaxel (HSA-NH NPs) for metastatic cancer treatment. Poly(lactic-co-glycolic acid) (PLGA) cores encapsulating paclitaxel improve the stability of HSA-NH NPs. Based on the activities of metformin, biguanide-anchored albumin adsorbed on PLGA cores improves paclitaxel efficacy, inhibits various aberrant changes during epithelial-mesenchymal transition, and reduces tumor cell stemness. The biguanide-anchored albumin-based nanoplatform encapsulating PTX can serve as a potent, safe, and clinically translational approach for metastatic cancer therapies.
Collapse
Affiliation(s)
- Tianze Jiang
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jiahao Wang
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Laozhi Xie
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Songlei Zhou
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Yukun Huang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Yu Chen
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Wenze Xiao
- Department of Rheumatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai 201399, China.
| | - Jun Chen
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
26
|
Wang L, Zheng W, Zhong L, Yang Y, Chen Y, Hou Q, Yu P, Jiang X. Phenylboronic Acid-Modified Gold Nanoclusters as a Nanoantibiotic to Treat Vancomycin-Resistant Enterococcus faecalis-Caused Infections. ACS NANO 2023; 17:19685-19695. [PMID: 37815027 DOI: 10.1021/acsnano.3c02886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Vancomycin is one of the last lines of defense against certain drug-resistant bacteria-caused infections. However, the high susceptibility to drug resistance and high toxicity seriously limit the application of vancomycin. Nanoantibiotics provide opportunities to solve these problems. Herein, we present mercaptophenylboronic acid (MBA)-modified gold nanoclusters with well-defined molecular formulas and structure (Au44(MBA)18) and excellent antibacterial activities against various drug-resistant bacteria such as vancomycin-resistant Enterococcus faecalis (VRE). Au44(MBA)18 interacts with bacteria by first attaching to teichoic-acid and destroying the cell wall and subsequently binding to the bacterial DNA. Au44(MBA)18 could be administered via multiple routes and has a high biosafety (500 mg/kg, no ototoxicity), overcoming the two major shortcomings of vancomycin (sole administration route and high ototoxicity). Our study is insightful for curing infections caused by multidrug-resistant bacteria using nanoantibiotics with high biosafety.
Collapse
Affiliation(s)
- Le Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
- Cancer Research Center, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, People's Republic of China
| | - Wenfu Zheng
- GBA Research Innovation Institute for Nanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing, 100190, People's Republic of China
| | - Leni Zhong
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Yingkun Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, People's Republic of China
| | - Yao Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Qinghong Hou
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Peiyuan Yu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|
27
|
Shi Z, Luo M, Huang Q, Ding C, Wang W, Wu Y, Luo J, Lin C, Chen T, Zeng X, Mei L, Zhao Y, Chen H. NIR-dye bridged human serum albumin reassemblies for effective photothermal therapy of tumor. Nat Commun 2023; 14:6567. [PMID: 37848496 PMCID: PMC10582160 DOI: 10.1038/s41467-023-42399-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
Human serum albumin (HSA) based drug delivery platforms that feature desirable biocompatibility and pharmacokinetic property are rapidly developed for tumor-targeted drug delivery. Even though various HSA-based platforms have been established, it is still of great significance to develop more efficient preparation technology to broaden the therapeutic applications of HSA-based nano-carriers. Here we report a bridging strategy that unfastens HSA to polypeptide chains and subsequently crosslinks these chains by a bridge-like molecule (BPY-Mal2) to afford the HSA reassemblies formulation (BPY@HSA) with enhanced loading capacity, endowing the BPY@HSA with uniformed size, high photothermal efficacy, and favorable therapeutic features. Both in vitro and in vivo studies demonstrate that the BPY@HSA presents higher delivery efficacy and more prominent photothermal therapeutic performance than that of the conventionally prepared formulation. The feasibility in preparation, stability, high photothermal conversion efficacy, and biocompatibility of BPY@HSA may facilitate it as an efficient photothermal agents (PTAs) for tumor photothermal therapy (PTT). This work provides a facile strategy to enhance the loading capacity of HSA-based crosslinking platforms in order to improve delivery efficacy and therapeutic effect.
Collapse
Affiliation(s)
- Zhaoqing Shi
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Miaomiao Luo
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Qili Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chendi Ding
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Wenyan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yinglong Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jingjing Luo
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chuchu Lin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Ting Chen
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
28
|
Ji W, Zhang Y, Deng Y, Li C, Kankala RK, Chen A. Nature-inspired nanocarriers for improving drug therapy of atherosclerosis. Regen Biomater 2023; 10:rbad069. [PMID: 37641591 PMCID: PMC10460486 DOI: 10.1093/rb/rbad069] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Atherosclerosis (AS) has emerged as one of the prevalent arterial vascular diseases characterized by plaque and inflammation, primarily causing disability and mortality globally. Drug therapy remains the main treatment for AS. However, a series of obstacles hinder effective drug delivery. Nature, from natural micro-/nano-structural biological particles like natural cells and extracellular vesicles to the distinctions between the normal and pathological microenvironment, offers compelling solutions for efficient drug delivery. Nature-inspired nanocarriers of synthetic stimulus-responsive materials and natural components, such as lipids, proteins and membrane structures, have emerged as promising candidates for fulfilling drug delivery needs. These nanocarriers offer several advantages, including prolonged blood circulation, targeted plaque delivery, targeted specific cells delivery and controlled drug release at the action site. In this review, we discuss the nature-inspired nanocarriers which leverage the natural properties of cells or the microenvironment to improve atherosclerotic drug therapy. Finally, we provide an overview of the challenges and opportunities of applying these innovative nature-inspired nanocarriers.
Collapse
Affiliation(s)
- Weihong Ji
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Yuanxing Zhang
- The Institute of Forensic Science, Xiamen Public Security Bureau, Xiamen, Fujian 361104, PR China
| | - Yuanru Deng
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Changyong Li
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| |
Collapse
|
29
|
Zhu S, Zhang T, Gao H, Jin G, Yang J, He X, Guo H, Xu F. Combination Therapy of Lox Inhibitor and Stimuli-Responsive Drug for Mechanochemically Synergistic Breast Cancer Treatment. Adv Healthc Mater 2023; 12:e2300103. [PMID: 37099721 DOI: 10.1002/adhm.202300103] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/21/2023] [Indexed: 04/28/2023]
Abstract
Chemotherapy based on small molecule drugs, hormones, cycline kinase inhibitors, and monoclonal antibodies has been widely used for breast cancer treatment in the clinic but with limited efficacy, due to the poor specificity and tumor microenvironment (TME)-caused diffusion barrier. Although monotherapies targeting biochemical cues or physical cues in the TME have been developed, none of them can cope with the complex TME, while mechanochemical combination therapy remains largely to be explored. Herein, a combination therapy strategy based on an extracellular matrix (ECM) modulator and TME-responsive drug for the first attempt of mechanochemically synergistic treatment of breast cancer is developed. Specifically, based on overexpressed NAD(P)H quinone oxidoreductase 1 (NQO1) in breast cancer, a TME-responsive drug (NQO1-SN38) is designed and it is combined with the inhibitor (i.e., β-Aminopropionitrile, BAPN) for Lysyl oxidases (Lox) that contributes to the tumor stiffness, for mechanochemical therapy. It is demonstrated that NQO1 can trigger the degradation of NQO1-SN38 and release SN38, showing nearly twice tumor inhibition efficiency compared with SN38 treatment in vitro. Lox inhibition with BAPN significantly reduces collagen deposition and enhances drug penetration in tumor heterospheroids in vitro. It is further demonstrated that the mechanochemical therapy showed outstanding therapeutic efficacy in vivo, providing a promising approach for breast cancer therapy.
Collapse
Affiliation(s)
- Shanshan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tian Zhang
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Huan Gao
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Guorui Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jin Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xiaocong He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
30
|
Wang J, Jia J, He Q, Xu Y, Liao H, Xiong X, Liu L, Sun C. A novel multifunctional mitochondrion-targeting NIR fluorophore probe inhibits tumour proliferation and metastasis through the PPARγ/ROS/β-catenin pathway. Eur J Med Chem 2023; 258:115435. [PMID: 37327679 DOI: 10.1016/j.ejmech.2023.115435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 06/18/2023]
Abstract
Recent advancements in tumour-targeted therapies and immunotherapy offer hope to patients with various malignancies. However, the uncontrolled growth and metastatic infiltration of malignant tumours remain a huge therapeutic challenge. Therefore, this study aimed to develop an integrated multifunctional diagnostic and treatment reagent IR-251 that can not only be used for tumour imaging but also to inhibit tumour growth and metastasis. Besides, our results showed that IR-251 targeted and damaged the mitochondria in cancer cells via organic anion-transporting polypeptides. Mechanistically, IR-251 induced ROS overproduction by inhibiting PPARγ and then inhibiting the β-catenin signalling pathway and downstream protein molecules related to the cell cycle and metastasis. Moreover, the excellent anti-tumour proliferation and metastasis ability of IR-251 were verified in vitro/in vivo. And histochemistry staining revealed that IR-251 inhibited tumour proliferation and metastasis, which showed no significant side effect. In conclusion, this novel, multifunctional, mitochondria-targeting near-infrared fluorophore probe IR-251 has great potential in achieving accurate tumour imaging and inhibiting tumour proliferation and metastasis, and the underlying mechanism of action of IR-251 is mainly via the PPARγ/ROS/β-catenin pathway.
Collapse
Affiliation(s)
- Jianv Wang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qingqing He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yang Xu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Hongye Liao
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
31
|
Li X, Huang Z, Liao Z, Liu A, Huo S. Transformable nanodrugs for overcoming the biological barriers in the tumor environment during drug delivery. NANOSCALE 2023; 15:8532-8547. [PMID: 37114478 DOI: 10.1039/d2nr06621a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Drug delivery systems have been studied massively with explosive growth in the last few decades. However, challenges such as biological barriers are still obstructing the delivery efficiency of nanomedicines. Reports have shown that the physicochemical properties, such as the morphologies of nanodrugs, could highly affect their biodistribution and bioavailability. Therefore, transformable nanodrugs that take advantage of different sizes and shapes allow for overcoming multiple biological barriers, providing promising prospects for drug delivery. This review aims to present an overview of the most recent developments of transformable nanodrugs in this emerging field. First, the design principles and transformation mechanisms which serve as guidelines for smart nanodrugs are summarized. Afterward, their applications in overcoming biological barriers, including the bloodstream, intratumoral pressure, cellular membrane, endosomal wrapping, and nuclear membrane, are highlighted. Finally, discussions on the current developments and future perspectives of transformable nanodrugs are given.
Collapse
Affiliation(s)
- Xuejian Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zhenkun Huang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zhihuan Liao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Aijie Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
32
|
Duan S, Hu Y, Zhao Y, Tang K, Zhang Z, Liu Z, Wang Y, Guo H, Miao Y, Du H, Yang D, Li S, Zhang J. Nanomaterials for photothermal cancer therapy. RSC Adv 2023; 13:14443-14460. [PMID: 37180014 PMCID: PMC10172882 DOI: 10.1039/d3ra02620e] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer has emerged as a pressing global public health issue, and improving the effectiveness of cancer treatment remains one of the foremost challenges of modern medicine. The primary clinical methods of treating cancer, including surgery, chemotherapy and radiotherapy, inevitably result in some adverse effects on the body. However, the advent of photothermal therapy offers an alternative route for cancer treatment. Photothermal therapy relies on photothermal agents with photothermal conversion capability to eliminate tumors at high temperatures, which offers advantages of high precision and low toxicity. As nanomaterials increasingly play a pivotal role in tumor prevention and treatment, nanomaterial-based photothermal therapy has gained significant attention owing to its superior photothermal properties and tumor-killing abilities. In this review, we briefly summarize and introduce the applications of common organic photothermal conversion materials (e.g., cyanine-based nanomaterials, porphyrin-based nanomaterials, polymer-based nanomaterials, etc.) and inorganic photothermal conversion materials (e.g., noble metal nanomaterials, carbon-based nanomaterials, etc.) in tumor photothermal therapy in recent years. Finally, the problems of photothermal nanomaterials in antitumour therapy applications are discussed. It is believed that nanomaterial-based photothermal therapy will have good application prospects in tumor treatment in the future.
Collapse
Affiliation(s)
- Shufan Duan
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Yanling Hu
- Nanjing Polytechnic Institute Nanjing 210048 China
| | - Ying Zhao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University Nanjing 210006 China
| | - Kaiyuan Tang
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Zhijing Zhang
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Zilu Liu
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Ying Wang
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Haiyang Guo
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Yuchen Miao
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Hengda Du
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Shengke Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa Macau SAR China
| | - Junjie Zhang
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| |
Collapse
|
33
|
Cui X, Ruan Q, Zhuo X, Xia X, Hu J, Fu R, Li Y, Wang J, Xu H. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem Rev 2023. [PMID: 37133878 DOI: 10.1021/acs.chemrev.3c00159] [Citation(s) in RCA: 338] [Impact Index Per Article: 169.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
All forms of energy follow the law of conservation of energy, by which they can be neither created nor destroyed. Light-to-heat conversion as a traditional yet constantly evolving means of converting light into thermal energy has been of enduring appeal to researchers and the public. With the continuous development of advanced nanotechnologies, a variety of photothermal nanomaterials have been endowed with excellent light harvesting and photothermal conversion capabilities for exploring fascinating and prospective applications. Herein we review the latest progresses on photothermal nanomaterials, with a focus on their underlying mechanisms as powerful light-to-heat converters. We present an extensive catalogue of nanostructured photothermal materials, including metallic/semiconductor structures, carbon materials, organic polymers, and two-dimensional materials. The proper material selection and rational structural design for improving the photothermal performance are then discussed. We also provide a representative overview of the latest techniques for probing photothermally generated heat at the nanoscale. We finally review the recent significant developments of photothermal applications and give a brief outlook on the current challenges and future directions of photothermal nanomaterials.
Collapse
Affiliation(s)
- Ximin Cui
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qifeng Ruan
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System & Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Jingtian Hu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Runfang Fu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yang Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Hongxing Xu
- School of Physics and Technology and School of Microelectronics, Wuhan University, Wuhan 430072, Hubei, China
- Henan Academy of Sciences, Zhengzhou 450046, Henan, China
- Wuhan Institute of Quantum Technology, Wuhan 430205, Hubei, China
| |
Collapse
|
34
|
Lu Y, Zhang P, Zhou Y, Zhang R, Fu X, Feng J, Zhang H. Novel nanocarrier for promoting tumor synergistic therapy by down-regulation of heat shock proteins and increased Fe3+ supply. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
35
|
Li J, Wu T, Li S, Chen X, Deng Z, Huang Y. Nanoparticles for cancer therapy: a review of influencing factors and evaluation methods for biosafety. Clin Transl Oncol 2023:10.1007/s12094-023-03117-5. [PMID: 36807057 DOI: 10.1007/s12094-023-03117-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
Nanoparticles are widely used in the biomedical field for diagnostic and therapeutic purposes due to their small size, high carrier capacity, and ease of modification, which enable selective targeting and as contrast agents. Over the past decades, more and more nanoparticles have received regulatory approval to enter the clinic, more nanoparticles have shown potential for clinical translation, and humans have increasing access to them. However, nanoparticles have a high potential to cause unpredictable adverse effects on human organs, tissues, and cells due to their unique physicochemical properties and interactions with DNA, lipids, cells, tissues, proteins, and biological fluids. Currently, issues, such as nanoparticle side effects and toxicity, remain controversial, and these pitfalls must be fully considered prior to their application to body systems. Therefore, it is particularly urgent and important to assess the safety of nanoparticles acting in living organisms. In this paper, we review the important factors influencing the biosafety of nanoparticles in terms of their properties, and introduce common methods to summarize the biosafety evaluation of nanoparticles through in vitro and in body systems.
Collapse
Affiliation(s)
- Jinghua Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Tao Wu
- The First People's Hospital of Changde City, Changde, 415000, China
| | - Shiman Li
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Xinyan Chen
- Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhiming Deng
- The First People's Hospital of Changde City, Changde, 415000, China
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, 530021, China. .,The First People's Hospital of Changde City, Changde, 415000, China.
| |
Collapse
|