1
|
Yang Y, Zhang B, Sun X, Tao Y, Yang G, Liu C, Wang Z, Sun L, Zhang Q. Tuning the modal coupling in three-dimensional Au@Cu 2O@Au core-shell-satellite nanostructures for enhanced plasmonic photocatalysis. Chem Sci 2025; 16:8069-8081. [PMID: 40206556 PMCID: PMC11976661 DOI: 10.1039/d5sc00610d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
The fascinating optical properties of coupled plasmonic nanostructures have attracted great attention and emerged as a promising platform for applications in catalysis, sensing, and photonics. When two resonant modes interact strongly, the coupled modes are formed with mixed properties inherited from the basic modes. However, limitations still exist in the understanding of the coupling between optical modes in individual structures. In addition, how the coupling in hybrid plasmonic structures correlated with their efficiencies in promoting photocatalysis remains an important and challenging question. Here we demonstrate that coupling in individual Au@Cu2O@Au core-shell-satellite hybrid structures can be tuned through rationally designing the structural features for enhancing plasmonic photocatalysis. To further comprehend the optical phenomena of different coupled nanostructures, a model was developed based on the Mie theory, which provided a different perspective to analyze coupling qualitatively in individual nanoparticles. The insights gained from this work not only shed light on the underlying mechanisms of modal coupling in individual structures but also provide an important knowledge framework that guides the rational design of coupled plasmonic nanostructures for plasmonic photochemistry and photocatalysis.
Collapse
Affiliation(s)
- Yahui Yang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University Wuhan 430072 China
| | - Binbin Zhang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University Wuhan 430072 China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University Wuhan 430072 China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University Wuhan 430072 China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University Wuhan 430072 China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University Wuhan 430072 China
| | - Zixu Wang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University Wuhan 430072 China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University Wuhan 430072 China
- Suzhou Institute of Wuhan University Suzhou 215123 China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University Wuhan 430072 China
| |
Collapse
|
2
|
Herkert EK, Garcia-Parajo MF. Harnessing the Power of Plasmonics for in Vitro and in Vivo Biosensing. ACS PHOTONICS 2025; 12:1259-1275. [PMID: 40124941 PMCID: PMC11926962 DOI: 10.1021/acsphotonics.4c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 03/25/2025]
Abstract
Plasmonic nanostructures exhibit localized surface plasmon resonances due to collective oscillation of conducting electrons that can be tuned by modulating the nanostructure size, shape, material composition, and local dielectric environment. The strong field confinement and enhancement provided by plasmonic nanostructures have been exploited over the years to enhance the sensitivity for analyte detection down to the single-molecule level, rendering these devices as potentially outstanding biosensors. Here, we summarize methods to detect biological analytes in vitro and in living cells, with a focus on plasmon-enhanced fluorescence, Raman scattering, infrared absorption, circular dichroism, and refractive index sensing. Given the tremendous advances in the field, we concentrate on a few recent examples toward biosensing under highly challenging detection conditions, including clinically relevant biomarkers in body fluids and nascent applications in living cells and in vivo. These emerging platforms serve as inspiration for exploring future directions of nanoplasmonics that can be further harnessed to advance real-world biosensing applications.
Collapse
Affiliation(s)
- Ediz Kaan Herkert
- ICFO
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science
and Technology, Castelldefels 08860 (Barcelona), Spain
| | - Maria F. Garcia-Parajo
- ICFO
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science
and Technology, Castelldefels 08860 (Barcelona), Spain
- ICREA-Catalan
Institute for Research and Advanced Studies, Pg. Lluis Companys 23, Barcelona 08010, Spain
| |
Collapse
|
3
|
Lin L, Lepeshov S, Krasnok A, Huang Y, Jiang T, Peng X, Korgel BA, Alù A, Zheng Y. Manipulating Fano Coupling in an Opto-Thermoelectric Field. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412454. [PMID: 39836494 PMCID: PMC11904968 DOI: 10.1002/advs.202412454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/06/2025] [Indexed: 01/23/2025]
Abstract
Fano resonances in photonics arise from the coupling and interference between two resonant modes in structures with broken symmetry. They feature an uneven and narrow and tunable lineshape and are ideally suited for optical spectroscopy. Many Fano resonance structures have been suggested in nanophotonics over the last ten years, but reconfigurability and tailored design remain challenging. Herein, an all-optical "pick-and-place" approach aimed at assembling Fano metamolecules of various geometries and compositions in a reconfigurable manner is proposed. Their coupling behavior by in situ dark-field scattering spectroscopy is studied. Driven by a light-directed opto-thermoelectric field, silicon nanoparticles with high-quality-factor Mie resonances (discrete states) and low-loss BaTiO3 nanoparticles (continuum states) are assembled into all-dielectric heterodimers, where distinct Fano resonances are observed. The Fano parameter can be adjusted by changing the resonant frequency of the discrete states or the light polarization. Tunable coupling strength and multiple Fano resonances by altering the number of continuum states and discrete states in dielectric heterooligomers are also shown. This work offers a general design rule for Fano resonance and an all-optical platform for controlling Fano coupling on demand.
Collapse
Affiliation(s)
- Linhan Lin
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Sergey Lepeshov
- Department of Electrical and Photonics Engineering, DTU Electro, Technical University of Denmark, Building 343, Lyngby, DK-2800 Kgs, Denmark
| | - Alex Krasnok
- Department of Electrical and Computer Engineering, Florida International University, Miami, Florida, 33174, USA
| | - Yu Huang
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Taizhi Jiang
- Mc Ketta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Xiaolei Peng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Brian A Korgel
- Mc Ketta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrea Alù
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
- Physics Program, Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Yuebing Zheng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
4
|
Kant K, Beeram R, Cao Y, Dos Santos PSS, González-Cabaleiro L, García-Lojo D, Guo H, Joung Y, Kothadiya S, Lafuente M, Leong YX, Liu Y, Liu Y, Moram SSB, Mahasivam S, Maniappan S, Quesada-González D, Raj D, Weerathunge P, Xia X, Yu Q, Abalde-Cela S, Alvarez-Puebla RA, Bardhan R, Bansal V, Choo J, Coelho LCC, de Almeida JMMM, Gómez-Graña S, Grzelczak M, Herves P, Kumar J, Lohmueller T, Merkoçi A, Montaño-Priede JL, Ling XY, Mallada R, Pérez-Juste J, Pina MP, Singamaneni S, Soma VR, Sun M, Tian L, Wang J, Polavarapu L, Santos IP. Plasmonic nanoparticle sensors: current progress, challenges, and future prospects. NANOSCALE HORIZONS 2024; 9:2085-2166. [PMID: 39240539 PMCID: PMC11378978 DOI: 10.1039/d4nh00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches.
Collapse
Affiliation(s)
- Krishna Kant
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, UP, India
| | - Reshma Beeram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Paulo S S Dos Santos
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
| | | | - Daniel García-Lojo
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Marta Lafuente
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Yong Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yiyi Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yuxiong Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sree Satya Bharati Moram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sanje Mahasivam
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Sonia Maniappan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Daniel Quesada-González
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Luis C C Coelho
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- FCUP, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - José M M M de Almeida
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- Department of Physics, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Sergio Gómez-Graña
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Marek Grzelczak
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Pablo Herves
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Theobald Lohmueller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| | - José Luis Montaño-Priede
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Reyes Mallada
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Jorge Pérez-Juste
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - María P Pina
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
- School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | | | | |
Collapse
|
5
|
Sharma A, Zhu Y, Spangler EJ, Hoang TB, Laradji M. Highly Ordered Nanoassemblies of Janus Spherocylindrical Nanoparticles Adhering to Lipid Vesicles. ACS NANO 2024; 18:12957-12969. [PMID: 38720633 DOI: 10.1021/acsnano.4c01099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In recent years, there has been a heightened interest in the self-assembly of nanoparticles (NPs) that is mediated by their adsorption onto lipid membranes. The interplay between the adhesive energy of NPs on a lipid membrane and the membrane's curvature energy causes it to wrap around the NPs. This results in an interesting membrane curvature-mediated interaction, which can lead to the self-assembly of NPs on lipid membranes. Recent studies have demonstrated that Janus spherical NPs, which adhere to lipid vesicles, can self-assemble into well-ordered nanoclusters with various geometries, including a few Platonic solids. The present study explores the additional effect of geometric anisotropy on the self-assembly of Janus NPs on lipid vesicles. Specifically, the current study utilized extensive molecular dynamics simulations to investigate the arrangement of Janus spherocylindrical NPs on lipid vesicles. We found that the additional geometric anisotropy significantly expands the range of NPs' self-assemblies on lipid vesicles. The specific geometries of the resulting nanoclusters depend on several factors, including the number of Janus spherocylindrical NPs adhering to the vesicle and their aspect ratio. The lipid membrane-mediated self-assembly of NPs, demonstrated by this work, provides an alternative cost-effective route for fabricating highly engineered nanoclusters in three dimensions. Such structures, with the current wide range of material choices, have great potential for advanced applications, including biosensing, bioimaging, drug delivery, nanomechanics, and nanophotonics.
Collapse
Affiliation(s)
- Abash Sharma
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Yu Zhu
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Eric J Spangler
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Thang B Hoang
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Mohamed Laradji
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| |
Collapse
|
6
|
Laraib SR, Liu J, Xia YG, Wu YW, Mohammadi MD, Noor NF, Lu Q. Assessing the efficacy of aluminum metal clusters Al 13 and Al 15 in mitigating NO 2 and SO 2 pollutants: a DFT investigation. RSC Adv 2024; 14:11217-11231. [PMID: 38590351 PMCID: PMC11000095 DOI: 10.1039/d4ra00708e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
The present investigation delves into the adverse environmental impact of atmospheric pollutant gases, specifically nitrogen dioxide (NO2) and sulfur dioxide (SO2), which necessitates the identification and implementation of effective control measures. The central objective of this study is to explore the eradication of these pollutants through the utilization of aluminum Al13 and Al15 metal clusters, distinguished by their unique properties. The comprehensive evaluation of gas/cluster interactions is undertaken employing density functional theory (DFT). Geometric optimization calculations for all structures are executed using the ωB97XD functional and the Def2-svp basis set. To probe various interaction modalities, gas molecule distribution around the metal clusters is sampled using the bee colony algorithm. Frequency calculations employing identical model chemistry validate the precision of the optimization calculations. The quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) methodologies are applied for the analysis of intermolecular interactions. This research establishes the robust formation of van der Waals attractions between the investigated gas molecules, affirming aluminum metal clusters as viable candidates for the removal and control of these gases.
Collapse
Affiliation(s)
- Sajida Riffat Laraib
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University Beijing 102206 China
| | - Ji Liu
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University Beijing 102206 China
| | - Yuan-Gu Xia
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University Beijing 102206 China
| | - Yang-Wen Wu
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University Beijing 102206 China
| | | | - Nayab Fatima Noor
- Military College of Signals, National University of Science and Technology Rawalpindi Pakistan
| | - Qiang Lu
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University Beijing 102206 China
| |
Collapse
|
7
|
De Carlo M, De Leonardis F, Dell'Olio F, Ding Y, Passaro VMN. Dissipative coupling in a Bragg-grating-coupled single resonator with Fano resonance for anti-PT-symmetric gyroscopes. OPTICS EXPRESS 2024; 32:5932-5942. [PMID: 38439308 DOI: 10.1364/oe.510617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/24/2024] [Indexed: 03/06/2024]
Abstract
Anti-parity-time-symmetric Hamiltonians show an enhanced sensitivity to external perturbations that can be used for high-performance angular velocity sensing. Dissipative coupling is a valuable way for realizing anti-PT-symmetric Hamiltonians with optical resonators and is usually obtained by means of auxiliary waveguides. Here, we model and experimentally show the dissipative coupling between two counterpropagating modes of a single resonator, by means of a Bragg-grating placed in the feeding bus. The proposed solution enables the possibility of accurately designing the dissipative coupling strength in integrated non-Hermitian gyroscopes, thus providing high flexibility in the design of the proposed sensor. Moreover, we theoretically and experimentally demonstrate that the dissipative coupling between two counterpropagating modes of the same resonant cavity can give rise to an asymmetric Fano resonance.
Collapse
|
8
|
Freire-Fernández F, Reese T, Rhee D, Guan J, Li R, Schaller RD, Schatz GC, Odom TW. Quasi-Random Multimetallic Nanoparticle Arrays. ACS NANO 2023; 17:21905-21911. [PMID: 37870944 DOI: 10.1021/acsnano.3c08247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
This paper describes a nanofabrication procedure that can generate multiscale substrates with quasi-random microregions of nanoparticle arrays having different periodicities and metals. We combine cycles of large-area nanoparticle array fabrication with solvent-assisted wrinkle lithography to mask and etch quasi-random areas of prefabricated nanoparticles to control the fill factors of the arrays. The approach is highly flexible, and parameters, including nanoparticle size and material, array geometry, and fill factor, can be tailored independently. Multimetallic nanoparticle arrays can support surface lattice resonances at fill factors as low as 20% and can function as nanoscale cavities for lasing action with as few as 10% of the nanoparticles in an array. We demonstrated that multimetallic nanoparticle substrates that combine two or three arrays with different periodicities can exhibit lasing responses over visible and near-infrared wavelengths. Our work showcases the robust optical responses of multimetallic and periodic devices for broadband light manipulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States of America
| | | | | |
Collapse
|
9
|
Mizuno A, Shibata Y, Fujikake H, Ono A. Plasmonic Color Switching by a Combination Device with Nematic Liquid Crystals and a Silver Nanocube Monolayer. ACS OMEGA 2023; 8:41579-41585. [PMID: 37970021 PMCID: PMC10634223 DOI: 10.1021/acsomega.3c05707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023]
Abstract
We experimentally demonstrated electrical plasmonic color modulation by combining a nematic-phase liquid crystal (LC) layer and a silver nanocube (AgNC) monolayer. The color modulation LC/AgNC device was fabricated by filling LCs with negative dielectric anisotropy onto a densely assembled AgNC monolayer. The transmitted light color through the LC/AgNC device was modulated between green and magenta by applying voltages of 0-15 V. The peaks and dips in the transmission spectrum of the LC/AgNC device at wavelengths of 500-600 nm were switched with voltage. The switching effect of light transmission in the green region was achieved by overlapping the plasmon resonance of the AgNC monolayer and multiple transmittance peaks caused by the birefringence of the LC layer. In addition, the color inversion appeared at cross-Nicole and parallel-Nicole because the LC layer functioned like a half-wave plate due to birefringence. The electrical modulation of the plasmonic color with LCs has a high implementation capability in microdevices and is anticipated to be applied in display devices or color filters.
Collapse
Affiliation(s)
- Ayana Mizuno
- Graduate
School of Science and Technology, Shizuoka
University, Hamamatsu 432-8561, Japan
| | - Yosei Shibata
- Department
of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Hideo Fujikake
- Department
of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Atsushi Ono
- Graduate
School of Science and Technology, Shizuoka
University, Hamamatsu 432-8561, Japan
- Research
Institute of Electronics, Shizuoka University, Hamamatsu 432-8011, Japan
| |
Collapse
|
10
|
Ko JH, Park J, Yoo YJ, Chang S, Kang J, Wu A, Yang F, Kim S, Jeon H, Song YM. Full-Control and Switching of Optical Fano Resonance by Continuum State Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304310. [PMID: 37691086 PMCID: PMC10646235 DOI: 10.1002/advs.202304310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/01/2023] [Indexed: 09/12/2023]
Abstract
Fano resonance, known for its unique asymmetric line shape, has gained significant attention in photonics, particularly in sensing applications. However, it remains difficult to achieve controllable Fano parameters with a simple geometric structure. Here, a novel approach of using a thin-film optical Fano resonator with a porous layer to generate entire spectral shapes from quasi-Lorentzian to Lorentzian to Fano is proposed and experimentally demonstrated. The glancing angle deposition technique is utilized to create a polarization-dependent Fano resonator. By altering the linear polarization between s- and p-polarization, a switchable Fano device between quasi-Lorentz state and negative Fano state is demonstrated. This change in spectral shape is advantageous for detecting materials with a low-refractive index. A bio-particle sensing experiment is conducted that demonstrates an enhanced signal-to-noise ratio and prediction accuracy. Finally, the challenge of optimizing the film-based Fano resonator due to intricate interplay among numerous parameters, including layer thicknesses, porosity, and materials selection, is addressed. The inverse design tool is developed based on a multilayer perceptron model that allows fast computation for all ranges of Fano parameters. The method provides improved accuracy of the mean validation factor (MVF = 0.07, q-q') compared to the conventional exhaustive enumeration method (MVF = 0.37).
Collapse
Affiliation(s)
- Joo Hwan Ko
- School of Electrical Engineering and Computer ScienceGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| | - Jin‐Hwi Park
- Artificial Intelligence Graduate SchoolGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| | - Young Jin Yoo
- School of Electrical Engineering and Computer ScienceGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sehui Chang
- School of Electrical Engineering and Computer ScienceGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| | - Jiwon Kang
- School of Electrical Engineering and Computer ScienceGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| | - Aiguo Wu
- Cixi Institute of Biomedical EngineeringInternational Cooperation Base of Biomedical Materials Technology and ApplicationChinese Academy of Sciences (CAS) KeyLaboratory of Magnetic Materials and DevicesZhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboZhejiang315201China
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhou516000China
| | - Fang Yang
- Cixi Institute of Biomedical EngineeringInternational Cooperation Base of Biomedical Materials Technology and ApplicationChinese Academy of Sciences (CAS) KeyLaboratory of Magnetic Materials and DevicesZhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboZhejiang315201China
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhou516000China
| | - Sejeong Kim
- Department of Electrical and Electronic EngineeringUniversity of MelbourneParkville3010Australia
| | - Hae‐Gon Jeon
- School of Electrical Engineering and Computer ScienceGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
- Artificial Intelligence Graduate SchoolGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer ScienceGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
- Artificial Intelligence Graduate SchoolGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| |
Collapse
|
11
|
Pariente JA, Bayat F, Blanco A, García-Martín A, Pecharromán C, Marqués MI, López C. Fano-Like Resonance from Disorder Correlation in Vacancy-Doped Photonic Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302355. [PMID: 37282744 DOI: 10.1002/smll.202302355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Indexed: 06/08/2023]
Abstract
By preparing colloidal crystals with random missing scatterers, crystals are created where disorder is embodied as vacancies in an otherwise perfect lattice. In this special system, there is a critical defect concentration where light propagation undergoes a transition from an all but perfect reflector (for the spectral range defined by the Bragg condition), to a metamaterial exhibiting an enhanced transmission phenomenon. It is shown that this behavior can be phenomenologically described in terms of Fano-like resonances. The results show that the Fano's parameter q experiences a sign change signaling the transition from a perfect crystal exhibiting a reflectance Bragg peak, through a state where background scattering is maximum and Bragg reflectance reaches a minimum to a point where the system reenters a low scattering state recovering ordinary Bragg diffraction. A simple dipolar model considering the correlation between scatterers and vacancies is proposed and the reported evolution of the Fano-like scattering is explained in terms of the emerging covariance between the optical paths and polarizabilities and the effect of field enhancement in photonic crystal (PhC) defects.
Collapse
Affiliation(s)
- Jose Angel Pariente
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, Madrid, E-28049, Spain
| | - Farzaneh Bayat
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, Madrid, E-28049, Spain
- Department of Physics, Azarbaijan Shahid Madani University (ASMU), Tabriz, 53751-71379, Iran
| | - Alvaro Blanco
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, Madrid, E-28049, Spain
| | - Antonio García-Martín
- Instituto de Micro y Nanotecnología (IMN-CNM), Consejo Superior de Investigaciones Científicas (CSIC), Isaac Newton 8 (PTM), Tres Cantos, Madrid, E-28760, Spain
| | - Carlos Pecharromán
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, Madrid, E-28049, Spain
| | - Manuel I Marqués
- Departamento de Física de Materiales & Condensed Matter Physics Center (IFIMAC) & Nicolás Cabrera Institute, Universidad Autónoma de Madrid (UAM), Av. F. Tomás y Valiente, Madrid, 28049, Spain
| | - Cefe López
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, Madrid, E-28049, Spain
- Donostia International Physics Center, P° Manuel Lardizábal 4, San Sebastián, Guipuzcoa, 20018, Spain
| |
Collapse
|
12
|
Yang K, Chen Y, Yan S, Yang W. Nanostructured surface plasmon resonance sensors: Toward narrow linewidths. Heliyon 2023; 9:e16598. [PMID: 37292265 PMCID: PMC10245261 DOI: 10.1016/j.heliyon.2023.e16598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
Surface plasmon resonance sensors have found wide applications in optical sensing field due to their excellent sensitivity to the slight refractive index change of surrounding medium. However, the intrinsically high optical losses in metals make it nontrivial to obtain narrow resonance spectra, which greatly limits the performance of surface plasmon resonance sensors. This review first introduces the influence factors of plasmon linewidths of metallic nanostructures. Then, various approaches to achieve narrow resonance linewidths are summarized, including the fabrication of nanostructured surface plasmon resonance sensors supporting surface lattice resonance/plasmonic Fano resonance or coupling with a photonic cavity, the preparation of surface plasmon resonance sensors with ultra-narrow resonators, as well as strategies such as platform-induced modification, alternating different dielectric layers, and the coupling with whispering-gallery-modes. Lastly, the applications and some existing challenges of surface plasmon resonance sensors are discussed. This review aims to provide guidance for the further development of nanostructured surface plasmon resonance sensors.
Collapse
Affiliation(s)
- Kang Yang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yan Chen
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China
| | - Sen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wenxing Yang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China
| |
Collapse
|
13
|
Mao W, Cai X, Pan R, Tang S, Yang F, Cui Y, Sun J, Shen W. Light-enhanced transparent hydrogel for uric acid and glucose detection by four different analytical platforms. Anal Chim Acta 2023; 1239:340717. [PMID: 36628770 DOI: 10.1016/j.aca.2022.340717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/13/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
The lack of solid-phase media limits the portability of colorimetric sensing platforms. In this study, a series of transparent polyvinyl alcohol (PVA) hydrogels encapsulated antimony tin oxide nanoparticles (ATO NPs) and 3,3',5,5'-tetramethylbenzidine (TMB) were developed as the solid-phase sensing media for glucose and uric acid. Under the conditions of H2O2 and UV light, the hydrogel presented a multicatalytic ability (photo Fenton-like and peroxidase-like activities), which accelerated the oxidation of TMB, turning the hydrogel from colorless to blue and finally enhancing the detection signal. The plasticity of the hydrogel allowed it to be designed into various shapes (membrane, microsphere etc.) to adapt multiple detection platforms (a liquid/solid-phase UV spectrophotometer, a NanoPhotometer, and smartphone spectroscopy). The hydrogel sensing media exhibited excellent tunability and enhanced the photocatalytic ability. The proposed material was successfully applied to detect glucose and uric acids in real samples by four detection platforms to evaluate its practicability.
Collapse
Affiliation(s)
- Wei Mao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Xingwei Cai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Ruirong Pan
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu Province, PR China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Fu Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Yanjuan Cui
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Jun Sun
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| |
Collapse
|
14
|
Dadmehr M, Mortezaei M, Korouzhdehi B. Dual mode fluorometric and colorimetric detection of matrix metalloproteinase MMP-9 as a cancer biomarker based on AuNPs@gelatin/AuNCs nanocomposite. Biosens Bioelectron 2022; 220:114889. [DOI: 10.1016/j.bios.2022.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022]
|
15
|
Elibol K, Downing C, Hobbs RG. Nanoscale mapping of shifts in dark plasmon modes in sub 10 nm aluminum nanoantennas. NANOTECHNOLOGY 2022; 33:475203. [PMID: 35944508 DOI: 10.1088/1361-6528/ac8812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
In this work, we report the fabrication and spectroscopic characterization of subwavelength aluminum nanocavities-consisting of hexamer or tetramer clusters of sub 10 nm width Al nanorods-with tunable localized surface plasmon resonance (LSPR) energies on suspended SiNxmembranes. Here the volume plasmon (VP) and LSPR modes of lithographically-fabricated Al nanocavities are revealed by low-loss electron energy-loss spectroscopy (EELS) in an aberration corrected scanning transmission electron microscope (STEM). We show that the existence of grain boundaries (GBs) in these nanocavities results in shifts in the VP energy and a reduction in the VP lifetime. We map the VP energy and lifetime across GBs and we observe a decrease in VP energy and lifetime at GBs that is consistent with a reduction in free carrier density and increased plasmon scattering at these locations. Dipolar LSPR modes resonant in the UV and blue regions of the electromagnetic spectrum as well as higher-energy optically dark quadrupolar and hexapolar LSPR modes are also observed and mapped by STEM and EELS. All LSPR modes are confirmed via electromagnetic simulations based on the boundary element method. Both tetramer and hexamer structures support the excitation of dipolar bright and dipolar dark modes. Finally, we find that asymmetries in fabricated nanorod hexamer and tetramer nanocavities result in a mode mixing leading to a shift in dipolar dark LSPR modes.
Collapse
Affiliation(s)
- Kenan Elibol
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland
| | - Clive Downing
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland
| | - Richard G Hobbs
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
16
|
Li K, Wang J, Cai W, He H, Liu J, Yin Z, Luo D, Mu Q, Gérard D, Liu YJ. Electrically switchable structural colors based on liquid-crystal-overlaid aluminum anisotropic nanoaperture arrays. OPTICS EXPRESS 2022; 30:31913-31924. [PMID: 36242264 DOI: 10.1364/oe.461887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Actively tunable or reconfigurable structural colors are highly promising in future development for high resolution imaging and displaying applications. To this end, we demonstrate switchable structural colors covering the entire visible range by integrating aluminum nanoaperture arrays with nematic liquid crystals. The geometrically anisotropic design of the nanoapertures provides strong polarization-dependent coloration. By overlaying a nematic liquid crystal layer, we further demonstrate switchable ability of the structural colors by either changing the polarization of the incident light or applying an external voltage. The switchable structural colors have a fast response time of 28 ms at a driving voltage of 6.5 V. Furthermore, colorful patterns are demonstrated by coding the colors with various dimensions of nanoaperture arrays with dual switching modes. Our proposed technique in this work provides a dual-mode switchable structural colors, which is highly promising for polarimetric displays, imaging sensors, and visual cryptography.
Collapse
|
17
|
Large-scale vivid metasurface color printing using advanced 12-in. immersion photolithography. Sci Rep 2022; 12:14044. [PMID: 35982212 PMCID: PMC9388524 DOI: 10.1038/s41598-022-18259-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Nanostructures exhibiting optical resonances (so-called nanoantennas) have strong potential for applications in color printing and filtering with sub-wavelength resolution. While small scale demonstrations of these systems are interesting as a proof-of-concept, their large scale and volume fabrication requires deeper analysis and further development for industrial adoption. Here, we evaluate the color quality produced by large size nanoantenna arrays fabricated on a 12-in. wafer using deep UV immersion photolithography and dry etching processes. The color reproduction and quality are analyzed in context of the CIE color diagram, showing that a vivid and vibrant color palette, almost fully covering the sRGB color space, can be obtained with this mass-manufacturing-ready fabrication process. The obtained results, thus, provide a solid foundation for the potential industrial adoption of this emerging technology and expose the limits and challenges of the process.
Collapse
|
18
|
Kim WG, Lee JM, Yang Y, Kim H, Devaraj V, Kim M, Jeong H, Choi EJ, Yang J, Jang Y, Badloe T, Lee D, Rho J, Kim JT, Oh JW. Three-Dimensional Plasmonic Nanocluster-Driven Light-Matter Interaction for Photoluminescence Enhancement and Picomolar-Level Biosensing. NANO LETTERS 2022; 22:4702-4711. [PMID: 35622690 DOI: 10.1021/acs.nanolett.2c00790] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plasmonic nanoparticle clusters promise to support unique engineered electromagnetic responses at optical frequencies, realizing a new concept of devices for nanophotonic applications. However, the technological challenges associated with the fabrication of three-dimensional nanoparticle clusters with programmed compositions remain unresolved. Here, we present a novel strategy for realizing heterogeneous structures that enable efficient near-field coupling between the plasmonic modes of gold nanoparticles and various other nanomaterials via a simple three-dimensional coassembly process. Quantum dots embedded in the plasmonic structures display ∼56 meV of a blue shift in the emission spectrum. The decay enhancement factor increases as the total contribution of radiative and nonradiative plasmonic modes increases. Furthermore, we demonstrate an ultracompact diagnostic platform to detect M13 viruses and their mutations from femtoliter volume, sub-100 pM analytes. This platform could pave the way toward an effective diagnosis of diverse pathogens, which is in high demand for handling pandemic situations.
Collapse
Affiliation(s)
- Won-Geun Kim
- BIT Fusion Technology Center, Pusan National University, Busan 46241, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jong-Min Lee
- BIT Fusion Technology Center, Pusan National University, Busan 46241, Republic of Korea
- Center of Nano Convergence Technology and School of Nanoconvergence Technology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hongyoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Vasanthan Devaraj
- BIT Fusion Technology Center, Pusan National University, Busan 46241, Republic of Korea
| | - Minjun Kim
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyuk Jeong
- BIT Fusion Technology Center, Pusan National University, Busan 46241, Republic of Korea
| | - Eun-Jung Choi
- BIT Fusion Technology Center, Pusan National University, Busan 46241, Republic of Korea
| | - Jihyuk Yang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yudong Jang
- Institute of Quantum Systems (IQS), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Donghan Lee
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| | - Ji Tae Kim
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jin-Woo Oh
- BIT Fusion Technology Center, Pusan National University, Busan 46241, Republic of Korea
- Department of Nanoenergy Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
19
|
Lee S, Yu S. Hot carrier extraction from plasmonic-photonic superimposed heterostructures. J Chem Phys 2022; 156:234703. [PMID: 35732529 DOI: 10.1063/5.0092654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plasmonic nanostructures have been exploited in photochemical and photocatalytic processes owing to their surface plasmon resonance characteristics. This unique property generates photoinduced potentials and currents capable of driving chemical reactions. However, these processes are hampered by low photon conversion and utilization efficiencies, which are issues that need to be addressed. In this study, we integrate plasmonic photochemistry and simple tunable heterostructure characteristics of a dielectric photonic crystal for the effective control of electromagnetic energy below the diffraction limit of light. The nanostructure comprises high-density Ag nanoparticles on nanocavity arrays of SrTiO3 and TiO2, where two oxides constitute a chemical heterojunction. Such a nanostructure is designed to form intense electric fields and a vectorial electron flow channel of Ag → SrTiO3 → TiO2. When the plasmonic absorption of Ag nanoparticles matched the photonic stopband, we observed an apparent quantum yield of 3.1 × 10-4 e- per absorbed photon. The contributions of light confinement and charge separation to the enhanced photocurrent were evaluated.
Collapse
Affiliation(s)
- Sanghyuk Lee
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Sungju Yu
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
20
|
Son H, Kim SJ, Hong J, Sung J, Lee B. Design of highly perceptible dual-resonance all-dielectric metasurface colorimetric sensor via deep neural networks. Sci Rep 2022; 12:8512. [PMID: 35595872 PMCID: PMC9122971 DOI: 10.1038/s41598-022-12592-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/25/2022] [Indexed: 02/02/2023] Open
Abstract
Colorimetric sensing, which provides effective detection of bio-molecular signals with one's naked eye, is an exceptionally promising sensing technique in that it enables convenient detection and simplification of entire sensing system. Though colorimetric sensors based on all-dielectric nanostructures have potential to exhibit distinct color variations enabling manageable detection due to their trivial intrinsic loss, there is crucial limitation that the sensitivity to environmental changes lags behind their plasmonic counterparts because of relatively small region of near field-analyte interaction of the dielectric Mie-type resonator. To overcome this challenge, we proposed all-dielectric metasurface colorimetric sensor which exhibits dual-resonance in the visible region. Thereafter, we confirmed with simulation that, in the elaborately designed dual-Lorentzian-type spectra, highly perceptible variations of structural color were manifested even in minute change of peripheral refractive index. In addition to verifying physical effectiveness of the superior colorimetric sensing performance appearing in the dual-resonance type sensor, by combining advanced optimization technique utilizing deep neural networks, we attempted to maximize sensing performance while obtaining dramatic improvement of design efficiency. Through well-trained deep neural network that accurately simulates the input target spectrum, we numerically verified that designed colorimetric sensor shows a remarkable sensing resolution distinguishable up to change of refractive index of 0.0086.
Collapse
Affiliation(s)
- Hyunwoo Son
- Inter-University Semiconductor Research Center, School of Electrical and Computer Engineering, Seoul National University, Gwanakro 1, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Sun-Je Kim
- Department of Physics, Myongji University, Myongjiro 116, Namdong, Cheoin-Gu, Yongin, Gyeonggi-Do, 17058, Republic of Korea
| | - Jongwoo Hong
- Inter-University Semiconductor Research Center, School of Electrical and Computer Engineering, Seoul National University, Gwanakro 1, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Jangwoon Sung
- Inter-University Semiconductor Research Center, School of Electrical and Computer Engineering, Seoul National University, Gwanakro 1, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Byoungho Lee
- Inter-University Semiconductor Research Center, School of Electrical and Computer Engineering, Seoul National University, Gwanakro 1, Gwanak-Gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
21
|
He X, Li G, Wu D. Self-driving dynamic plasmonic colors based on needle steering for simultaneous control of transition direction and time on metallic nanogroove metasurfaces. NANOSCALE 2021; 13:18356-18362. [PMID: 34729577 DOI: 10.1039/d1nr05804e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dynamically tunable plasmonic colors hold great promise for a wide range of applications including color displays, colorimetric sensing, and information encryption. However, dynamic control speed of plasmonic colors is still slow to date. Herein, we propose to use a needle to direct the flow of water and gas pressure to drive water, realizing a simultaneous direction-controllable and fast plasmonic color transition. The highly reflected background light of the metallic nanogroove metasurface is suppressed to generate high-purity plasmonic colors through the cross-polarized input and output configuration. When the environment is changed from air to water, a giant color change from cyan to red (a wavelength shift of 156 nm) is experimentally observed. More importantly, by utilizing a needle to steer the flow of water, direction-controllable and fast plasmonic color transition is achieved by controlling gas pressure to drive water. Compared with current state-of-the-art plasmonic color scanning technology, the color transition time via water driven by gas pressure decreases by three orders of magnitude for the same scanning length. The multi-degrees of freedom dynamic structural colors could have potential applications in dynamic displays, anti-counterfeiting, and information security.
Collapse
Affiliation(s)
- Xiaoping He
- School of Data and Computer Science, Guangdong Peizheng College, Guangzhou 510830, China
| | - Guozhou Li
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.
| | - Dong Wu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.
| |
Collapse
|
22
|
Kim JM, Lee C, Lee Y, Lee J, Park SJ, Park S, Nam JM. Synthesis, Assembly, Optical Properties, and Sensing Applications of Plasmonic Gap Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006966. [PMID: 34013617 DOI: 10.1002/adma.202006966] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Plasmonic gap nanostructures (PGNs) have been extensively investigated mainly because of their strongly enhanced optical responses, which stem from the high intensity of the localized field in the nanogap. The recently developed methods for the preparation of versatile nanogap structures open new avenues for the exploration of unprecedented optical properties and development of sensing applications relying on the amplification of various optical signals. However, the reproducible and controlled preparation of highly uniform plasmonic nanogaps and the prediction, understanding, and control of their optical properties, especially for nanogaps in the nanometer or sub-nanometer range, remain challenging. This is because subtle changes in the nanogap significantly affect the plasmonic response and are of paramount importance to the desired optical performance and further applications. Here, recent advances in the synthesis, assembly, and fabrication strategies, prediction and control of optical properties, and sensing applications of PGNs are discussed, and perspectives toward addressing these challenging issues and the future research directions are presented.
Collapse
Affiliation(s)
- Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Chungyeon Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Yeonhee Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jinhaeng Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
23
|
Caligiuri V, Patra A, De Santo MP, Forestiero A, Papuzzo G, Aceti DM, Lio GE, Barberi R, De Luca A. Hybrid Plasmonic/Photonic Nanoscale Strategy for Multilevel Anticounterfeit Labels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49172-49183. [PMID: 34632778 PMCID: PMC8532117 DOI: 10.1021/acsami.1c13701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/30/2021] [Indexed: 06/01/2023]
Abstract
Innovative goods authentication strategies are of fundamental importance considering the increasing counterfeiting levels. Such a task has been effectively addressed with the so-called physical unclonable functions (PUFs), being physical properties of a system that characterize it univocally. PUFs are commonly implemented by exploiting naturally occurring non-idealities in clean-room fabrication processes. The broad availability of classic paradigm PUFs, however, makes them vulnerable. Here, we propose a hybrid plasmonic/photonic multilayered structure working as a three-level strong PUF. Our approach leverages on the combination of a functional nanostructured surface, a resonant response, and a unique chromatic signature all together in one single device. The structure consists of a resonant cavity, where the top mirror is replaced with a layer of plasmonic Ag nanoislands. The naturally random spatial distribution of clusters and nanoparticles formed by this deposition technique constitutes the manufacturer-resistant nanoscale morphological fingerprint of the proposed PUF. The presence of Ag nanoislands allows us to tailor the interplay between the photonic and plasmonic modes to achieve two additional security levels. The first one is constituted by the chromatic response and broad iridescence of our structures, while the second by their rich spectral response, accessible even through a common smartphone light-emitting diode. We demonstrate that the proposed architectures could also be used as an irreversible and quantitative temperature exposure label. The proposed PUFs are inexpensive, chip-to-wafer-size scalable, and can be deposited over a variety of substrates. They also hold a great promise as an encryption framework envisioning morpho-cryptography applications.
Collapse
Affiliation(s)
- Vincenzo Caligiuri
- Department
of Physics, University of Calabria, via P. Bucci, 31C, 87036 Rende, Cosenza, Italy
- CNR
Nanotec UOS Rende, via
P. Bucci, 31D, 87036 Rende, Cosenza, Italy
| | - Aniket Patra
- Department
of Physics, University of Calabria, via P. Bucci, 31C, 87036 Rende, Cosenza, Italy
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova (GE), Italy
| | - Maria P. De Santo
- Department
of Physics, University of Calabria, via P. Bucci, 31C, 87036 Rende, Cosenza, Italy
- CNR
Nanotec UOS Rende, via
P. Bucci, 31D, 87036 Rende, Cosenza, Italy
| | - Agostino Forestiero
- CNR-ICAR,
Institute for High Performance and Networking, via P. Bucci 8-9c, 87036 Rende, Cosenza, Italy
| | - Giuseppe Papuzzo
- CNR-ICAR,
Institute for High Performance and Networking, via P. Bucci 8-9c, 87036 Rende, Cosenza, Italy
| | - Dante M. Aceti
- Institute
of Electronics, Bulgarian Academy of Sciences, 72, Tsarigradsko Chaussee Blvd, 1784 Sofia, Bulgaria
| | - Giuseppe E. Lio
- CNR-INO
and European Laboratory for Non Linear Spectroscopy (LENS), Via Nello Carrara, 1, Sesto Fiorentino, 50019 Firenze (FI), Italy
| | - Riccardo Barberi
- Department
of Physics, University of Calabria, via P. Bucci, 31C, 87036 Rende, Cosenza, Italy
- CNR
Nanotec UOS Rende, via
P. Bucci, 31D, 87036 Rende, Cosenza, Italy
| | - Antonio De Luca
- Department
of Physics, University of Calabria, via P. Bucci, 31C, 87036 Rende, Cosenza, Italy
- CNR
Nanotec UOS Rende, via
P. Bucci, 31D, 87036 Rende, Cosenza, Italy
| |
Collapse
|
24
|
Yang W, Qu G, Lai F, Liu Y, Ji Z, Xu Y, Song Q, Han J, Xiao S. Dynamic Bifunctional Metasurfaces for Holography and Color Display. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101258. [PMID: 34309091 DOI: 10.1002/adma.202101258] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/21/2021] [Indexed: 06/13/2023]
Abstract
Metasurfaces have shown their unprecedented ability in wavefront shaping and triggered various applications with state-of-the-art performances, e.g., color nanoprinting and metaholograms. Recently, these two functions have been combined into a single metasurface to further expand its capabilities. Despite the progress, the current dual-mode metasurfaces are mostly static and strongly hinder their practical applications. Herein, the realization of dynamic bifunctional metasurfaces is reported. Five metaholograms at two different wavelengths are multiplexed with structural colors by controlling the spectral and phase response of metasurface. Owing to the destructive interference and the resonance on external environment, the light diffraction at particular wavelengths can be switched between "ON" and "OFF" states, or remain unchanged with the change of surrounding refractive index. Consequently, the encoded metaholograms are selectively turned on and off, making the overall holographic image dynamically switchable. This concept paves a solid step toward practical applications of all-dielectric metasurfaces.
Collapse
Affiliation(s)
- Wenhong Yang
- State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Geyang Qu
- State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Fangxing Lai
- State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yilin Liu
- State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Ziheng Ji
- State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yi Xu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qinghai Song
- State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jiecai Han
- School of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Shumin Xiao
- State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, China
- School of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
25
|
Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications. SENSORS 2021; 21:s21165262. [PMID: 34450704 PMCID: PMC8401600 DOI: 10.3390/s21165262] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022]
Abstract
Surface plasmonic sensors have been widely used in biology, chemistry, and environment monitoring. These sensors exhibit extraordinary sensitivity based on surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) effects, and they have found commercial applications. In this review, we present recent progress in the field of surface plasmonic sensors, mainly in the configurations of planar metastructures and optical-fiber waveguides. In the metastructure platform, the optical sensors based on LSPR, hyperbolic dispersion, Fano resonance, and two-dimensional (2D) materials integration are introduced. The optical-fiber sensors integrated with LSPR/SPR structures and 2D materials are summarized. We also introduce the recent advances in quantum plasmonic sensing beyond the classical shot noise limit. The challenges and opportunities in this field are discussed.
Collapse
|
26
|
Guin S, Jana AD. Effect of alkali atom doping on the electronic structure and aromatic character of planar and quasi-planar Al 13+ clusters. J Mol Model 2021; 27:235. [PMID: 34333700 DOI: 10.1007/s00894-021-04845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
A set of three Al13+ clusters, one perfectly planar, and two quasi-planar structures, have been recently reported by our group (Guin et al. Journal of Molecular Graphics and Modeling, 2020, 97, 107544). All three clusters possess bilateral symmetry with identical structural features-a set of ten aluminum atoms encircle a triangular core. The symmetry axis passes through one of the Al atoms of the central triangular core and two Al atoms located on the periphery at two opposite ends of the cluster. This set of three aluminum clusters is an example of a rare metallo-aromatic system where highly anti-aromatic islands are embedded within an aromatic sea. In the present study, we have explored the effect of doping alkali atoms (Li, Na, and K) at the positions of the Al atoms that lie on the symmetry axis of the cluster intending to understand the structural stability and the effect on the aromatic character as compared to the undoped parent clusters. Besides the electronic structural analysis, NICS and ELF studies have also been carried out to characterize the aromatic nature of the doped clusters. Interestingly, it has been found that even with the incorporation of the alkali atoms, the bilateral symmetry of the clusters remains intact, but the alkali atoms are pushed out of the original location toward the edge of the cluster, whereas the aluminum atoms remain grouped. The dipole moment of the clusters systematically increases, and the overall aromaticity of the cluster systematically decreases with the increase in the atomic number of the doped alkali atoms. Effect of alkali atom doping to Al13+ cluster.
Collapse
Affiliation(s)
- Surajit Guin
- Department of Physics, Behala College, Parnasree, Kolkata, West Bengal, 700092, India
| | - Atish Dipankar Jana
- Department of Physics, Behala College, Parnasree, Kolkata, West Bengal, 700092, India.
| |
Collapse
|
27
|
Zhao X, Du C, Leng R, Li L, Luo W, Wu W, Xiang Y, Ren M, Zhang X, Cai W, Xu J. Linewidth narrowing of aluminum breathing plasmon resonances in Bragg grating decorated nanodisks. NANOSCALE ADVANCES 2021; 3:4286-4291. [PMID: 36132839 PMCID: PMC9417353 DOI: 10.1039/d1na00184a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/01/2021] [Indexed: 06/16/2023]
Abstract
Plasmon resonances with high-quality are of great importance in light emission control and light-matter interactions. Nevertheless, inherent ohmic and radiative losses usually hinder the plasmon performance of metallic nanostructures, especially for aluminum (Al). Here we demonstrate a Bragg grating decorated nanodisk to narrow the linewidth of breathing plasmon resonances compared with a commensurate nanodisk. Two kinds of plasmon resonant modes and the corresponding mode patterns are investigated in cathodoluminescence (CL) depending on the different electron bombardment positions, and the experimental results agree well with full wave electromagnetic simulations. Linewidth narrowing can be clearly understood using an approximated magnetic dipole model. Our results suggest a feasible mechanism for linewidth narrowing of plasmon resonances as well as pave the way for in-depth analysis and potential applications of Al plasmon systems.
Collapse
Affiliation(s)
- Xiaomin Zhao
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, TEDA Institute of Applied Physics, Nankai University Tianjin 300457 China
| | - Chenglin Du
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, TEDA Institute of Applied Physics, Nankai University Tianjin 300457 China
| | - Rong Leng
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, TEDA Institute of Applied Physics, Nankai University Tianjin 300457 China
| | - Li Li
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, TEDA Institute of Applied Physics, Nankai University Tianjin 300457 China
| | - Weiwei Luo
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, TEDA Institute of Applied Physics, Nankai University Tianjin 300457 China
| | - Wei Wu
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, TEDA Institute of Applied Physics, Nankai University Tianjin 300457 China
| | - Yinxiao Xiang
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, TEDA Institute of Applied Physics, Nankai University Tianjin 300457 China
| | - Mengxin Ren
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, TEDA Institute of Applied Physics, Nankai University Tianjin 300457 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University Taiyuan Shanxi 030006 People's Republic of China
| | - Xinzheng Zhang
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, TEDA Institute of Applied Physics, Nankai University Tianjin 300457 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University Taiyuan Shanxi 030006 People's Republic of China
| | - Wei Cai
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, TEDA Institute of Applied Physics, Nankai University Tianjin 300457 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University Taiyuan Shanxi 030006 People's Republic of China
| | - Jingjun Xu
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, TEDA Institute of Applied Physics, Nankai University Tianjin 300457 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University Taiyuan Shanxi 030006 People's Republic of China
| |
Collapse
|
28
|
Jia S, Li Z, Chen J. High-sensitivity plasmonic sensor by narrowing Fano resonances in a tilted metallic nano-groove array. OPTICS EXPRESS 2021; 29:21358-21368. [PMID: 34265925 DOI: 10.1364/oe.430684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Plasmonic sensors exhibit enormous potential in the areas of environmental monitoring, biomedical diagnostics, healthcare, food safety, security, and chemical reactions. However, the large bandwidths of surface-plasmon response spectra greatly reduce the sensitivities and detection limits of plasmonic sensors. Herein, we propose to tilt a metallic nano-groove array to reduce linewidths of Fano resonances, and the figure of merit (FOM) of a refractive index sensor is greatly increased. The Fano resonances stem from interference between narrow SPP resonant modes and a broad LSP mode in the metallic nano-groove array. When tilting the metallic nano-groove array, new Fano resonances emerge, greatly compressing the linewidth of Fano resonance of interest to ∼1.1 nm in the simulation. Experimentally, a narrow Fano resonance with a linewidth of Δλ≈2.5 nm is achieved, and a high-FOM (FOM ≈ 263) plasmonic sensor is demonstrated. This value of FOM is more than 4.7 times that (FOM ≤ 55) of Fano sensors based on SPP modes, and it is even approximately twice that (FOM ≈ 140) of the previous Fano sensor based on Wood's Anomaly.
Collapse
|
29
|
Ahmadivand A. Electrically Excited Plasmonic Ultraviolet Light Sources. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100819. [PMID: 33938142 DOI: 10.1002/smll.202100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/23/2021] [Indexed: 06/12/2023]
Abstract
The emission of photons from metal-insulator-metal (MIM) nanojunctions through inelastic tunneling of electrically driven electrons is a well-acknowledged approach to develop miniaturized light sources and ultradense photonic instruments. Generally, the existing research in the optimization of electromigrated tunneling junctions is principally centered on the generation of visible and near-infrared lights. This study reports on the near-ultraviolet (NUV, λ ≈ 355 nm) light emission from enhanced tunneling of electrons using aluminum nanoelectrodes. Compared to conventional noble metals, the high electron density and low screening of aluminum enable supporting of pronounced local fields at high energies (i.e, ultraviolet (UV)). As the color of light can be straightforwardly determined by the properties of tunneling structures, the exquisite features of aluminum have empowered the fashioning of tunneling devices that are able to effectively sustain plasmons at short wavelengths and emit UV light with high photon yield. This demonstration is a breakthrough in the generation of high-energy beams using electrically excited aluminum tunneling platforms, which promisingly accelerates the implementation of electrically tunable and ultradense UV light sources.
Collapse
Affiliation(s)
- Arash Ahmadivand
- Metamaterial Technologies Inc. (META), Pleasanton, CA, 94588, USA
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
| |
Collapse
|
30
|
Abstract
The size- and shape-controlled enhanced optical response of metal nanoparticles (NPs) is referred to as a localized surface plasmon resonance (LSPR). LSPRs result in amplified surface and interparticle electric fields, which then enhance light absorption of the molecules or other materials coupled to the metallic NPs and/or generate hot carriers within the NPs themselves. When mediated by metallic NPs, photocatalysis can take advantage of this unique optical phenomenon. This review highlights the contributions of quantum mechanical modeling in understanding and guiding current attempts to incorporate plasmonic excitations to improve the kinetics of heterogeneously catalyzed reactions. A range of first-principles quantum mechanics techniques has offered insights, from ground-state density functional theory (DFT) to excited-state theories such as multireference correlated wavefunction methods. Here we discuss the advantages and limitations of these methods in the context of accurately capturing plasmonic effects, with accompanying examples.
Collapse
Affiliation(s)
- John Mark P. Martirez
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Junwei Lucas Bao
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Emily A. Carter
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
- Office of the Chancellor, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
31
|
Kitajima Y, Sakamoto H, Ueno K. Coupled plasmonic systems: controlling the plasmon dynamics and spectral modulations for molecular detection. NANOSCALE 2021; 13:5187-5201. [PMID: 33687413 DOI: 10.1039/d0nr06681h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This review describes recent studies on coupled plasmonic systems for controlling plasmon dynamics and molecular detection using spectral modulations. The plasmon dephasing time can be controlled by weak and strong coupling regimes between the plasmonic nanostructures or localized surface plasmon resonances (LSPRs) and the other optical modes such as microcavities. The modal coupling induces near-field enhancement by extending the plasmon dephasing time to increase the near-field enhancement at certain wavelengths resulting in the enhancement of molecular detection. On the other hand, the interaction between LSPR and molecular excited or vibrational states also modulates the resonance spectrum, which can also be used for detecting a small number of molecules with a subtle change in the spectrum. The spectral modulation is induced by weak and strong couplings between LSPRs and the electronic or vibrational states of molecules, and this method is sensitive enough to measure a single molecule.
Collapse
Affiliation(s)
- Yuto Kitajima
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Hiyori Sakamoto
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Kosei Ueno
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
32
|
Das A, Kumar K, Dhawan A. Periodic arrays of plasmonic crossed-bowtie nanostructures interspaced with plasmonic nanocrosses for highly sensitive LSPR based chemical and biological sensing. RSC Adv 2021; 11:8096-8106. [PMID: 35423295 PMCID: PMC8695081 DOI: 10.1039/d0ra09012c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/07/2021] [Indexed: 11/30/2022] Open
Abstract
In this paper, we present novel localized surface plasmon resonance (LSPR) sensors based on periodic arrays of gold crossed-bowtie nanostructures interspaced with gold nanocross pillars. Finite difference time domain (FDTD) numerical simulations were carried out to model bulk sensors as well as localized sensors based on the plasmonic nanostructures being proposed. The geometrical parameters of the plasmonic nanostructures are varied to obtain the best possible sensing performance in terms of sensitivity and figure of merit. A very high bulk sensitivity of 1753 nm per unit change in refractive index (nm RIU-1), with a figure of merit for bulk sensing (FOMbulk) of 3.65 RIU-1, is obtained for these plasmonic nanostructures. This value of bulk sensitivity is higher in comparison to previously proposed LSPR sensors based on plasmonic nanopillars and nanocrosses. Moreover, the optimized LSPR sensors being proposed in this paper provide maximum sensitivity of localized refractive index sensing of 70 nm/nm with a FOMlocalized of 0.33 nm-1. This sensitivity of localized refractive index sensing is the highest reported thus far in comparison with previously reported LSPR sensors. It is also demonstrated that the operating resonance wavelengths of these LSPR sensors can be controllably tuned for specific applications by changing the dimensions of the plasmonic nanostructures.
Collapse
Affiliation(s)
- Abhijit Das
- Department of Electrical Engineering, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Kamal Kumar
- Department of Electrical Engineering, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Anuj Dhawan
- Department of Electrical Engineering, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
33
|
Xu T, Geng Z. Strategies to improve performances of LSPR biosensing: Structure, materials, and interface modification. Biosens Bioelectron 2021; 174:112850. [DOI: 10.1016/j.bios.2020.112850] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/06/2020] [Accepted: 11/22/2020] [Indexed: 12/12/2022]
|
34
|
Garrett BS, Hudak NJ, Zablocki M, Creazzo T, Sharkawy A, DeLacy BG, Mirotznik MS. Hollow aluminum microspheres with high mass extinction coefficients in the long wave infrared. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2020; 37:1989-1998. [PMID: 33362142 DOI: 10.1364/josaa.402023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Previous electromagnetic computations of multilayered dielectric/metallic spheres identified the ideal dimensions and composition for achieving optimized mass extinction coefficients (m2/g). A hollow metallic sphere, with a thin metallic shell, is one such example of a spherical structure that can theoretically achieve high mass extinction coefficients in the long wave infrared (LWIR) region (8-12 µm). To this end, we endeavored to demonstrate a cost-effective and scalable manufacturing approach for synthesizing and experimentally validating the mass extinction coefficients of hollow metallic spheres. Specifically, we detail a novel approach for fabricating hollow aluminum spheres using radio frequency (RF) magnetron sputter deposition. Sacrificial high-density polyethylene polymer microspheres were used as substrates for the deposition of thin layers of aluminum. The core shell structures were subsequently thermally processed to form the hollow micron sized aluminum shells. The mass extinction coefficients of the hollow aluminum spheres were subsequently measured and compared to computational results. A strong agreement between experimental and theoretical predictions was observed. Finally, the LWIR mass extinction coefficients of the hollow spheres were compared to high aspect ratio brass flakes, a common pigment used for LWIR attenuation, and other materials and geometries that are used for LWIR filtering applications. This comparison of both performance and availability revealed that the fabricated hollow aluminum spheres exhibited competitive LWIR properties using a more scalable and cost-effective manufacturing approach.
Collapse
|
35
|
Gu P, Chen J, Yang C, Yan Z, Tang C, Cai P, Gao F, Yan B, Liu Z, Huang Z. Narrowband Light Reflection Resonances from Waveguide Modes for High-Quality Sensors. NANOMATERIALS 2020; 10:nano10101966. [PMID: 33023056 PMCID: PMC7601210 DOI: 10.3390/nano10101966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022]
Abstract
Designing various nanostructures to achieve narrowband light reflection resonances is desirable for optical sensing applications. In this work, we theoretically demonstrate two narrowband light reflection resonances resulting from the excitations of the zero-order transverse magnetic (TM) and transverse electric (TE) waveguide modes, in a waveguide structure consisting of an Au sphere array on an indium tin oxide (ITO) spacer on a silica (SiO2) substrate. The positions of the light reflection resonances can be tuned easily, by varying the array periods of gold (Au) spheres or by changing the thickness of the ITO film. More importantly, the light reflection resonances have a very narrow bandwidth, the full width at half maximum (FWHM) of which can be reduced to only several nanometers for the zero-order TM and TE waveguide modes. The conventionally defined performance parameters of sensors, sensitivity (S) and figure of merit (FOM), have quite high values of about 80 nm/RIU and 32, respectively, in the visible wavelength range.
Collapse
Affiliation(s)
- Ping Gu
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jing Chen
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Chun Yang
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhendong Yan
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Chaojun Tang
- Center for Optics and Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
| | - Pinggen Cai
- Center for Optics and Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
| | - Fan Gao
- Center for Optics and Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
| | - Bo Yan
- Center for Optics and Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
| | - Zhengqi Liu
- College of Physics Communication and Electronics, Jiangxi Normal University, Nanchang 330022, China
| | - Zhong Huang
- College of Physics and Electronic Engineering, Jiangsu Second Normal University, Nanjing 210013, China
| |
Collapse
|
36
|
Chen YP, Lai CC, Tsai WS. Full-color based on bismuth core-shell nanoparticles in one-step fabrication. OPTICS EXPRESS 2020; 28:24511-24525. [PMID: 32906991 DOI: 10.1364/oe.398903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Plasmonic resonances in metallic nanostructures are promising for the structure-dependent color-rendering effect. In this study, bismuth is selected as an alternative plasmonic material due to its large tunable range from near-ultraviolet to near-infrared. Various sizes of core-shell bismuth nanoparticles are fabricated on a large-area silicon substrate using a one-step thermal evaporation deposition process. Particle diameters, cross-sections, and arrangement are characterized at 12 featured sections, which reveal spectral shifts and full visible colors in a hue order with a color gamut that is close to sRGB. Color palettes on the chromaticity coordinates rendered from both measured and simulation reflection spectra are in very good accordance with the microscopic image colors of all sections.
Collapse
|
37
|
Yang W, Xiao S, Song Q, Liu Y, Wu Y, Wang S, Yu J, Han J, Tsai DP. All-dielectric metasurface for high-performance structural color. Nat Commun 2020; 11:1864. [PMID: 32313078 PMCID: PMC7171068 DOI: 10.1038/s41467-020-15773-0] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/24/2020] [Indexed: 12/24/2022] Open
Abstract
The achievement of structural color has shown advantages in large-gamut, high-saturation, high-brightness, and high-resolution. While a large number of plasmonic/dielectric nanostructures have been developed for structural color, the previous approaches fail to match all the above criterion simultaneously. Herein we utilize the Si metasurface to demonstrate an all-in-one solution for structural color. Due to the intrinsic material loss, the conventional Si metasurfaces only have a broadband reflection and a small gamut of 78% of sRGB. Once they are combined with a refractive index matching layer, the reflection bandwidth and the background reflection are both reduced, improving the brightness and the color purity significantly. Consequently, the experimentally demonstrated gamut has been increased to around 181.8% of sRGB, 135.6% of Adobe RGB, and 97.2% of Rec.2020. Meanwhile, high refractive index of silicon preserves the distinct color in a pixel with 2 × 2 array of nanodisks, giving a diffraction-limit resolution.
Collapse
Affiliation(s)
- Wenhong Yang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Shumin Xiao
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China.
| | - Qinghai Song
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
| | - Yilin Liu
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Yunkai Wu
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Shuai Wang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Jie Yu
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
| | - Din-Ping Tsai
- Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| |
Collapse
|
38
|
Gerislioglu B, Dong L, Ahmadivand A, Hu H, Nordlander P, Halas NJ. Monolithic Metal Dimer-on-Film Structure: New Plasmonic Properties Introduced by the Underlying Metal. NANO LETTERS 2020; 20:2087-2093. [PMID: 31990568 DOI: 10.1021/acs.nanolett.0c00075] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dimers, two closely spaced metallic nanostructures, are one of the primary nanoscale geometries in plasmonics, supporting high local field enhancements in their interparticle junction under excitation of their hybridized "bonding" plasmon. However, when a dimer is fabricated on a metallic substrate, its characteristics are changed profoundly. Here we examine the properties of a Au dimer on a Au substrate. This structure supports a bright "bonding" dimer plasmon, screened by the metal, and a lower energy magnetic charge transfer plasmon. Changing the dielectric environment of the dimer-on-film structure reveals a broad family of higher-order hybrid plasmons in the visible region of the spectrum. Both of the localized surface plasmons resonances (LSPR) of the individual dimer-on-film structures as well as their collective surface lattice resonances (SLR) show a highly sensitive refractive index sensing response. Implementation of such all-metal magnetic-resonant nanostructures offers a promising route to achieve higher-performance LSPR- and SLR-based plasmonic sensors.
Collapse
Affiliation(s)
| | | | | | - Huatian Hu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
39
|
Zhang C, Jing J, Wu Y, Fan Y, Yang W, Wang S, Song Q, Xiao S. Stretchable All-Dielectric Metasurfaces with Polarization-Insensitive and Full-Spectrum Response. ACS NANO 2020; 14:1418-1426. [PMID: 31877022 DOI: 10.1021/acsnano.9b08228] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mechanical stretching has been an effective way to achieve widely tunable optical response in artificial nanostructures. However, the typical stretchable optical devices produce exactly the reverse effects for two orthogonal linear polarizations, significantly hindering their practical applications in many emerging systems. Herein, we demonstrate an approach for a mechanically tunable all-dielectric metasurface with polarization insensitivity and full-spectrum response in the visible range from 450 to 650 nm. By embedding a TiO2 metasurface in a polydimethylsiloxane substrate and stretching it in one direction, we find that the distinct reflection colors of two orthogonal linear polarizations can be tuned across the entire visible spectrum simultaneously. Encryption and display of information have also been realized with the same technique. The corresponding calculations show that the spectral responses of light with polarizations perpendicular and parallel to the strain are determined by two different mechanisms, that is, the near-field mutual interaction and the grating effects. This research shall shed light on stretchable and wearable photonics.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School , Harbin Institute of Technology , Shenzhen 518055 , P.R. China
| | - Jixiang Jing
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School , Harbin Institute of Technology , Shenzhen 518055 , P.R. China
| | - Yunkai Wu
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School , Harbin Institute of Technology , Shenzhen 518055 , P.R. China
| | - Yubin Fan
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School , Harbin Institute of Technology , Shenzhen 518055 , P.R. China
| | - Wenhong Yang
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School , Harbin Institute of Technology , Shenzhen 518055 , P.R. China
| | - Shuai Wang
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School , Harbin Institute of Technology , Shenzhen 518055 , P.R. China
| | - Qinghai Song
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School , Harbin Institute of Technology , Shenzhen 518055 , P.R. China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , P.R. China
| | - Shumin Xiao
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School , Harbin Institute of Technology , Shenzhen 518055 , P.R. China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , P.R. China
| |
Collapse
|
40
|
Cui X, Lai Y, Qin F, Shao L, Wang J, Lin HQ. Strengthening Fano resonance on gold nanoplates with gold nanospheres. NANOSCALE 2020; 12:1975-1984. [PMID: 31912072 DOI: 10.1039/c9nr09976j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmonic Fano resonance has attracted extensive attention due to its many applications, including plasmonic sensing, electromagnetically induced transparency, light trapping and stopping, due to its narrow linewidth and asymmetric spectral shape. However, many metal nanostructures are designed with complex geometries to generate Fano resonance and few of them can support a deep Fano dip. Herein we report on the strengthening of the Fano resonance on silicon-supported Au nanoplates through the formation of (Au nanosphere)-(Au nanoplate) heterodimers. The deposition of the Au nanosphere on the top can greatly strengthen the substrate-induced Fano resonance of the Au nanoplate with a deep dip. We also observe that the replacement of the Au nanosphere with a Au nanocube can suppress the excitation of the Fano resonance in the heterodimer. When the sharp corners and edges of the nanocubes gradually become rounded, the Fano resonance appears again with increasing asymmetry. Both the dip depth and wavelength of the Fano resonance can be independently tailored by varying the nanosphere diameter and the nanoplate thickness, respectively. We believe that our results provide an attractive and facile platform for modulating Fano dips and constructing Fano resonance-based devices.
Collapse
Affiliation(s)
- Ximin Cui
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | | | | | | | | | | |
Collapse
|
41
|
Wang Q, Ding K, Liu H, Zhu S, Chan CT. Exceptional cones in 4D parameter space. OPTICS EXPRESS 2020; 28:1758-1770. [PMID: 32121882 DOI: 10.1364/oe.381700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
The notion of synthetic dimensions has expanded the realm of topological physics to four dimensional (4D) space lately. In this work, non-Hermiticity is used as a synthetic parameter in PT-symmetric photonic crystals to study the topological physics in 4D non-Hermitian synthetic parameter space. We realize a 3D exceptional hypersurface (EHS) in such 4D parameter space, and the degeneracy points emerge due to the symmetry of synthetic parameters. We further demonstrate the existence of exceptional degenerate points (EDPs) on the EHS that originates from the chirality of exceptional points (EPs), and the exceptional surface near EDPs behaves like a Dirac cone. We further show that a very narrow reflection plateau can be found near these EDPs, and their sensitivity towards the PT-symmetry breaking environmental perturbation can make these degeneracy points useful in optical sensing and many other nonlinear and quantum optical applications.
Collapse
|
42
|
Hemmatyar O, Abdollahramezani S, Kiarashinejad Y, Zandehshahvar M, Adibi A. Full color generation with Fano-type resonant HfO 2 nanopillars designed by a deep-learning approach. NANOSCALE 2019; 11:21266-21274. [PMID: 31667481 DOI: 10.1039/c9nr07408b] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In contrast to lossy plasmonic metasurfaces (MSs), wideband dielectric MSs comprising subwavelength nanostructures supporting Mie resonances are of great interest in the visible wavelength range. Here, for the first time to our knowledge, we experimentally demonstrate a reflective MS consisting of a square-lattice array of hafnia (HfO2) nanopillars to generate a wide color gamut. To design and optimize these MSs, we use a deep-learning algorithm based on a dimensionality reduction technique. Good agreement is observed between simulation and experimental results in yielding vivid and high-quality colors. We envision that these structures not only empower the high-resolution digital displays and sensitive colorimetric biosensors but also can be applied to on-demand applications of beaming in a wide wavelength range down to deep ultraviolet.
Collapse
Affiliation(s)
- Omid Hemmatyar
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 778 Atlantic Drive NW, Atlanta, GA 30332, USA.
| | - Sajjad Abdollahramezani
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 778 Atlantic Drive NW, Atlanta, GA 30332, USA.
| | - Yashar Kiarashinejad
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 778 Atlantic Drive NW, Atlanta, GA 30332, USA.
| | - Mohammadreza Zandehshahvar
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 778 Atlantic Drive NW, Atlanta, GA 30332, USA.
| | - Ali Adibi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 778 Atlantic Drive NW, Atlanta, GA 30332, USA.
| |
Collapse
|
43
|
Fabrication and Characterization of a Metallic-Dielectric Nanorod Array by Nanosphere Lithography for Plasmonic Sensing Application. NANOMATERIALS 2019; 9:nano9121691. [PMID: 31779222 PMCID: PMC6956078 DOI: 10.3390/nano9121691] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022]
Abstract
In this paper, a periodic metallic–dielectric nanorod array which consists of Si nanorods coated with 30 nm Ag thin film set in a hexagonal configuration is fabricated and characterized. The fabrication procedure is performed by using nanosphere lithography with reactive ion etching, followed by Ag thin-film deposition. The mechanism of the surface and gap plasmon modes supported by the fabricated structure is numerically demonstrated by the three-dimensional finite element method. The measured and simulated absorptance spectra are observed to have a same trend and a qualitative fit. Our fabricated plasmonic sensor shows an average sensitivity of 340.0 nm/RIU when applied to a refractive index sensor ranging from 1.0 to 1.6. The proposed substrates provide a practical plasmonic nanorod-based sensing platform, and the fabrication methods used are technically effective and low-cost.
Collapse
|
44
|
Wang Y, Zhu D, Cui Z, Hou L, Lin L, Qu F, Liu X, Nie P. All-Dielectric Terahertz Plasmonic Metamaterial Absorbers and High-Sensitivity Sensing. ACS OMEGA 2019; 4:18645-18652. [PMID: 31737824 PMCID: PMC6854574 DOI: 10.1021/acsomega.9b02506] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/17/2019] [Indexed: 05/25/2023]
Abstract
Two types of plasmonic metamaterial absorbers (PMAs) formed from patterned all-dielectric resonators are designed and demonstrated experimentally in the terahertz (THz) range. Both PMAs use a simple grating design on highly N-doped silicon. The first shows broadband absorption with near-perfect peak absorbance at 1.45 THz and a bandwidth of 1.05 THz for 90% absorbance, while the second is a dual-band absorber. Experiments show that the second absorber has two distinct absorption peaks at 0.96 and 1.92 THz with absorption rates of 99.7 and 99.9%, respectively. A fundamental cavity mode coupled to coaxial surface plasmon polaritons is responsible for the characteristics of both PMAs. Additionally, the optically tunable responses of these all-dielectric absorbers demonstrate that the absorption behavior can be modified. The quality factor (Q) values of the dual-band resonances are 4.6 and 7.8 times larger than those of the broadband PMAs, respectively, which leads to a better sensing performance. As an example, the two proposed PMAs act as high-sensitivity sensors and demonstrate considerable potential for chlorpyrifos detection. These results show that these PMAs can be used as sensors that can detect the presence of trace pesticides in adsorption analyses, among other practical applications.
Collapse
Affiliation(s)
- Yue Wang
- Key
Laboratory of Ultrafast Photoelectric Technology and Terahertz Science
in Shaanxi, Xi’an University of Technology, Xi’an 710048, China
- Key
Laboratory of Engineering Dielectric and Its Application, Ministry
of Education, Harbin University of Science
and Technology, Harbin 15008, China
| | - Dongying Zhu
- Key
Laboratory of Engineering Dielectric and Its Application, Ministry
of Education, Harbin University of Science
and Technology, Harbin 15008, China
| | - Zijian Cui
- Key
Laboratory of Engineering Dielectric and Its Application, Ministry
of Education, Harbin University of Science
and Technology, Harbin 15008, China
| | - Lei Hou
- Key
Laboratory of Ultrafast Photoelectric Technology and Terahertz Science
in Shaanxi, Xi’an University of Technology, Xi’an 710048, China
| | - Lei Lin
- College
of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fangfang Qu
- College
of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoxi Liu
- College
of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Pengcheng Nie
- College
of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
45
|
Roy S, Pramanik S, Mandal P, Manna M, Bhandari S. Hue- and Chromaticity-Based Exploration of Surface Complexation-Induced Tunable Emission from Non-Luminescent Quantum Dots. Chem Asian J 2019; 14:3823-3829. [PMID: 31532886 DOI: 10.1002/asia.201901107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/16/2019] [Indexed: 12/19/2022]
Abstract
Herein we report the use of a hue parameter of HSV (Hue, Saturation and Value) color space-in combination with chromaticity color coordinates-for exploring the complexation-induced luminescence color changes, ranging from blue to green to yellow to white, from a non-luminescent Fe-doped ZnS quantum dot (QD). Importantly, the surface complexation reaction helped a presynthesized non-luminescent Fe-doped ZnS QD to glow with different luminescence colors (such as blue, cyan, green, greenish-yellow, yellow) by virtue of the formation of various luminescent inorganic complexes (using different external organic ligands), while the simultaneous blue- and yellow-emitting complex formation on the surface of non-luminescent Fe-doped ZnS QD led to the generation of white light emission, with a hue mean value of 85 and a chromaticity of (0.28,0.33). Furthermore, the surface complexation-assisted incorporation of luminescence properties to a non-luminescent QD not only overcomes their restricted luminescence-based applications such as light-emitting, biological and sensing applications but also bring newer avenues towards unravelling the surface chemistry between QDs and inorganic complexes and the advantage of having an inorganic complex with QD for their aforementioned useful applications.
Collapse
Affiliation(s)
- Shilaj Roy
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-, 781039, Assam, India.,Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-, 781039, Assam, India
| | - Sabyasachi Pramanik
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-, 781039, Assam, India.,Department of Chemistry, National Institute of Technology Sikkim, Sikkim-, 737139, India
| | - Prasenjit Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-, 781039, Assam, India
| | - Mihir Manna
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-, 781039, Assam, India
| | - Satyapriya Bhandari
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-, 781039, Assam, India.,Centre for Nano and Material Sciences, Jain University, Bangalore, 562112, India.,Physics Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382355, India
| |
Collapse
|
46
|
Barulin A, Claude JB, Patra S, Moreau A, Lumeau J, Wenger J. Preventing Aluminum Photocorrosion for Ultraviolet Plasmonics. J Phys Chem Lett 2019; 10:5700-5707. [PMID: 31503492 DOI: 10.1021/acs.jpclett.9b02137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aluminum can sustain plasmonic resonances down into the ultraviolet (UV) range to promote surface-enhanced spectroscopy and catalysis. Despite its natural alumina passivating layer, we find here that under 266 nm pulsed UV illumination, aluminum can undergo a dramatic photocorrosion in water within a few tens of seconds and even at low average UV powers. This aluminum instability in water environments is a critical limitation. We show that the aluminum photocorrosion is related to the nonlinear absorption by water in the UV range leading to the production of hydroxyl radicals. Different corrosion protection approaches are tested using scavengers for reactive oxygen species and polymer layers deposited on top of the aluminum structures. Using optimized protection, we achieve a 10-fold increase in the available UV power range leading to no visible photocorrosion effects. This technique is crucial to achieve stable use of aluminum nanostructures enabling UV plasmonics in aqueous solutions.
Collapse
Affiliation(s)
- Aleksandr Barulin
- Aix Marseille Univ, CNRS, Centrale Marseille , Institut Fresnel , 13013 Marseille , France
| | - Jean-Benoît Claude
- Aix Marseille Univ, CNRS, Centrale Marseille , Institut Fresnel , 13013 Marseille , France
| | - Satyajit Patra
- Aix Marseille Univ, CNRS, Centrale Marseille , Institut Fresnel , 13013 Marseille , France
| | - Antonin Moreau
- Aix Marseille Univ, CNRS, Centrale Marseille , Institut Fresnel , 13013 Marseille , France
| | - Julien Lumeau
- Aix Marseille Univ, CNRS, Centrale Marseille , Institut Fresnel , 13013 Marseille , France
| | - Jérôme Wenger
- Aix Marseille Univ, CNRS, Centrale Marseille , Institut Fresnel , 13013 Marseille , France
| |
Collapse
|
47
|
Lin FC, See KM, Ouyang L, Huang YX, Chen YJ, Popp J, Huang JS. Designable Spectrometer-Free Index Sensing Using Plasmonic Doppler Gratings. Anal Chem 2019; 91:9382-9387. [PMID: 31329421 DOI: 10.1021/acs.analchem.9b02662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Typical nanoparticle-based plasmonic index sensors detect the spectral shift of localized surface plasmon resonance (LSPR) upon the change of the environmental index. Therefore, they require broadband illumination and spectrometers. The sensitivity and flexibility of nanoparticle-based index sensors are usually limited because LSPR peaks are usually broad and the spectral position cannot be freely designed. Here, we present a fully designable index sensing platform using plasmonic Doppler gratings (PDGs), which provide broadband and azimuthal angle dependent grating periodicity. Different from LSPR sensors, PDG index sensors are based on the momentum matching between photons and surface plasmons via the lattice momentum of the grating. Therefore, the index change is translated into the variation of the in-plane azimuthal angle for photon-to-plasmon coupling, which manifests as directly observable dark bands in the reflection image. The PDG can be freely designed to optimally match the range of index variation for specific applications. In this work, we demonstrate PDG index sensors for large (n = 1.00-1.52) and small index variations (n = 1.3330-1.3650). The tiny and nonlinear index change of the water-ethanol mixture has been clearly observed and accurately quantified. Since the PDG is a dispersive device, it enables on-site and single-color index sensing without a spectrometer and provides a promising spectroscopic platform for on-chip analytical applications.
Collapse
Affiliation(s)
- Fan-Cheng Lin
- Department of Chemistry , National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Kel-Meng See
- Department of Chemistry , National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Lei Ouyang
- Leibniz Institute of Photonic Technology , Albert-Einstein Straße 9 , Jena D-07745 , Germany.,Institute of Physical Chemistry and Abbe Center of Photonics , Friedrich-Schiller-Universität Jena , Helmholtzweg 4 , Jena D-07743 , Germany
| | - You-Xin Huang
- Department of Chemistry , National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Yi-Ju Chen
- Leibniz Institute of Photonic Technology , Albert-Einstein Straße 9 , Jena D-07745 , Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology , Albert-Einstein Straße 9 , Jena D-07745 , Germany.,Institute of Physical Chemistry and Abbe Center of Photonics , Friedrich-Schiller-Universität Jena , Helmholtzweg 4 , Jena D-07743 , Germany
| | - Jer-Shing Huang
- Department of Chemistry , National Tsing Hua University , Hsinchu 30013 , Taiwan.,Leibniz Institute of Photonic Technology , Albert-Einstein Straße 9 , Jena D-07745 , Germany.,Research Center for Applied Sciences , Academia Sinica , 128 Sec. 2, Academia Road , Nankang District, Taipei 11529 , Taiwan.,Department of Electrophysics , National Chiao Tung University , Hsinchu 30010 , Taiwan
| |
Collapse
|
48
|
Yang B, Liu W, Li Z, Cheng H, Choi DY, Chen S, Tian J. Ultrahighly Saturated Structural Colors Enhanced by Multipolar-Modulated Metasurfaces. NANO LETTERS 2019; 19:4221-4228. [PMID: 30742772 DOI: 10.1021/acs.nanolett.8b04923] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Colors with high saturation are of prime significance for display and imaging devices. So far, structural colors arising from all-dielectric metasurfaces, particularly amorphous silicon and titanium oxide, have exceeded the gamut of standard RGB (sRGB) space. However, the excitation of higher-order modes for dielectric materials hinders the further increase of saturation. Here, to address the challenge, we propose a new design strategy of multipolar-modulated metasurfaces with multi-dielectric stacked layers to realize the deep modulation of multipolar modes. Index matching between layers can suppress the multipolar modes at nonresonant wavelength, resulting in the dramatic enhancement in the monochromaticity of reflection spectra. Ultrahigh-saturation colors ranging from 70% to 90% with full hue have been theoretically and experimentally obtained. The huge gamut space can be realized in an unprecedented way, taking up 171% sRGB space, 127% Adobe RGB space, and 57% CIE space. More interestingly, the coverage for Recommendation 2020 (Rec. 2020) space, which almost has not been successfully realized so far, can reach 90%. We anticipate that the proposed multipolar-modulated metasurfaces are promising for the enlargement of the color range for high-end and advanced display applications.
Collapse
Affiliation(s)
| | | | | | | | - Duk-Yong Choi
- Laser Physics Centre, Research School of Physics and Engineering , Australian National University , Canberra , ACT 2601 , Australia
- College of Information Science and Technology , Jinan University , Guangzhou 510632 , China
| | - Shuqi Chen
- The collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | | |
Collapse
|
49
|
Ma C, Yan J, Huang Y, Yang G. Directional Fano Resonance in an Individual GaAs Nanospheroid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900546. [PMID: 30957962 DOI: 10.1002/smll.201900546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/24/2019] [Indexed: 05/13/2023]
Abstract
Fano resonance has been observed in a wide variety of nanophotonic structures such as photonic crystals, plasmonic structures, and metamaterials. It arises from the interference of discrete resonance states with broadband continuum states. As an emerging nanophotonic material, high-index all-dielectric nanomaterials provide a new platform to achieve Fano resonance by virtue of the simultaneous excited electric and magnetic resonances. However, to date, Fano resonance in the visible region has not been observed in individual high-index all-dielectric nanoparticles. Here, for the first time, the experimental observation of the directional Fano resonance is reported in an individual GaAs nanospheroid. The special geometry enables GaAs nanospheroids to generate spectrally overlapped electric and magnetic dipole resonances, which enhances their spectral coupling, giving rise to asymmetric-shaped backward scattering spectrum. This directional Fano resonance can be tuned by the aspect ratio of nanospheroids as well as excitation polarization. In addition, efficient directional light scattering is realized at the total scattering peak of the GaAs nanospheroid. The forward-to-backward scattering ratio can be largely enhanced due to Fano dip in the backward scattering spectrum. These findings suggest that high-index all-dielectric nanospheroid is a promising candidate for directional sources and optical switches.
Collapse
Affiliation(s)
- Churong Ma
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangdong, Guangzhou, 510275, P. R. China
| | - Jiahao Yan
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangdong, Guangzhou, 510275, P. R. China
| | - Yingcong Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangdong, Guangzhou, 510275, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangdong, Guangzhou, 510275, P. R. China
| |
Collapse
|
50
|
Dreser C, Gollmer DA, Bautista G, Zang X, Kern DP, Kauranen M, Fleischer M. Plasmonic mode conversion in individual tilted 3D nanostructures. NANOSCALE 2019; 11:5429-5440. [PMID: 30855057 DOI: 10.1039/c8nr10254f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We investigate mode conversion in 3D asymmetric nanocones using angle-dependent linear optical spectroscopy and second-harmonic generation microscopy supported by corresponding simulations. The results prove the efficient excitation of the plasmonic out-of-plane mode that enhances the electric near-field at the sharp tip. Furthermore, we introduce two advanced fabrication processes including either etch mask transfer by tilted etching into a metallic layer or tilted electron-beam lithography followed by tilted evaporation and lift-off. These processes enable the fabrication of tilted nanostructures which can be optimized for a given purpose. The combination of the optical properties and the introduced fabrication processes enables a new design of plasmonic nanostructures for ultra-compact sensors or photon sources.
Collapse
Affiliation(s)
- Christoph Dreser
- Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|