1
|
Yu Q, Zhang Q, Zhu J, Pan F, Zhang H, Chen L, Shen J, Liu Y, Ji Z, Zhu Y, Chen Q, Yang Y. Inhalable neutrophil-mimicking nanoparticles for chronic obstructive pulmonary disease treatment. J Control Release 2025; 381:113648. [PMID: 40118116 DOI: 10.1016/j.jconrel.2025.113648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/28/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is an intractable disease with thick mucus layer in bronchi and alveoli, frequently accompanied by bacterial infection. Anti-bacterial drugs with mucus penetrating are urgently needed for efficient COPD treatment. Here, a neutrophil-mimicking nanovehicle was developed by coating neutrophil membrane onto poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing antibiotics levofloxacin (LVX). Neutrophil membrane coated nanoparticles (LVX@PLGA@Mem) reserved most of the membrane proteins and related membrane functions of neutrophil, exhibiting pro-inflammatory cytokines neutralization, inflammation inhibition, successfully delivering LVX through the mucus layer and achieving satisfactory anti-infection effects. Thus, LVX@PLGA@Mem after inhalation could remarkably reduce inflammation and infection in the lung with COPD. Therefore, neutrophil mimicking nanovehicles may be a feasible and desirable drug carrier for lung-related disease treatment in further clinic.
Collapse
Affiliation(s)
- Qifan Yu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Qiang Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China; School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Jiafei Zhu
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Feng Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Han Zhang
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Linfu Chen
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Jingjing Shen
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yanbin Liu
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhaoxin Ji
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yuming Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| |
Collapse
|
2
|
Jiang M, Fang H, Tian H. Latest advancements and trends in biomedical polymers for disease prevention, diagnosis, treatment, and clinical application. J Control Release 2025; 380:138-174. [PMID: 39880039 DOI: 10.1016/j.jconrel.2025.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Biomedical polymers are at the forefront of medical advancements, offering innovative solutions in disease prevention, diagnosis, treatment, and clinical use due to their exceptional physicochemical properties. This review delves into the characteristics, classification, and preparation methods of these polymers, highlighting their diverse applications in drug delivery, medical imaging, tissue engineering, and regenerative medicine. We present a thorough analysis of the recent advancements in biomedical polymer research and their clinical applications, acknowledging the challenges that remain, such as immune response management, controlled degradation rates, and mechanical property optimization. Addressing these issues, we explore future directions, including personalization and the integration of nanotechnology, which hold significant potential for further advancing the field. This comprehensive review aims to provide a deep understanding of biomedical polymers and serve as a valuable resource for the development of innovative polymer materials in both fundamental research and clinical practice.
Collapse
Affiliation(s)
- Mingxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China.
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| |
Collapse
|
3
|
Zhao C, Wen S, Xu R, Wang K, Zhong Y, Huang D, Zhao B, Chen W. Oral delivery of ultra-small zwitterionic nanoparticles to overcome mucus and epithelial barriers for macrophage modulation and colitis therapy. Acta Biomater 2025; 196:399-409. [PMID: 39983856 DOI: 10.1016/j.actbio.2025.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the colon that poses significant therapeutic challenges due to the intestinal mucus and epithelial barriers. In this study, ultra-small zwitterionic nanoparticles (HC-CB NPs) is developed based on glutathione (GSH)-responsive hyperbranched polycarbonate to enhance the oral delivery of drugs and overcome these physiological barriers. HC-CB NPs demonstrate high colloidal stability across a wide range of pH environments and physiological fluids, preventing premature drug release within the gastrointestinal tract. The ultra-small sized HC-CB NPs demonstrate minimal mucin adsorption and effectively penetrate through the mucus layer, and the zwitterion surface further facilitate epithelial barrier crossing via the proton-assisted amino acid transporter 1 (PAT1) pathway. HC-CB NPs mediate enhanced macrophage uptake via monocarboxylate transporters (MCTs) pathway and ultimately improved therapy efficacy on colitis. The in vivo results reveal that FK506-loaded HC-CB NPs (HC-CB NPs@FK506) significantly reduce inflammatory markers (TNF-α, IL-6) and myeloperoxidase (MPO) levels, while promoting epithelial integrity by increasing E-cadherin expression. This study offers a promising approach to overcoming intestinal barriers in oral UC treatment, offering biocompatibility and potential for clinical translation. STATEMENT OF SIGNIFICANCE: Ulcerative colitis (UC) is a chronic inflammatory disease of the colon that poses significant therapeutic challenges due to the intestinal mucus and epithelial barriers. This study explores an oral UC therapy using ultra-small zwitterionic nanoparticles (HC-CB NPs) constructed from GSH-responsive hyperbranched polycarbonate. Compared to existing strategies, HC-CB NPs demonstrate minimal mucin adsorption and effectively penetrate through the mucus layer, and the zwitterion surface further facilitate epithelial barrier crossing via the proton-assisted amino acid transporter 1 (PAT1) pathway. Additionally, HC-CB NPs mediate enhanced macrophage uptake via monocarboxylate transporters (MCTs) pathway, resulting in improved therapeutic efficacy. These findings underscore the potential of HC-CB NPs as a transformative platform for overcoming intestinal barriers in UC treatment.
Collapse
Affiliation(s)
- Changshun Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Suchen Wen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Rui Xu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ke Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
4
|
Zhang W, Wang Y, Zhang X, Zhang Y, Yu W, Tang H, Yuan WE. Polyzwitterion-branched polycholic acid nanocarriers based oral delivery insulin for long-term glucose and metabolic regulation in diabetes mellitus. J Nanobiotechnology 2025; 23:133. [PMID: 39987096 PMCID: PMC11846306 DOI: 10.1186/s12951-025-03190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/01/2025] [Indexed: 02/24/2025] Open
Abstract
Diabetes represents a global health crisis that necessitates advancements in prevention, treatment, and management. Beyond glucose regulation, addressing weight management and associated complications is imperative. This study introduces an oral nanoparticle formulation designed to simultaneously control blood glucose, obesity, and metabolic dysfunction. These nanoparticles, based on poly (zwitterion-cholic acid), incorporate a polyzwitterion component to enhance permeation through the mucus layer and prolong drug residence. Furthermore, bile acid polymers not only regulate lipid metabolism but also ameliorate obesity-associated inflammation in adipose and liver tissues. In vivo experiments demonstrated significant hypoglycemic effects in healthy, type I diabetic, and type II diabetic mice. Notably, the nanocarriers significantly reduced body weight gain, ameliorated inflammation in adipose and liver tissues, and modulated lipid metabolism in the liver of db/db mice. Our study elucidates a comprehensive strategy for addressing glycemic control and diabetes-related complications, offering a promising approach for diabetes prevention and treatment.
Collapse
Affiliation(s)
- Wenkai Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Yue Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Xiangqi Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Yihui Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Wei Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Haozheng Tang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, China
| | - Wei-En Yuan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China.
| |
Collapse
|
5
|
Yuan H, Jiang M, Fang H, Tian H. Recent advances in poly(amino acids), polypeptides, and their derivatives in drug delivery. NANOSCALE 2025; 17:3549-3584. [PMID: 39745097 DOI: 10.1039/d4nr04481a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Poly(amino acids), polypeptides, and their derivatives have demonstrated significant potential as biodegradable biomaterials in the field of drug delivery. As degradable drug carriers, they can effectively load or conjugate drug molecules including small molecule drugs, nucleic acids, peptides, and protein-based drugs, enhancing the stability and targeting of the drugs in vivo. This strategy ultimately facilitates precise drug delivery and controlled release, thereby improving therapeutic efficacy and reducing side effects within the body. This review systematically describes the structural characteristics and preparation methods of poly(amino acids) and polypeptides, summarizes the advantages of poly(amino acids), polypeptides, and their derivatives in drug delivery, and detailedly introduces the latest advancements in this area. The review also discusses current challenges and opportunities associated with poly(amino acids), peptides, and their derivatives, and offers insights into the future directions for these biodegradable materials. This review aims to provide valuable references for scientific research and clinical translation of biodegradable biomaterials based on poly(amino acids) and peptides.
Collapse
Affiliation(s)
- Huilin Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| | - Mingxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| |
Collapse
|
6
|
Zhang S, Fang H, Tian H. Recent Advances in Degradable Biomedical Polymers for Prevention, Diagnosis and Treatment of Diseases. Biomacromolecules 2024; 25:7015-7057. [PMID: 39420482 DOI: 10.1021/acs.biomac.4c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Biomedical polymers play a key role in preventing, diagnosing, and treating diseases, showcasing a wide range of applications. Their unique advantages, such as rich source, good biocompatibility, and excellent modifiability, make them ideal biomaterials for drug delivery, biomedical imaging, and tissue engineering. However, conventional biomedical polymers suffer from poor degradation in vivo, increasing the risks of bioaccumulation and potential toxicity. To address these issues, degradable biomedical polymers can serve as an alternative strategy in biomedicine. Degradable biomedical polymers can efficiently relieve bioaccumulation in vivo and effectively reduce patient burden in disease management. This review comprehensively introduces the classification and properties of biomedical polymers and the recent research progress of degradable biomedical polymers in various diseases. Through an in-depth analysis of their classification, properties, and applications, we aim to provide strong guidance for promoting basic research and clinical translation of degradable biomedical polymers.
Collapse
Affiliation(s)
- Siting Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
7
|
Xiao P, Wang H, Liu H, Yuan H, Guo C, Feng Y, Qi P, Yin T, Zhang Y, He H, Tang X, Gou J. Milk Exosome-Liposome Hybrid Vesicles with Self-Adapting Surface Properties Overcome the Sequential Absorption Barriers for Oral Delivery of Peptides. ACS NANO 2024; 18:21091-21111. [PMID: 39099105 DOI: 10.1021/acsnano.4c02560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Milk exosomes (mExos) have demonstrated significant promise as vehicles for the oral administration of protein and peptide drugs owing to their superior capacity to traverse epithelial barriers. Nevertheless, certain challenges persist due to their intrinsic characteristics, including suboptimal drug loading efficiency, inadequate mucus penetration capability, and susceptibility to membrane protein loss. Herein, a hybrid vesicle with self-adaptive surface properties (mExos@DSPE-Hyd-PMPC) was designed by fusing functionalized liposomes with natural mExos, aiming to overcome the limitations associated with mExos and unlock their full potential in oral peptide delivery. The surface property transformation of mExos@DSPE-Hyd-PMPC was achieved by introducing a pH-sensitive hydrazone bond between the highly hydrophilic zwitterionic polymer and the phospholipids, utilizing the pH microenvironment on the jejunum surface. In comparison to natural mExos, hybrid vesicles exhibited a 2.4-fold enhancement in the encapsulation efficiency of the semaglutide (SET). The hydrophilic and neutrally charged surfaces of mExos@DSPE-Hyd-PMPC in the jejunal lumen exhibited improved preservation of membrane proteins and efficient traversal of the mucus barrier. Upon reaching the surface of jejunal epithelial cells, the highly retained membrane proteins and positively charged surfaces of the hybrid vesicle efficiently overcame the apical barrier, the intracellular transport barrier, and the basolateral exocytosis barrier. The self-adaptive surface properties of the hybrid vesicle resulted in an oral bioavailability of 8.7% and notably enhanced the pharmacological therapeutic effects. This study successfully addresses some limitations of natural mExos and holds promise for overcoming the sequential absorption barriers associated with the oral delivery of peptides.
Collapse
Affiliation(s)
- Peifu Xiao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, China
| | - Hongbing Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yupeng Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Pan Qi
- Changchun GeneScience Pharmaceutical Co. Ltd, Changchun 130012, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
8
|
Adwani G, Bharti S, Kumar A. Engineered nanoparticles in non-invasive insulin delivery for precision therapeutics of diabetes. Int J Biol Macromol 2024; 275:133437. [PMID: 38944087 DOI: 10.1016/j.ijbiomac.2024.133437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Diabetes mellitus is a chronic disease leading to the death of millions a year across the world. Insulin is required for Type 1, Type 2, and gestational diabetic patients, however, there are various modes of insulin delivery out of which oral delivery is noninvasive and convenient. Moreover, factors like insulin degradation and poor intestinal absorption play a crucial role in its bioavailability and effectiveness. This review discusses various types of engineered nanoparticles used in-vitro, in-vivo, and ex-vivo insulin delivery along with their administration routes and physicochemical properties. Injectable insulin formulations, currently in use have certain limitations, leading to invasiveness, low patient compliance, causing inflammation, and side effects. Based on these drawbacks, this review emphasizes more on the non-invasive route, particularly oral delivery. The article is important because it focuses on how engineered nanoparticles can overcome the limitations of free therapeutics (drugs alone), navigate the barriers, and accomplish precision therapeutics in diabetes. In future, more drugs could be delivered with a similar strategy to cure various diseases and resolve challenges in drug delivery. This review significantly describes the role of various engineered nanoparticles in improving the bioavailability of insulin by protecting it from various barriers during non-invasive routes of delivery.
Collapse
Affiliation(s)
- Gunjan Adwani
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India
| | - Sharda Bharti
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India.
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India.
| |
Collapse
|
9
|
Dai L, Wu F, Xiao Y, Liu Q, Meng M, Xi R, Yin Y. Template-Free Self-Assembly of Hollow Microtubular Covalent Organic Frameworks for Oral Delivery of Insulin. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17891-17903. [PMID: 38546545 DOI: 10.1021/acsami.4c01165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Covalent organic frameworks (COFs) have demonstrated versatile application potential since their discovery. Although the structure of COFs is orderly arranged, the synthesis of controllable macrostructures still faces challenges. Herein, we report, to our knowledge, the first template-free self-assembled COF-18 Å hollow microtubule (MT-COF-18 Å) structure and its use for insulin delivery that exhibits high loading capacity, gastroresistance, and glucose-responsive properties. The hollow MT-COF-18 Å was achieved by a template-free method benefiting from the mixed solvents of mesitylene and dioxane. The formation mechanism and morphology changes with insulin loading and release were observed. In Caco-2 cells, the transferrin-coated system demonstrated enhanced insulin cellular uptake and transcellular transport, which indicated great potential for oral applications. Additionally, the composites presented sustained glycemic control and effective insulin blood concentrations without noticeable toxicity in diabetic rats. This work shows that hollow microtubular COFs hold great promise in loading and delivery of biomolecules.
Collapse
Affiliation(s)
- Lihui Dai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Fang Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Yi Xiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Qian Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Rimo Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Yongmei Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| |
Collapse
|
10
|
Ma Y, Wang W, Li C, Han F, He M, Zhong Y, Huang D, Chen W, Qian H. Ursodeoxycholic Acid-Decorated Zwitterionic Nanoparticles for Orally Liver-Targeted Close-Looped Insulin Delivery. Adv Healthc Mater 2024; 13:e2302677. [PMID: 38245865 DOI: 10.1002/adhm.202302677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/26/2023] [Indexed: 01/22/2024]
Abstract
Oral insulin therapies targeting the liver and further simulating close-looped secretion face significant challenges due to multiple trans-epithelial barriers. Herein, ursodeoxycholic acid (UDCA)-decorated zwitterionic nanoparticles (NPs) (UC-CMs@ins) are designed to overcome these barriers, target the liver, and respond to glycemia, thereby achieving oral one-time-per-day therapy. UC-CMs@ins show excellent mucus permeability through the introduction of zwitterion (carboxy betaine, CB). Furthermore, UC-CMs@ins possess superior cellular internalization via proton-assisted amino acid transporter 1 (PAT1, CB-receptor) and apical sodium-dependent bile acid transporter (ASBT, UDCA-receptor) pathways. Moreover, UC-CMs@ins exhibit excellent endolysosomal escape ability and improve the basolateral release of insulin into the bloodstream via the ileal bile acid-binding protein and the heteromeric organic solute transporter (OSTα- OSTβ) routes compared with non-UDCA-decorated C-CMs@ins. Therefore, CB and UDCA jointly overcome mucus and intestinal barriers. Additionally, UC-CMs@ins prevent insulin degradation in the gastrointestinal tract for crosslinked structure, improve insulin accumulation in the liver for UDCA introduction, and effectively regulate glycemia for "closed-loop" glucose control. Surprisingly, oral ingestion of UC-CMs@ins shows a superior effect on glycemia (≈22 h, normoglycemia) and improves postprandial glycemic levels in diabetic mice, illustrating the enormous potential of the prepared NPs as a platform for oral insulin administration in diabetes treatment.
Collapse
Affiliation(s)
- Yuhong Ma
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Wei Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Caihua Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Fuwei Han
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Mujiao He
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, P. R. China
| |
Collapse
|
11
|
Jiang Y, Fu X, Shao M, Chang W, Zhang H, Liu Z. Eyedrop delivery of therapeutic proteins with zwitterionic polymers to treat dry age-related macular degeneration. Biomaterials 2024; 305:122429. [PMID: 38150770 DOI: 10.1016/j.biomaterials.2023.122429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
In clinics, therapeutic proteins are commonly used to treat retinal diseases through intraocular injection, the treatment which suffers from rather low patient compliance. Topical administration (e.g. eye-drops) of large molecule drugs remains a major challenge due to the presence of various barriers in the eye. In this study, zwitterion-grafted chitosan (CS-ZW) was developed and then self-assembled with protein therapeutics including adalimumab (ADA) or catalase (CAT) for the treatment of dry age-related macular degeneration (dAMD) via topical eyedrops. Since CS-ZW can cross the mucus layer and open the tight junctions between epithelial cells, their delivered therapeutic proteins can be shuttled across the ocular barriers to reach the diseased site in the fundus. CS-ZW/ADA eyedrops delivering ADA to bind TNF-α in the fundus achieved a similar therapeutic effect to intravitreal ADA injection in a mouse dAMD model. In addition, the therapeutic effect was further improved by combining eyedrop formulations of CS-ZW/ADA and CS-ZW/CAT, the latter of which can clear reactive oxygen species (ROS) in the lesion to further assist dAMD treatment. Our work provides a simple and effective delivery vehicle that can non-invasively treat fundus diseases such as dAMD, showing potential advantages in reducing side effects associated with intraocular injection and improving patient compliance.
Collapse
Affiliation(s)
- Yutong Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Xuehui Fu
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ming Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Wanwan Chang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China; Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, China
| | - Han Zhang
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| |
Collapse
|
12
|
Deng B, Liu S, Wang Y, Ali B, Kong N, Xie T, Koo S, Ouyang J, Tao W. Oral Nanomedicine: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306081. [PMID: 37724825 DOI: 10.1002/adma.202306081] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/03/2023] [Indexed: 09/21/2023]
Abstract
Compared to injection administration, oral administration is free of discomfort, wound infection, and complications and has a higher compliance rate for patients with diverse diseases. However, oral administration reduces the bioavailability of medicines, especially biologics (e.g., peptides, proteins, and antibodies), due to harsh gastrointestinal biological barriers. In this context, the development and prosperity of nanotechnology have helped improve the bioactivity and oral availability of oral medicines. On this basis, first, the biological barriers to oral administration are discussed, and then oral nanomedicine based on organic and inorganic nanomaterials and their biomedical applications in diverse diseases are reviewed. Finally, the challenges and potential opportunities in the future development of oral nanomedicine, which may provide a vital reference for the eventual clinical transformation and standardized production of oral nanomedicine, are put forward.
Collapse
Affiliation(s)
- Bo Deng
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Oncology of the First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Shaomin Liu
- Department of Oncology of the First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Ying Wang
- Department of Oncology of the First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Barkat Ali
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jiang Ouyang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
- Department of Oncology of the First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
13
|
Wang X, Sun H, Mu T. Materials and structure of polysaccharide-based delivery carriers for oral insulin: A review. Carbohydr Polym 2024; 323:121364. [PMID: 37940264 DOI: 10.1016/j.carbpol.2023.121364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 11/10/2023]
Abstract
Diabetes mellitus is a chronic metabolic disease that affects >500 million patients worldwide. Subcutaneous injection of insulin is the most effective treatment at present. However, regular needle injections will cause pain, inflammation, and other adverse consequences. In recent years, significant progress has been made in non-injectable insulin preparations. Oral administration is the best way of administration due to its simplicity, convenience, and good patient compliance. However, oral insulin delivery is hindered by many physiological barriers in the gastrointestinal tract, resulting in the low relative bioavailability of direct oral insulin delivery. To improve the relative bioavailability, a variety of insulin delivery vectors have been developed. Polysaccharides are used to achieve safe and effective insulin loading due to their excellent biocompatibility and protein affinity. The functional characteristics of polysaccharide-based delivery carriers, such as pH responsiveness, mucosal adhesion, and further functionalization modifications, enhance the gastrointestinal absorption and bioavailability of insulin. This paper reviews the materials and structures of oral insulin polysaccharide-based carriers, providing ideas for further improving the relative bioavailability of oral insulin.
Collapse
Affiliation(s)
- Xinran Wang
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| |
Collapse
|
14
|
Liu K, Chen Y, Yang D, Cai Y, Yang Z, Jin J. Betaine-Based and Polyguanidine-Inserted Zwitterionic Micelle as a Promising Platform to Conquer the Intestinal Mucosal Barrier. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37878752 DOI: 10.1021/acsami.3c07658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Developing nanocarriers for oral drug delivery is often hampered by the dilemma of balancing mucus permeation and epithelium absorption, since huge differences in surface properties are required for sequentially overcoming these two processes. Inspired by mucus-penetrating viruses that universally possess a dense charge distribution with equal opposite charges on their surfaces, we rationally designed and constructed a poly(carboxybetaine)-based and polyguanidine-inserted cationic micelle platform (hybrid micelle) for oral drug delivery. The optimized hybrid micelle exhibited a great capacity for sequentially overcoming the mucus and villi barriers. It was demonstrated that a longer zwitterionic chain was favorable for mucus diffusion for hybrid micelles but not conducive to cellular uptake. In addition, the significantly enhanced internalization absorption of hybrid micelles was attributed to the synergistic effect of polyguanidine and proton-assisted amine acid transporter 1 (PAT1). Moreover, the retrograde pathway was mainly involved in the intracellular transport of hybrid micelles and transcytosis delivery. Furthermore, the prominent intestinal mucosa absorption in situ and in vivo liver distribution of the oral hybrid micelle were both detected. The results of this study indicated that the hybrid micelles were capable of conquering the intestinal mucosal barrier, having a great potential for oral application of drugs with poor oral bioavailability.
Collapse
Affiliation(s)
- Kedong Liu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Dutao Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhaoqi Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Peng H, Wang J, Chen J, Peng Y, Wang X, Chen Y, Kaplan DL, Wang Q. Challenges and opportunities in delivering oral peptides and proteins. Expert Opin Drug Deliv 2023; 20:1349-1369. [PMID: 37450427 PMCID: PMC10990675 DOI: 10.1080/17425247.2023.2237408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION Rapid advances in bioengineering enable the use of complex proteins as therapeutic agents to treat diseases. Compared with conventional small molecule drugs, proteins have multiple advantages, including high bioactivity and specificity with low toxicity. Developing oral dosage forms with active proteins is a route to improve patient compliance and significantly reduce production costs. However, the gastrointestinal environment remains a challenge to this delivery path due to enzymatic degradation, low permeability, and weak absorption, leading to reduced delivery efficiency and poor clinical outcomes. AREAS COVERED This review describes the barriers to oral delivery of peptides and complex proteins, current oral delivery strategies utilized and the opportunities and challenges ahead to try and circumvent these barriers. Oral protein drugs on the market and clinical trials provide insights and approaches for advancing delivery strategies. EXPERT OPINION Although most current studies on oral protein delivery rely on in vitro and in vivo animal data, the safety and limitations of the approach in humans remain uncertain. The shortage of clinical data limits the development of new or alternative strategies. Therefore, designing appropriate oral delivery strategies remains a significant challenge and requires new ideas, innovative design strategies and novel model systems.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, China
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Jiahe Wang
- Department of Humanities, Daqing Branch, Harbin Medical University, Daqing, China
| | - Jiayu Chen
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, China
| | - Yanbo Peng
- Department of Pharmaceutical Engineering, China Pharmaceutical University, 639 Longmian Rd, Nanjing 211198, China
| | - Xiaoxian Wang
- The Affiliated Hospital of Medical College, University of Shaoxing, Shaoxing, Zhejiang Province, China
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
16
|
Zhou J, Zhang J, Sun Y, Luo F, Guan M, Ma H, Dong X, Feng J. A nano-delivery system based on preventing degradation and promoting absorption to improve the oral bioavailability of insulin. Int J Biol Macromol 2023:125263. [PMID: 37302634 DOI: 10.1016/j.ijbiomac.2023.125263] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Oral insulin delivery can improve patient compliance and simulate the portal-peripheral insulin concentration gradient produced by endogenous insulin, so oral insulin delivery has a broad prospect. However, some characteristics of the gastrointestinal tract, lead to low oral bioavailability. Therefore, a "ternary mutual-assist" nano-delivery system based on poly(lactide-co-glycolide) (PLGA) as the backbone combined with ionic liquids (IL) and vitamin B12-chitosan (VB12-CS) was constructed in this study, the protein protection performance of IL improves the room temperature stability of the loaded insulin during nanocarrier preparation, transportation and storage to a certain extent, and the protein protection function of IL combined with the slow degradation property of PLGA and the pH-responsive function of VB12-CS to prevent the degradation of insulin in the gastrointestinal tract. In addition, the mucosal adhesion function of VB12-CS, VB12 receptor- and clathrin-mediated transcellular transport involving VB12-CS and IL, and paracellular transport mediated by IL and CS can be combined to improve the intestinal epithelial transport efficiency of insulin, thus, the nanocarrier has stronger preventing degradation and promoting absorption effects. Pharmacodynamic studies showed that after oral administration of VB12-CS-PLGA@IL@INS NPs to diabetic mice, the blood glucose level decreased to about 13 mmol/L, below the critical point of 16.7 mmol/L, and the blood glucose reached a normal level, which was 0.4 times of the blood glucose value before administration, its relative pharmacological bioavailability was 31.8 %, higher than the general nanocarriers (10-20 %) and more beneficial to the clinical transformation of oral insulin.
Collapse
Affiliation(s)
- Jie Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jin Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yiwen Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Fusui Luo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Min Guan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Huili Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junfen Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|