1
|
Lee AW, Dong Y, Natani S, Ban DK, Bandaru PR. Toward the Ultimate Limit of Analyte Detection, in Graphene-Based Field-Effect Transistors. NANO LETTERS 2024; 24:1214-1222. [PMID: 38230628 DOI: 10.1021/acs.nanolett.3c04066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The ultimate sensitivity of field-effect-transistor (FET)-based devices for ionic species detection is of great interest, given that such devices are capable of monitoring single-electron-level modulations. It is shown here, from both theoretical and experimental perspectives, that for such ultimate limits to be approached the thermodynamic as well as kinetic characteristics of the (FET surface)-(linker)-(ion-receptor) ensemble must be considered. The sensitivity was probed in terms of optimal packing of the ensemble, through a minimal charge state/capacitance point of view and atomic force microscopy. Through the fine-tuning of the linker and receptor interaction with the sensing surface, a record limit of detection as well as specificity in the femtomolar range, orders of magnitude better than previously obtained and in excellent accord with prediction, was observed.
Collapse
Affiliation(s)
- Alex W Lee
- Materials Science and Engineering Program, University of California, San Diego, California 92093, United States
| | - Yongliang Dong
- Materials Science and Engineering Program, University of California, San Diego, California 92093, United States
| | - Shreyam Natani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093, United States
| | - Deependra Kumar Ban
- Keck Graduate Institute, Claremont, Los Angeles, California 91711, United States
| | - Prabhakar R Bandaru
- Materials Science and Engineering Program, University of California, San Diego, California 92093, United States
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093, United States
| |
Collapse
|
2
|
Arguello Cruz E, Ducos P, Gao Z, Johnson ATC, Niebieskikwiat D. Exchange Coupling Effects on the Magnetotransport Properties of Ni-Nanoparticle-Decorated Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1861. [PMID: 37368291 DOI: 10.3390/nano13121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
We characterize the effect of ferromagnetic nickel nanoparticles (size ∼6 nm) on the magnetotransport properties of chemical-vapor-deposited (CVD) graphene. The nanoparticles were formed by thermal annealing of a thin Ni film evaporated on top of a graphene ribbon. The magnetoresistance was measured while sweeping the magnetic field at different temperatures, and compared against measurements performed on pristine graphene. Our results show that, in the presence of Ni nanoparticles, the usually observed zero-field peak of resistivity produced by weak localization is widely suppressed (by a factor of ∼3), most likely due to the reduction of the dephasing time as a consequence of the increase in magnetic scattering. On the other hand, the high-field magnetoresistance is amplified by the contribution of a large effective interaction field. The results are discussed in terms of a local exchange coupling, J∼6 meV, between the graphene π electrons and the 3d magnetic moment of nickel. Interestingly, this magnetic coupling does not affect the intrinsic transport parameters of graphene, such as the mobility and transport scattering rate, which remain the same with and without Ni nanoparticles, indicating that the changes in the magnetotransport properties have a purely magnetic origin.
Collapse
Affiliation(s)
- Erick Arguello Cruz
- Departamento de Fisica, Colegio de Ciencias e Ingenierias, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Pedro Ducos
- Departamento de Fisica, Colegio de Ciencias e Ingenierias, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Zhaoli Gao
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alan T Charlie Johnson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dario Niebieskikwiat
- Departamento de Fisica, Colegio de Ciencias e Ingenierias, Universidad San Francisco de Quito, Quito 170901, Ecuador
| |
Collapse
|
3
|
Fan X, Zhang X, Ping J. Graphene-Enabled High-Performance Electrokinetic Focusing and Sensing. ACS NANO 2022; 16:10852-10858. [PMID: 35714280 DOI: 10.1021/acsnano.2c03054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transverse isoelectric focusing, i.e., isoelectric focusing that is normal to the fluid-flow direction, is an electrokinetic method ideal for micro total analysis. However, a major challenge remains: There is no electrode system integrable in a microfluidic device to allow reliable transverse isoelectric focusing and electrokinetic sensing. Here, we overcome this barrier by developing devices that incorporate microelectrodes made of monolayer graphene. We find that the electrolysis stability over time for graphene microelectrodes is >103× improved compared to typical microfabricated inert-metal microelectrodes. Through transverse isoelectric focusing between graphene microelectrodes, within minutes, specific proteins can be separated and concentrated to scales of ∼100 μm. Based on the concentrating effect and the high optical transparency of graphene, we develop a three-dimensional multistream microfluidic strategy for label-free detection of the proteins at same processing position with a sensitivity that is ∼102× higher than those of the state-of-the-art label-free sensors. These results demonstrate the advantage of monolayer-graphene microelectrodes for high-performance electrokinetic analysis to allow lab-on-a-chips of maximal time and size efficiencies.
Collapse
Affiliation(s)
- Xiao Fan
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Xiaoyu Zhang
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jinglei Ping
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Institute of Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Xi J, Yang N, Perez-Aguilar JM, Selling B, Grothusen JR, Lamichhane R, Saven JG, Liu R. Novel variants of engineered water soluble mu opioid receptors with extensive mutations and removal of cysteines. Proteins 2021; 89:1386-1393. [PMID: 34152652 DOI: 10.1002/prot.26160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/21/2021] [Accepted: 06/03/2021] [Indexed: 11/11/2022]
Abstract
We have shown that water-soluble variants of the human mu opioid receptor (wsMOR) containing a reduced number of hydrophobic residues at the lipid-facing residues of the transmembrane (TM) helices can be expressed in E. coli. In this study, we tested the consequences of increasing the number of mutations on the surface of the transmembrane domain on the receptor's aqueous solubility and ligand binding properties, along with mutation of 11 cysteine residues regardless of their solvent exposure value and location in the protein. We computationally engineered 10 different variants of MOR, and tested four of them for expression in E. coli. We found that all four variants were successfully expressed and could be purified in high quantities. The variants have alpha helical structural content similar to that of the native MOR, and they also display binding affinities for the MOR antagonist (naltrexone) similar to the wsMOR variants we engineered previously that contained many fewer mutations. Furthermore, for these full-length variants, the helical content remains unchanged over a wide range of pH values (pH 6 ~ 9). This study demonstrates the flexibility and robustness of the water-soluble MOR variants with respect to additional designed mutations in the TM domain and changes in pH, whereupon the protein's structural integrity and its ligand binding affinity are maintained. These variants of the full-length MOR with less hydrophobic surface residues and less cysteines can be obtained in large amounts from expression in E. coli and can serve as novel tools to investigate structure-function relationships of the receptor.
Collapse
Affiliation(s)
- Jin Xi
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nanmu Yang
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jose Manuel Perez-Aguilar
- Department of Chemistry, University of Pennsylvania School of Art and Science, Philadelphia, Pennsylvania, USA.,School of Chemical Science, Meritorious Autonomous University of Puebla (BUAP), Puebla, Mexico
| | - Bernard Selling
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John R Grothusen
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rajan Lamichhane
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania School of Art and Science, Philadelphia, Pennsylvania, USA
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Kim S, Park S, Cho YS, Kim Y, Tae JH, No TI, Shim JS, Jeong Y, Kang SH, Lee KH. Electrical Cartridge Sensor Enables Reliable and Direct Identification of MicroRNAs in Urine of Patients. ACS Sens 2021; 6:833-841. [PMID: 33284011 DOI: 10.1021/acssensors.0c01870] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Urinary miRNAs are biomarkers that demonstrate considerable promise for the noninvasive diagnosis and prognosis of diseases. However, because of background noise resulting from complex physiological features of urine, instability of miRNAs, and their low concentration, accurate monitoring of miRNAs in urine is challenging. To address these limitations, we developed a urine-based disposable and switchable electrical sensor that enables reliable and direct identification of miRNAs in patient urine. The proposed sensing platform combining disposable sensor chips composed of a reduced graphene oxide nanosheet and peptide nucleic acid facilitates the label-free detection of urinary miRNAs with high specificity and sensitivity. Using real-time detection of miRNAs in patient urine without pretreatment or signal amplification, this sensor allows rapid, direct detection of target miRNAs in a broad dynamic range with a detection limit down to 10 fM in human urine specimens within 20 min and enables simultaneous quantification of multiple miRNAs. As confirmed using a blind comparison with the results of pathological examination of patients with prostate cancer, the sensor offers the potential to improve the accuracy of early diagnosis before a biopsy is taken. This study holds the usefulness of the practical sensor for the clinical diagnosis of urological diseases.
Collapse
Affiliation(s)
- Seongchan Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Sungwook Park
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Young Soo Cho
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Younghoon Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jong Hyun Tae
- Department of Urology, Korea University, School of Medicine, Seoul 02841, Republic of Korea
| | - Tae Il No
- Department of Urology, Korea University, School of Medicine, Seoul 02841, Republic of Korea
| | - Ji Sung Shim
- Department of Urology, Korea University, School of Medicine, Seoul 02841, Republic of Korea
| | - Youngdo Jeong
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea
| | - Seok Ho Kang
- Department of Urology, Korea University, School of Medicine, Seoul 02841, Republic of Korea
| | - Kwan Hyi Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Wen C, Selling B, Yeliseev A, Xi J, Perez-Aguilar JM, Gao Z, Saven JG, Johnson ATC, Liu R. The C-terminus of the mu opioid receptor is critical in G-protein interaction as demonstrated by a novel graphene biosensor. IEEE SENSORS JOURNAL 2021; 21:5758-5762. [PMID: 33679256 PMCID: PMC7935050 DOI: 10.1109/jsen.2020.3043149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Several water-soluble variants of the human mu opioid receptor (wsMORs) have been designed and expressed, which enables the detection of opioids in the nM to pM range using biosensing platforms. The tools previously developed allowed us to investigate MOR and G-protein interactions in a lipid free system to demonstrate that the lipid bilayer might not be essential for the G-protein recognition and binding. In this study, we are able to investigate G-protein interactions with MOR by using graphene enabled technology, in a lipid free system, with a high sensitivity in a real time manner. A new wsMOR with the native C-terminus was designed, expressed and then immobilized on the surfaces of scalable graphene field effect transistor (GFET)-based biosensors, enabling the recording of wsMOR/G-protein interaction with an electronic readout. G-protein only interacts with the wsMOR in the presence of the native MOR C-terminus with a KA of 32.3±11.1 pM. The electronic readout of such interaction is highly reproducible with little variance across 50 devices in one biosensor array. For devices with receptors that do not have the native C-terminus, no significant electronic response was observed in the presence of G-protein, indicating an absence of interaction. These findings reveal that lipid environment is not essential for the G-protein interaction with MOR, however, the C-terminus of MOR is essential for G-protein recognition and high affinity binding. A system to detect MOR-G protein interaction is developed. wsMOR-G2_Cter provides a novel tool to investigate the role of C terminus in the signaling pathway.
Collapse
Affiliation(s)
- Chengyu Wen
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Bernard Selling
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Alexei Yeliseev
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20852, USA
| | - Jin Xi
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia PA 19104, USA
| | | | - Zhaoli Gao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia PA 19104, USA
| | - A T Charlie Johnson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia PA 19104, USA
| |
Collapse
|
7
|
Neubert TJ, Wehrhold M, Kaya NS, Balasubramanian K. Faradaic effects in electrochemically gated graphene sensors in the presence of redox active molecules. NANOTECHNOLOGY 2020; 31:405201. [PMID: 32485689 DOI: 10.1088/1361-6528/ab98bc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Field-effect transistors (FETs) based on graphene are promising devices for the direct sensing of a range of analytes in solution. We show here that the presence of redox active molecules in the analyte solution leads to the occurrence of heterogeneous electron transfer with graphene generating a Faradaic current (electron transfer) in a FET configuration resulting in shifts of the Dirac point. Such a shift occurs if the Faradaic current is significantly high, e.g. due to a large graphene area. Furthermore, the redox shift based on the Faradaic current, reminiscent of a doping-like effect, is found to be non-Nernstian and dependent on parameters known from electrode kinetics in potentiodynamic methods, such as the electrode area, the standard potential of the redox probes and the scan rate of the gate voltage modulation. This behavior clearly differentiates this effect from other transduction mechanisms based on electrostatic interactions or molecular charge transfer doping effects, which are usually behind a shift of the Dirac point. These observations suggest that large-area unmodified/pristine graphene in field-effect sensors behaves as a non-polarized electrode in liquid. Strategies for ensuring a polarized interface are discussed.
Collapse
Affiliation(s)
- Tilmann J Neubert
- School of Analytical Sciences Adlershof (SALSA), IRIS Adlershof and Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany. Institut für Silizium-Photovoltaik, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | | | | | | |
Collapse
|
8
|
De-Eknamkul C, Zhang X, Zhao MQ, Huang W, Liu R, Johnson ATC, Cubukcu E. MoS 2-enabled dual-mode optoelectronic biosensor using a water soluble variant of μ-opioid receptor for opioid peptide detection. 2D MATERIALS 2020; 7:014004. [PMID: 32523701 PMCID: PMC7286605 DOI: 10.1088/2053-1583/ab5ae2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Owing to their unique electrical and optical properties, two-dimensional transition metal dichalcogenides have been extensively studied for their potential applications in biosensing. However, simultaneous utilization of both optical and electrical properties has been overlooked, yet it can offer enhanced accuracy and detection versitility. Here, we demonstrate a dual-mode optoelectronic biosensor based on monolayer molybdenum disulfide (MoS2) capable of producing simultaneous electrical and optical readouts of biomolecular signals. On a single platform, the biosensor exhibits a tunable photonic Fano-type optical resonance while also functioning as a field-effect transistor (FET) based on a optically transparent gate electrode. Furthermore, chemical vapor deposition grown MoS2 provides a clean surface for direct immobilization of a water-soluble variant of the μ-opioid receptor (wsMOR), via a nickel ion-mediated linker chemistry. We utilize a synthetic opioid peptide to show the operation of the electronic and optical sensing modes. The responses of both modes exhibit a similar trend with dynamic ranges of four orders of magnitude and detection limits of <1 nM. Our work explores the potential of a versatile multimodal sensing platform enabled by monolayer MoS2, since the integration of electrical and optical sensors on the same chip can offer flexibility in read-out and improve the accuracy in detection of low concentration targets.
Collapse
Affiliation(s)
- Chawina De-Eknamkul
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093-0448, United States of America
| | - Xingwang Zhang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093-0448, United States of America
| | - Meng-Qiang Zhao
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Wenzhuo Huang
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093-0407, United States of America
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - A T Charlie Johnson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Ertugrul Cubukcu
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093-0448, United States of America
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093-0407, United States of America
| |
Collapse
|
9
|
Xi J, Xiao J, Perez-Aguilar JM, Ping J, Johnson ATC, Saven JG, Liu R. Characterization of an engineered water-soluble variant of the full-length human mu opioid receptor. J Biomol Struct Dyn 2019; 38:4364-4370. [PMID: 31588852 DOI: 10.1080/07391102.2019.1677502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A water-soluble variant of the transmembrane domain of the human mu opioid receptor (wsMOR-TM) was previously characterized. This study explored whether the full-length version of the engineered water-soluble receptor, (wsMOR-FL), could be overexpressed in Escherichia coli and if it would retain water solubility, binding capability and thermostability. wsMOR was over-expressed and purified in E. coli BL21(DE3) cells (EMD/Novagen) as we reported previously for the wsMOR-TM. Both native N and C termini were added back to the highly engineered wsMOR-TM. Six His-tag was added in the N terminus for purification purposes. The wsMOR-FL was characterized using atomic force microscope for its monomeric state, circular dichroism for its secondary structure and thermostability. Its binding with naltrexone is also determined. Compared to the native human MOR, wsMOR-FL displays similar helical secondary structure content and comparable affinity (nM) for the antagonist naltrexone. The secondary structure of the receptor remains stable within a wide range of pH (6-9). In contrast to the transmembrane portion, the secondary structure of full-length receptor tolerated a wide range of temperature (10-90 °C). The receptor remains predominantly as a monomer in solution, as directly imaged using atomic force microscopy. This study demonstrated that functional full-length water-soluble variant of human mu receptor can be over-expressed and purified using an E. coli over-expression system. This provides a novel tool for the investigation of structural and functional properties of the human MOR. N- and C-termini strengthened the thermostability of the protein in this specific water soluble variant. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jin Xi
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Jie Xiao
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Jose Manuel Perez-Aguilar
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.,School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), Puebla, Puebla, Mexico
| | - Jinglei Ping
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - A T Charlie Johnson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Lin Z, Wu G, Zhao L, Lai KWC. Carbon Nanomaterial-Based Biosensors: A Review of Design and Applications. IEEE NANOTECHNOLOGY MAGAZINE 2019. [DOI: 10.1109/mnano.2019.2927774] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Abstract
This article will briefly overview our efforts in the engineering of water soluble variants of a G-protein coupled receptor (GPCR) and its novel applications to develop biosensors using such water soluble variants of GPCR. While the technologies using water soluble GPCR are still under development, they offer new tools and strategies to study the function of GPCR, explore potential new compounds for potential clinical usage, and monitor endogenous peptides in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Renyu Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, USA
| | | | | |
Collapse
|