1
|
Jiang X, Tang C, Zhou X, Hou J, Jiang S, Meng L, Zhang Y. Recent progress in Si/Ti 3C 2T x MXene anode materials for lithium-ion batteries. iScience 2024; 27:111217. [PMID: 39555404 PMCID: PMC11565529 DOI: 10.1016/j.isci.2024.111217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Cardiovascular diseases (CVDs) are a major global health issue, causing significant morbidity and mortality worldwide. Early diagnosis and continuous monitoring of physiological signals are crucial for managing cardiovascular diseases, necessitating the development of lightweight and cost-effective wearable devices. These devices should incorporate portable energy storage systems, such as lithium-ion batteries (LIBs). To enhance the durability and consistency of the monitoring systems, there is a need to develop LIBs with high energy density. Silicon-based materials hold great promise for future LIBs anodes due to their high theoretical capacity and cost-efficiency. Despite their potential, silicon-based materials encounter challenges like substantial volume fluctuations and sluggish kinetics. Transition metal carbide, MXene, features a two-dimensional structure, offering advantages in silicon-based anode materials. This review initially presents the potential of silicon-based anodes and then addresses their challenges. Subsequently, the advantages of MXene are systematically reviewed, including unique structure, abundant surface functional groups, excellent electrical conductivity, and excellent ion transport performance. Next, the detailed discussion covers recent advancements in Si/Ti3C2Tx MXene anode materials for LIBs, with a focus on their synthesis methods. Finally, the challenges and future perspectives of synthesizing Si/Ti3C2Tx nanocomposites are examined, aiming to provide a foundational resource for designing advanced materials for high-energy LIBs.
Collapse
Affiliation(s)
- Xinyu Jiang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China
| | - Chaoyang Tang
- Department of Physics, School of Physical and Mathematical Science, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China
| | - Xinchi Zhou
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China
| | - Jiwei Hou
- Department of Physics, School of Physical and Mathematical Science, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China
| | - Shan Jiang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, Zhejiang Province, China
| | - Leichao Meng
- Qinghai Provincial Key Laboratory of Nanomaterials and Technology, School of Physics and Electronic Information Engineering, Qinghai Minzu University, Xi’ning 81007, Qinghai Province, China
| | - Yi Zhang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China
| |
Collapse
|
2
|
Beletskii E, Pinchuk M, Snetov V, Dyachenko A, Volkov A, Savelev E, Romanovski V. Simple Solution Plasma Synthesis of Ni@NiO as High-Performance Anode Material for Lithium-Ion Batteries Application. Chempluschem 2024; 89:e202400427. [PMID: 38926095 DOI: 10.1002/cplu.202400427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Pursuing of straightforward and cost-effective methods for synthesizing high-performance anode materials for lithium-ion batteries is a topic of significant interest. This study elucidates a one-step synthesis approach for a conversion composite using glow discharge in a nickel formate solution, yielding a composite precursor comprising metallic nickel, nickel hydroxide, and basic nickel salts. Subsequent annealing of the precursor facilitated the formation of the Ni@NiO composite, exhibiting exceptional electrochemical properties as anode material in Li-ion batteries: a capacity of approximately 1000 mAh g-1, cyclic stability exceeding 100 cycles, and favorable rate performance (200 mAh g-1 at 10 A g
Collapse
Affiliation(s)
- Evgenii Beletskii
- Institute of Chemistry, St. Petersburg University, St. Petersburg, Universitetskaya Emb.7/9, 199034, Russia
| | - Mikhail Pinchuk
- Institute for Electrophysics and Electrical Power of the Russian Academy of Sciences, Dvortsovaya Naberezhnaya 18, St. Petersburg, 191186, Russia
| | - Vadim Snetov
- Institute for Electrophysics and Electrical Power of the Russian Academy of Sciences, Dvortsovaya Naberezhnaya 18, St. Petersburg, 191186, Russia
| | - Aleksandr Dyachenko
- Institute for Electrophysics and Electrical Power of the Russian Academy of Sciences, Dvortsovaya Naberezhnaya 18, St. Petersburg, 191186, Russia
| | - Alexey Volkov
- Institute of Chemistry, St. Petersburg University, St. Petersburg, Universitetskaya Emb.7/9, 199034, Russia
| | - Egor Savelev
- Institute of Chemistry, St. Petersburg University, St. Petersburg, Universitetskaya Emb.7/9, 199034, Russia
| | - Valentin Romanovski
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
3
|
Sun J, Chen G, Wang B, Li J, Xu G, Wu T, Tang Y, Dong S, Huang J, Cui G. Lithium Hydride in the Solid Electrolyte Interphase of Lithium-Ion Batteries as a Pulverization Accelerator of Silicon. Angew Chem Int Ed Engl 2024; 63:e202406198. [PMID: 38864280 DOI: 10.1002/anie.202406198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/13/2024]
Abstract
As a highly promising next-generation high-specific capacity anode, the industrial-scale utilization of micron silicon has been hindered by the issue of pulverization during cycling. Although numerous studies have demonstrated the effectiveness of regulating the inorganic components of the solid electrolyte interphase (SEI) in improving pulverization, the evolution of most key inorganic components in the SEI and their correlation with silicon failure mechanisms remain ambiguous. This study provides a clear and direct correlation between the lithium hydride (LiH) in the SEI and the degree of micron silicon pulverization in the battery system. The reverse lithiation behavior of LiH on micron silicon during de-lithiation exacerbates the localized stress in silicon particles and contributes to particle pulverization. This work successfully proposes a novel approach to decouple the SEI from electrochemical performance, which can be significant to decipher the evolution of critical SEI components at varied battery anode interfaces and analyze their corresponding failure mechanisms.
Collapse
Affiliation(s)
- Jinran Sun
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Energy Institute, Qingdao, 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
| | - Guodong Chen
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Energy Institute, Qingdao, 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
| | - Bo Wang
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, Hebei, China
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, Hebei, China
| | - Jiedong Li
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Energy Institute, Qingdao, 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
| | - Gaojie Xu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Energy Institute, Qingdao, 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
| | - Tianyuan Wu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Energy Institute, Qingdao, 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
| | - Yongfu Tang
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, Hebei, China
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, Hebei, China
| | - Shanmu Dong
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Energy Institute, Qingdao, 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
| | - Jianyu Huang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, Hebei, China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Energy Institute, Qingdao, 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
| |
Collapse
|
4
|
Liu S, Liu B, Yu Z, Sun Z, Liu M, Luo X, Wang MS, Gao Y, Wang B. Rapid Release of Silicon by Ultrafast Joule Heating Generates Mechanically Stable Shell-Shell Si/C Anodes with Dominant Inward Deformation. ACS NANO 2024; 18:17326-17338. [PMID: 38887893 DOI: 10.1021/acsnano.4c06067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
As a promising anode material, silicon-carbon composites encounter great challenges related to internal stress release and contact between the composites during lithiation. These issues lead to material degradation and concomitantly rapid capacity decline. Here, we report a type of shell-shell silicon-carbon (SS-Si/C) composite, which consists of a carbon shell tightly coated with a silicon shell. The mechanical analysis unveils that the dominant inward expansion of the Si shell is achieved through the synergistic effect of the outer carbon shell and the inner hollow structure. Benefiting from the well-tailored shell-shell structure, the SS-Si/C anode exhibits exceptional performance, boasting a high specific capacity (1690.3 mA h g-1 after 550 cycles at 0.5 A g-1), a high areal capacity (2.05 mA h cm-2 after more than 400 cycles at 0.5 mA cm-2), and an extended cycling life (1055.6 mA h g-1 after 1000 cycles at 8 A g-1), far exceeding commercially available Si/C anodes. Using the well-designed SS-Si/C anode, full cells assembled with LiCoO2 (LCO) or LiFePO4 (LFP) cathodes achieve favorable rate capability and cyclic stability. Notably, at a high rate of 6 C (1 C = 170 and 270 mA g-1 for LFP and LCO, respectively), these full cells deliver high specific capacities of 79.5 mA h g-1 and 64.9 mA h g-1 when using LCO and LFP, respectively, demonstrating the potential of SS-Si/C anodes for practical applications. The straightforward and safe synthesis method in this work enables the rational design of hollow structures with distinct properties.
Collapse
Affiliation(s)
- Shigang Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Bowen Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongliang Yu
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zhefei Sun
- State Key Lab of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen 361005, China
| | - Ming Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinying Luo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Sheng Wang
- State Key Lab of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yang Gao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Liu S, Wang A, Liu Y, Zhou W, Wen H, Zhang H, Sun K, Li S, Zhou J, Wang Y, Jiang J, Li B. Catalytically Active Carbon for Oxygen Reduction Reaction in Energy Conversion: Recent Advances and Future Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308040. [PMID: 38581142 PMCID: PMC11165562 DOI: 10.1002/advs.202308040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Indexed: 04/08/2024]
Abstract
The shortage and unevenness of fossil energy sources are affecting the development and progress of human civilization. The technology of efficiently converting material resources into energy for utilization and storage is attracting the attention of researchers. Environmentally friendly biomass materials are a treasure to drive the development of new-generation energy sources. Electrochemical theory is used to efficiently convert the chemical energy of chemical substances into electrical energy. In recent years, significant progress has been made in the development of green and economical electrocatalysts for oxygen reduction reaction (ORR). Although many reviews have been reported around the application of biomass-derived catalytically active carbon (CAC) catalysts in ORR, these reviews have only selected a single/partial topic (including synthesis and preparation of catalysts from different sources, structural optimization, or performance enhancement methods based on CAC catalysts, and application of biomass-derived CACs) for discussion. There is no review that systematically addresses the latest progress in the synthesis, performance enhancement, and applications related to biomass-derived CAC-based oxygen reduction electrocatalysts synchronously. This review fills the gap by providing a timely and comprehensive review and summary from the following sections: the exposition of the basic catalytic principles of ORR, the summary of the chemical composition and structural properties of various types of biomass, the analysis of traditional and the latest popular biomass-derived CAC synthesis methods and optimization strategies, and the summary of the practical applications of biomass-derived CAC-based oxidative reduction electrocatalysts. This review provides a comprehensive summary of the latest advances to provide research directions and design ideas for the development of catalyst synthesis/optimization and contributes to the industrialization of biomass-derived CAC electrocatalysis and electric energy storage.
Collapse
Affiliation(s)
- Shuling Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Ao Wang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Yanyan Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Wenshu Zhou
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Hao Wen
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Huanhuan Zhang
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Shuqi Li
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Jingjing Zhou
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Yongfeng Wang
- Center for Carbon‐based Electronics and Key Laboratory for the Physics and Chemistry of NanodevicesSchool of ElectronicsPeking UniversityBeijing100871P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Baojun Li
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| |
Collapse
|
6
|
Choi JH, Kumari N, Kumar A, Acharya A, Ahn J, Kim J, Hwang H, Joo T, Kim JK, Lee IS. Stratum-Confined Solid-State Reaction (SC-SSR) toward Colloidal Silicon-Based Hollow Nanostructures for Bioapplications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301190. [PMID: 37096899 DOI: 10.1002/smll.202301190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Silicon nanostructures (SiNSs) can provide multifaceted bioapplications; but preserving their subhundred nm size during high-temperature silica-to-silicon conversion is the major bottleneck. The SC-SSR utilizes an interior metal-silicide stratum space at a predetermined radial distance inside silica nanosphere to guide the magnesiothermic reduction reaction (MTR)-mediated synthesis of hollow and porous SiNSs. In depth mechanistic study explores solid-to-hollow transformation encompassing predefined radial boundary through the participation of metal-silicide species directing the in-situ formed Si-phase accumulation within the narrow stratum. Evolving thin-porous Si-shell remains well protected by the in-situ segregated MgO emerging as a protective cast against the heat-induced deformation and interparticle sintering. Retrieved hydrophilic SiNSs (<100 nm) can be conveniently processed in different biomedia as colloidal solutions and endocytosized inside cells as photoluminescence (PL)-based bioimaging probes. Inside the cell, rattle-like SiNSs encapsulated with Pd nanocrystals can function as biorthogonal nanoreactors to catalyze intracellular synthesis of probe molecules through C-C cross coupling reaction.
Collapse
Affiliation(s)
- Jeong Hun Choi
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Nitee Kumari
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Amit Kumar
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Anubhab Acharya
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Jungsoo Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Jaerim Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Hyeonwoong Hwang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Taiha Joo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Jong Kyu Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - In Su Lee
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
7
|
Young C, Choi W, Kim H, Bae J, Lee JK. Reduction Kinetics of Porous Silicon Synthesis for Lithium Battery Anodes. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
8
|
Yu Q, Liu J, Liang Y, Liu T, Zheng Y, Lai Z, Liu X, Chen J, Zhang Q, Li X. Synthesis of 3D stacked silicon nanosheets via electrochemical reduction of attapulgite in molten salt for high-performance lithium-ion batteries anode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Chen J, Zhong Y, Liu Y, Zhang L, Li M, Han W, Chai Z, Shi W. Electrochemical Behaviour and Chemical Species of Sm(II) in AlCl
3
‐NaCl with Different Lewis Acidity. Chemistry 2022; 28:e202200443. [DOI: 10.1002/chem.202200443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Jiazhuang Chen
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Material Science and Chemical Engineering Harbin Engineering University Harbin 150001 China
- Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
| | - Yuke Zhong
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Yalan Liu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Lei Zhang
- Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
| | - Mei Li
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Material Science and Chemical Engineering Harbin Engineering University Harbin 150001 China
| | - Wei Han
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Material Science and Chemical Engineering Harbin Engineering University Harbin 150001 China
| | - Zhifang Chai
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
10
|
Zhao M, Yang S, Dong W. Low Temperature Aluminothermic Reduction of Natural Sepiolite to High-Performance Si Nanofibers for Li-Ion Batteries. Front Chem 2022; 10:932650. [PMID: 35832460 PMCID: PMC9271742 DOI: 10.3389/fchem.2022.932650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Nanostructure silicon is one of the most promising anode materials for the next-generation lithium-ion battery, but the complicated synthesis process and high cost limit its large-scale commercial application. Herein, a simple and low-cost method was proposed to prepare silicon nanofibers (SNF) using natural sepiolite as a template via a low-temperature aluminum reduction process. The low temperature of 260°C during the reduction process not only reduced the production cost but also avoided the destruction of the natural sepiolite structure caused by the high temperature above 600°C in the traditional magnesium thermal reduction process, leading to a more complete nanofiber structure in the final product. For the first time, the important role of Mg-O octahedral structure in the maintenance of nanofiber structure during the process of low-temperature aluminothermic reduction was verified by experiments. When used as an anode for lithium-ion batteries, SNF yield a high reversible capacity of 2005.4 mAh g−1 at 0.5 A g−1 after 50 cycles and 1017.6 mAh g−1 at 2 A g−1 after 200 cycles, remarkably outperforming commercial Si material. With a low-cost precursor and facile approach, this work provides a new strategy for the synthesis of a commercial high-capacity Si anode.
Collapse
Affiliation(s)
- Mingyuan Zhao
- College of Mines, Liaoning Technical University, Fuxin, China
| | - Shaobin Yang
- College of Materials Science & Engineering, Liaoning Technical University, Fuxin, China
- *Correspondence: Shaobin Yang,
| | - Wei Dong
- College of Materials Science & Engineering, Liaoning Technical University, Fuxin, China
| |
Collapse
|
11
|
Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022; 122:12748-12863. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials (NMs) with unique structures and compositions can give rise to exotic physicochemical properties and applications. Despite the advancement in solution-based methods, scalable access to a wide range of crystal phases and intricate compositions is still challenging. Solid-state reaction (SSR) syntheses have high potential owing to their flexibility toward multielemental phases under feasibly high temperatures and solvent-free conditions as well as their scalability and simplicity. Controlling the nanoscale features through SSRs demands a strategic nanospace-confinement approach due to the risk of heat-induced reshaping and sintering. Here, we describe advanced SSR strategies for NM synthesis, focusing on mechanistic insights, novel nanoscale phenomena, and underlying principles using a series of examples under different categories. After introducing the history of classical SSRs, key theories, and definitions central to the topic, we categorize various modern SSR strategies based on the surrounding solid-state media used for nanostructure growth, conversion, and migration under nanospace or dimensional confinement. This comprehensive review will advance the quest for new materials design, synthesis, and applications.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonock Kim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Santosh S Patil
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sampathkumar Jeevanandham
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
12
|
Wu H, Gao P, Mu J, Miao Z, Zhou P, Zhou T, Zhou J. Matryoshka-type carbon-stabilized hollow Si spheres as an advanced anode material for lithium-ion batteries. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Zhang F, Zhu W, Li T, Yuan Y, Yin J, Jiang J, Yang L. Advances of Synthesis Methods for Porous Silicon-Based Anode Materials. Front Chem 2022; 10:889563. [PMID: 35548675 PMCID: PMC9081600 DOI: 10.3389/fchem.2022.889563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Silicon (Si)-based anode materials have been the promising candidates to replace commercial graphite, however, there are challenges in the practical applications of Si-based anode materials, including large volume expansion during Li+ insertion/deinsertion and low intrinsic conductivity. To address these problems existed for applications, nanostructured silicon materials, especially Si-based materials with three-dimensional (3D) porous structures have received extensive attention due to their unique advantages in accommodating volume expansion, transportation of lithium-ions, and convenient processing. In this review, we mainly summarize different synthesis methods of porous Si-based materials, including template-etching methods and self-assembly methods. Analysis of the strengths and shortages of the different methods is also provided. The morphology evolution and electrochemical effects of the porous structures on Si-based anodes of different methods are highlighted.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, China
| | - Wenqiang Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, China
| | - Tingting Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, China
| | - Yuan Yuan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, China
| | - Jiang Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, China
- *Correspondence: Jiang Yin, ; Lishan Yang,
| | - Jianhong Jiang
- Hunan Engineering Research Center for Water Treatment Process and Equipment, China Machinery International Engineering Design & Research Institute Co., Ltd., Changsha, China
| | - Lishan Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, China
- *Correspondence: Jiang Yin, ; Lishan Yang,
| |
Collapse
|
14
|
One-Dimensional Nanoscale Si/Co Based on Layered Double Hydroxides towards Electrochemical Supercapacitor Electrodes. NANOMATERIALS 2022; 12:nano12091404. [PMID: 35564113 PMCID: PMC9101559 DOI: 10.3390/nano12091404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022]
Abstract
It is well known that layered double hydroxides (LDHs) are two-dimensional (2D) layered compounds. However, we modified these 2D layered compounds to become one-dimensional (1D) nanostructures destined for high-performance supercapacitors applications. In this direction, silicon was inserted inside the nanolayers of Co-LDHs producing nanofibers of Si/Co LDHs through the intercalation of cyanate anions as pillars for building nanolayered structures. Additionally, nanoparticles were observed by controlling the preparation conditions and the silicon percentage. Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and thermal analyses have been used to characterize the nanolayered structures of Si/Co LDHs. The electrochemical characterization was performed by cyclic voltammetry and galvanic charge–discharge technique in 2M KOH electrolyte solution using three-electrode cell system. The calculated specific capacitance results indicated that the change of morphology from nanoparticles or plates to nanofibers had a positive effect for improving the performance of specific capacitance of Si/Co LDHs. The specific capacitance enhanced to be 621.5 F g−1 in the case of the nanofiber of Si/Co LDHs. Similarly, the excellent cyclic stability (84.5%) was observed for the nanofiber. These results were explained through the attribute of the nanofibrous morphology and synergistic effects between the electric double layer capacitive character of the silicon and the pseudo capacitance nature of the cobalt. The high capacitance of ternary Si/Co/cyanate LDHs nanocomposites was suggested to be used as active electrode materials for high-performance supercapacitors applications.
Collapse
|
15
|
Extraction and Synthesis of Silicon Nanoparticles (SiNPs) from Sugarcane Bagasse Ash: A Mini-Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This current study reviews the utilization of the traditional extraction methods and latest findings in extraction of silica from agricultural wastes, in particular, sugarcane bagasse, using inorganic acids to produce nano-silicon. The three key processes discussed in detail include electrochemical, ball milling, and sol–gel processes. The sugarcane bagasse has been identified as the cheapest source of producing silica from the potential raw material for the preparation of nano-silicon. The acid-base extraction and precipitation methodology involves the use of bases like sodium hydroxide (NaOH) and potassium hydroxide (KOH), and acids such as hydrofluoric acid (HF), sulphuric acid (H2SO4), nitric acid (HNO3), and hydrochloric acid (HCl) for the treatment of the ash. Sugarcane bagasse has notably emerged as an excellent and sustainable source of both tailored silica particles and bioenergy production. The ability to manipulate the engineered silica particles at the nano-level from sugarcane bagasse-based silica is explained in detail. Silica is a significant raw material with various industrial applications, with much research underway to extract it efficiently from industrial agro-waste, such as sugarcane bagasse. The production of highly pure silicon nanoparticles from sugarcane bagasse ash will serve as an important synthetic route in lowering the manufacturing costs and providing a low-cost polycrystalline silicon semiconductor for niche application in thin film solar technology.
Collapse
|
16
|
Xu W, Tang C, Huang N, Du A, Wu M, Zhang J, Zhang H. Adina Rubella‐Like Microsized SiO@N‐Doped Carbon Grafted with N‐Doped Carbon Nanotubes as Anodes for High‐Performance Lithium Storage. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202100105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Weilan Xu
- Institute of Nanochemistry and Nanobiology Shanghai University Shanghai 200444 China
| | - Cheng Tang
- School of Chemistry Physics and Mechanical Engineering Science and Engineering Faculty Queensland University of Technology Brisbane QLD 4001 Australia
| | - Na Huang
- Institute of Nanochemistry and Nanobiology Shanghai University Shanghai 200444 China
| | - Aijun Du
- School of Chemistry Physics and Mechanical Engineering Science and Engineering Faculty Queensland University of Technology Brisbane QLD 4001 Australia
| | - Minghong Wu
- School of Environmental and Chemical Engineering Shanghai University Shanghai 200444 China
| | - Jiujun Zhang
- Institute for Sustainable Energy College of Sciences Shanghai University Shanghai 200444 China
| | - Haijiao Zhang
- Institute of Nanochemistry and Nanobiology Shanghai University Shanghai 200444 China
| |
Collapse
|
17
|
Chen W, Kuang S, Wei H, Wu P, Tang T, Li H, Liang Y, Yu X, Yu J. Dual carbon and void space confined SiO x/C@void@Si/C yolk-shell nanospheres with high-rate performances and outstanding cyclability for lithium-ion batteries anodes. J Colloid Interface Sci 2021; 610:583-591. [PMID: 34903355 DOI: 10.1016/j.jcis.2021.11.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022]
Abstract
Silicon-based anode materials with high theoretical capacity have great challenges of enormous volume expansion and poor electronic conductivity. Herein, a novel dual carbon confined SiOx/C@void@Si/C yolk-shell monodisperse nanosphere with void space have been fabricated through hydrothermal reaction, carbonization, and in-situ low-temperature aluminothermic reduction. Furthermore, the O/Si ratio and void space between SiOx/C core and Si/C shell can be effectively tuned by the length of aluminothermic reduction time. The SiOx/C core plays a role of maintaining the spherical structure and the void space can accommodate the volume expansion of Si. Moreover, the inner and outer carbons not only alleviate volume variation of SiOx and Si but also enhance the electrical conductivity of composites. Benefiting from the synergy of the double carbon and void space, the optimized VSC-14 anode affords prominent cycle stability with reversible capacity of 1094 mAh g-1 after 550 cycles at 200 mA g-1. By pre-lithiation treatment, the VSC-14 achieves an initial Coulombic efficiency of 93.27% at 200 mA g-1 and a reversible capacity of 348 mAh g-1 at 5 A g-1 after 4000 cycles. Furthermore, the pouch cell using VSC-14 anode and LiFePO4 cathode delivers a reversible capacity of 138 mAh g-1 at 0.2C. We hope this strategy can provide a scientific method to synthesis yolk-shell Si-based materials.
Collapse
Affiliation(s)
- Wenyan Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong 510642. China
| | - Shaojie Kuang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong 510642. China
| | - Hongshan Wei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong 510642. China
| | - Peizhen Wu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong 510642. China
| | - Tang Tang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong 510642. China
| | - Hailin Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong 510642. China
| | - Yeru Liang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong 510642. China
| | - Xiaoyuan Yu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong 510642. China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Jingfang Yu
- Chemistry research laboratory, department of chemistry, university of Oxford, 12 Mansfield road, Oxford, OX1 3TA,UK
| |
Collapse
|
18
|
Zhu G, Chao D, Xu W, Wu M, Zhang H. Microscale Silicon-Based Anodes: Fundamental Understanding and Industrial Prospects for Practical High-Energy Lithium-Ion Batteries. ACS NANO 2021; 15:15567-15593. [PMID: 34569781 DOI: 10.1021/acsnano.1c05898] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To accelerate the commercial implementation of high-energy batteries, recent research thrusts have turned to the practicality of Si-based electrodes. Although numerous nanostructured Si-based materials with exceptional performance have been reported in the past 20 years, the practical development of high-energy Si-based batteries has been beset by the bias between industrial application with gravimetrical energy shortages and scientific research with volumetric limits. In this context, the microscale design of Si-based anodes with densified microstructure has been deemed as an impactful solution to tackle these critical issues. However, their large-scale application is plagued by inadequate cycling stability. In this review, we present the challenges in Si-based materials design and draw a realistic picture regarding practical electrode engineering. Critical appraisals of recent advances in microscale design of stable Si-based materials are presented, including interfacial tailoring of Si microscale electrode, surface modification of SiOx microscale electrode, and structural engineering of hierarchical microscale electrode. Thereafter, other practical metrics beyond active material are also explored, such as robust binder design, electrolyte exploration, prelithiation technology, and thick-electrode engineering. Finally, we provide a roadmap starting with material design and ending with the remaining challenges and integrated improvement strategies toward Si-based full cells.
Collapse
Affiliation(s)
- Guanjia Zhu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, People's Republic of China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Weilan Xu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, People's Republic of China
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Haijiao Zhang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
19
|
Light-assisted synthesis of copper/cuprous oxide reinforced nanoporous silicon microspheres with boosted anode performance for lithium-ion batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Nulu A, Nulu V, Moon JS, Sohn KY. Unified NCNT@rGO bounded porous silicon composite as an anode material for Lithium-ion batteries. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0813-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Wang F, Liu W, Ma Y, Chen D, Li P, Yin H, Li W, Wang D. Fabricating Silicon Nanotubes by Electrochemical Exfoliation and Reduction of Layer-Structured CaSiO 3 in Molten Salt. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30668-30677. [PMID: 34165965 DOI: 10.1021/acsami.1c07031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Silicon nanotubes (SNTs) are very attractive in the fields of energy, catalysis, and sensors, but a facile template- and/or catalyst-free preparation method is still absent. Herein, we study a controllable and cost-effective approach for preparing SNTs by electrochemically reducing layer-structured calcium silicate (CaSiO3) in molten CaCl2/NaCl without any template and catalyst. The underlying mechanism of the SNT formation is uncovered: the layer-structured CaSiO3 is first electrochemically exfoliated into SiOx (0 < x < 2) sheets while releasing CaO into the molten salts, and then the SiOx sheets are electrochemically reduced and simultaneously crimped into SNTs. The diameter (120-312 nm) and wall thickness (∼40 nm) of the SNTs can be tailorable by manipulating the reduction potential between -1.28 and -1.48 V (vs Ag/AgCl). Lastly, the electrolytic SNTs show a high lithium storage capacity of 3737 mAh g-1 at 0.2 A g-1, a high rate capability of 1371 mA h g-1 at 10 A g-1, and stable cycling with a capacity of 974 mAh g-1 after 600 cycles at 1 A g-1. Overall, the template- and catalyst-free electrochemical method provides a straightforward and facile way to prepare SNTs with a brand-new mechanism that can be applied to other tubular structure materials.
Collapse
Affiliation(s)
- Fan Wang
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430072, P. R. China
| | - Wei Liu
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430072, P. R. China
| | - Yongsong Ma
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430072, P. R. China
| | - Di Chen
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430072, P. R. China
| | - Peng Li
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430072, P. R. China
| | - Huayi Yin
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral of Ministry of Education, School of Metallurgy, Northeastern University, Shenyang 110819, P. R. China
| | - Wei Li
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430072, P. R. China
| | - Dihua Wang
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
22
|
Ge M, Cao C, Biesold GM, Sewell CD, Hao SM, Huang J, Zhang W, Lai Y, Lin Z. Recent Advances in Silicon-Based Electrodes: From Fundamental Research toward Practical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004577. [PMID: 33686697 DOI: 10.1002/adma.202004577] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/17/2020] [Indexed: 06/12/2023]
Abstract
The increasing demand for higher-energy-density batteries driven by advancements in electric vehicles, hybrid electric vehicles, and portable electronic devices necessitates the development of alternative anode materials with a specific capacity beyond that of traditional graphite anodes. Here, the state-of-the-art developments made in the rational design of Si-based electrodes and their progression toward practical application are presented. First, a comprehensive overview of fundamental electrochemistry and selected critical challenges is given, including their large volume expansion, unstable solid electrolyte interface (SEI) growth, low initial Coulombic efficiency, low areal capacity, and safety issues. Second, the principles of potential solutions including nanoarchitectured construction, surface/interface engineering, novel binder and electrolyte design, and designing the whole electrode for stability are discussed in detail. Third, applications for Si-based anodes beyond LIBs are highlighted, specifically noting their promise in configurations of Li-S batteries and all-solid-state batteries. Fourth, the electrochemical reaction process, structural evolution, and degradation mechanisms are systematically investigated by advanced in situ and operando characterizations. Finally, the future trends and perspectives with an emphasis on commercialization of Si-based electrodes are provided. Si-based anode materials will be key in helping keep up with the demands for higher energy density in the coming decades.
Collapse
Affiliation(s)
- Mingzheng Ge
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile & Clothing, Nantong University, Nantong, 226019, P. R. China
| | - Chunyan Cao
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile & Clothing, Nantong University, Nantong, 226019, P. R. China
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Christopher D Sewell
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shu-Meng Hao
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jianying Huang
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wei Zhang
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile & Clothing, Nantong University, Nantong, 226019, P. R. China
| | - Yuekun Lai
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
23
|
Huang X, Guo X, Ding Y, Wei R, Mao S, Zhu Y, Bao Z. Amorphous silicon from low-temperature reduction of silica in the molten salts and its lithium-storage performance. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Hu J, Wang Q, Fu L, Rajagopalan R, Cui Y, Chen H, Yuan H, Tang Y, Wang H. Titanium Monoxide-Stabilized Silicon Nanoparticles with a Litchi-like Structure as an Advanced Anode for Li-ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48467-48475. [PMID: 33052650 DOI: 10.1021/acsami.0c10418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silicon (Si) has been considered as the most potential anode material for next-generation high-energy density lithium-ion batteries (LIBs) because of its extremely high theoretical capacity. However, the performance deterioration caused by volume change and low electrical conductivity of active Si particles greatly limit its commercial use. Here, we designed a nonstoichiometric TiOx-coated Si anode with a litchi-like structure, in which Si-Ti and Si-O dual bonds are expected to form between the Si core and TiOx shell. This unique structure plays a major role in preventing the volume expansion and improving the electrical conductivity of the Si anode. The as-prepared TiOx-coated Si anode could exhibit excellent cycling stability after 1000 cycles at 1000 mA g-1 with a relatively small capacity decay rate of ∼0.04% per cycle, which can be comparable to most of the modified Si anodes in references. This strategy of surface regulating on the Si anode could be extended to other electrodes with large volume expansion during cycling in LIBs for achieving competitive electrochemical properties.
Collapse
Affiliation(s)
- Jing Hu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Qi Wang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Liang Fu
- Collaborative Innovation Center for Green Development in Wuling Mountain Areas, Yangtze Normal University, Fuling 408100, P. R. China
| | - Ranjusha Rajagopalan
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yan Cui
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hong Chen
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, Guangdong, P. R. China
| | - Hongyan Yuan
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yougen Tang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Haiyan Wang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
25
|
Li X, Zheng B, Liu L, Zhang G, Liu Z, Luo W. Long-Term Stable Hollowed Silicon for Li-Ion Batteries Based on an Improved Low-Temperature Molten Salt Strategy. ACS OMEGA 2020; 5:27368-27373. [PMID: 33134699 PMCID: PMC7594121 DOI: 10.1021/acsomega.0c03693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Nanostructured hollow silicon has attracted tremendous attention as high-performance anode materials in Li-ion battery applications. However, the large-scale production of pure hollowed silicon with long cycling stability is still a great challenge. Here, we report an improved low-temperature molten salt strategy to synthesize nanosized hollowed silicon with a stable structure on a large scale. As an anode material for rechargeable lithium-ion batteries, it exhibits a high capacity, excellent long cycling, and steady rate performance at different current densities. Especially, a high reversible capacity of 2028.6 mA h g-1 at 0.5 A g-1 after 150 cycles, 994.3 mA h g-1 at 3 A g-1 after 500 cycles, and 538.8 mAh g-1 at 5 A g-1 after 1200 cycles could be obtained. This kind of nanosized hollowed silicon can be applied as a basic anode material in silicon-based composites for long-term stable Li-ion battery applications.
Collapse
Affiliation(s)
- Xinxi Li
- School
of Materials and Energy, Guangdong University
of Technology, Guangzhou 510006, P.R. China
| | - Binghe Zheng
- School
of Materials and Energy, Guangdong University
of Technology, Guangzhou 510006, P.R. China
| | - Long Liu
- School
of Materials and Energy, Guangdong University
of Technology, Guangzhou 510006, P.R. China
| | - Guoqing Zhang
- School
of Materials and Energy, Guangdong University
of Technology, Guangzhou 510006, P.R. China
| | - Zhongyun Liu
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, Georgia 30332, United States
| | - Wen Luo
- School
of Materials and Energy, Guangdong University
of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|
26
|
Nulu A, Nulu V, Sohn KY. Si/SiO
x
Nanoparticles Embedded in a Conductive and Durable Carbon Nanoflake Matrix as an Efficient Anode for Lithium‐Ion Batteries. ChemElectroChem 2020. [DOI: 10.1002/celc.202001130] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Arunakumari Nulu
- Department of Nanoscience and Engineering Center for Nano Manufacturing Inje University 197 Inje-ro, Gimhae Gyeongnam-do 50834 Korea
| | - Venugopal Nulu
- Department of Nanoscience and Engineering Center for Nano Manufacturing Inje University 197 Inje-ro, Gimhae Gyeongnam-do 50834 Korea
| | - Keun Y. Sohn
- Department of Nanoscience and Engineering Center for Nano Manufacturing Inje University 197 Inje-ro, Gimhae Gyeongnam-do 50834 Korea
| |
Collapse
|
27
|
Weng W, Yang J, Zhou J, Gu D, Xiao W. Template-Free Electrochemical Formation of Silicon Nanotubes from Silica. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001492. [PMID: 32995133 PMCID: PMC7507395 DOI: 10.1002/advs.202001492] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 05/30/2023]
Abstract
Silicon, with its elaborate microstructure, plays important roles in energy materials. In operando engineering of microstructure during extraction is an ideal protocol to develop advanced Si-based materials. A template-free electrochemical preparation of silicon nanotubes (Si-NT) is herein achieved by co-electrolysis of SiO2 and AgCl in molten NaCl-CaCl2 at 850 °C. The in situ electrodeposited Ag facilitates the generation of a liquid Ag-Si intermediate, triggering a liquid-solid mechanism to direct the growth of Si-NT. An automatic separation of Ag from Si then occurs in the following cooling process, resulting in Ag deposits on the Ni current collector and recycling of Ag. Such a facile and smart preparation of Si-NT from affordable silica guarantees an enhanced current efficiency of 74%, a decreased energy consumption of 12.1 kW h kgSi -1, and enhanced lithium-storage capability of the electrolytic Si-NT. An in situ coating of Ag over the Si-NT can also be fulfilled by simply introducing soluble AgCl in the melts. The present study provides a template-free preparation and an in situ surface modification of Si-NT.
Collapse
Affiliation(s)
- Wei Weng
- College of Chemistry and Molecular SciencesHubei Key Laboratory of Electrochemical Power SourcesWuhan UniversityWuhan430072P. R. China
- School of Resource and Environmental SciencesHubei International Scientific and Technological Cooperation Base of Sustainable Resource and EnergyWuhan UniversityWuhan430072P. R. China
| | - Jiarong Yang
- School of Resource and Environmental SciencesHubei International Scientific and Technological Cooperation Base of Sustainable Resource and EnergyWuhan UniversityWuhan430072P. R. China
| | - Jing Zhou
- The Institute of Advanced StudiesWuhan UniversityWuhan430072P. R. China
| | - Dong Gu
- The Institute of Advanced StudiesWuhan UniversityWuhan430072P. R. China
| | - Wei Xiao
- College of Chemistry and Molecular SciencesHubei Key Laboratory of Electrochemical Power SourcesWuhan UniversityWuhan430072P. R. China
| |
Collapse
|
28
|
Nzabahimana J, Liu Z, Guo S, Wang L, Hu X. Top-Down Synthesis of Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries: Mechanical Milling and Etching. CHEMSUSCHEM 2020; 13:1923-1946. [PMID: 31912988 DOI: 10.1002/cssc.201903155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Lithium-ion batteries (LIBs) providing high energy and power densities as well as long cycle life are in high demand for various applications. Benefitting from its high theoretical specific charge capacity of ≈4200 mAh g-1 and natural abundance, Si is nowadays considered as one of the most promising anode candidates for high-energy-density LIBs. However, its huge volume change during cycling prevents its widespread commercialization. Si/C-based electrodes, fabricated through top-down mechanical-milling technique and etching, could be particularly promising since they can adequately accommodate the Si volume expansion, buffer the mechanical stress, and ameliorate the interface/surface stability. In this Review, the current progresses in the top-down synthesis of Si/C anode materials for LIBs from inexpensive Si sources via the combination of low-cost, simple, scalable, and efficient ball-milling and etching processes are summarized. Various Si precursors as well as etching routes are highlighted in this Review. This review would be a guide for fabricating high-performance Si-based anodes.
Collapse
Affiliation(s)
- Joseph Nzabahimana
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Zhifang Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Songtao Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Libin Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Xianluo Hu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| |
Collapse
|
29
|
Wei Q, Chen YM, Hong XJ, Song CL, Yang Y, Si LP, Zhang M, Cai YP. Saclike-silicon nanoparticles anchored in ZIF-8 derived spongy matrix as high-performance anode for lithium-ion batteries. J Colloid Interface Sci 2020; 565:315-325. [PMID: 31978794 DOI: 10.1016/j.jcis.2020.01.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/15/2020] [Indexed: 11/24/2022]
Abstract
The carbon layer with good electrical conductivity and outstanding mechanical stability are essential in designing high-performance silicon/carbon (Si/C) anodes to replace the commercial graphite in lithium-ion batteries (LIBs). In terms of solving the two inherent defects of poor conductivity and big volume change of silicon, we fabricate a spongy carbon matrix derived from ZIF-8 to anchor saclike silicon synthesized by molten salt magnesiothermic reduction method. This spongy matrix can anchor saclike silicon to provide a stable reaction interface and support fast electronic transmission. At the same time, buffer space in saclike Si nanoparticles and spongy matrix can synergistically accommodate the volume change of Si to maintain the integrity of the electrode. The resulting composite with a high Si content of 77.58% exhibits good capacities of 1448 mAh g-1 at 2 A g-1 and 848 mAh g-1 at 4 A g-1 after 500 cycles. High initial coulombic efficiency of 84% at 0.2 A g-1 is also exhibited in the first three activation cycles. Therefore, this novel multifunctional N-doped spongy matrix can supply multifaceted benefits in accommodation of volumetric variation, enhancement of conductivity, and integrity of structure during cycling.
Collapse
Affiliation(s)
- Qin Wei
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, and Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou 510006, PR China
| | - Yu-Mei Chen
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, and Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou 510006, PR China
| | - Xu-Jia Hong
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, and Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou 510006, PR China
| | - Chun-Lei Song
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, and Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou 510006, PR China
| | - Yan Yang
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, and Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou 510006, PR China
| | - Li-Ping Si
- School of Materials Science and Energy Engineering, Foshan University, 528000, PR China
| | - Min Zhang
- School of Materials Science and Energy Engineering, Foshan University, 528000, PR China.
| | - Yue-Peng Cai
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, and Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
30
|
Zhu G, Jiang W, Yang J. Engineering Carbon Distribution in Silicon-Based Anodes at Multiple Scales. Chemistry 2020; 26:1488-1496. [PMID: 31603568 DOI: 10.1002/chem.201903454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/30/2019] [Indexed: 11/07/2022]
Abstract
The successful commercialization of promising silicon-based anode materials has been hampered by their poor cycling stability caused by the huge volume change. Integration of the carbon matrix with silicon-based (C/Si-based) anode materials has been demonstrated to be a powerful solution to achieve satisfactory electrochemical performance. This minireview aims to outline recent developments on C/Si-based composites, with the emphasis on the importance of carbon distribution at multiple scales. In addition, the forms of the carbon framework (carbon sources and doping of heteroatoms) have been summarized. Particularly, a novel C/Si-based hybrid with carbon distributed at the atomic scale has been highlighted.
Collapse
Affiliation(s)
- Guanjia Zhu
- State Key Laboratory for Modification of, Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, P. R. China
| | - Wan Jiang
- State Key Laboratory for Modification of, Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, P. R. China.,School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, 333001, Jiangxi, P. R. China
| | - Jianping Yang
- State Key Laboratory for Modification of, Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
31
|
Nazir A, Le HTT, Min CW, Kasbe A, Kim J, Jin CS, Park CJ. Coupling of a conductive Ni 3(2,3,6,7,10,11-hexaiminotriphenylene) 2 metal-organic framework with silicon nanoparticles for use in high-capacity lithium-ion batteries. NANOSCALE 2020; 12:1629-1642. [PMID: 31872835 DOI: 10.1039/c9nr08038d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A composite of Si nanoparticles (SiNPs) and a two-dimensional (2D) porous conductive Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2) metal-organic framework (MOF), namely Si/Ni3(HITP)2, is suggested as a potential anode material for Li-ion batteries (LIBs). The Ni3(HITP)2 MOF with a carbon backbone and evenly dispersed Ni and N heteroatoms showed high potential for mitigating the volume expansion of Si and enhancing the electronic conductivity as well as Li storage ability of the Si/Ni3(HITP)2 anode. The Si/Ni3(HITP)2 electrode delivered a reversible capacity of 2657 mA h g-1 after 100 cycles of discharge-charge at a rate of 0.1C. Moreover, at a high rate of 1C, the Si/Ni3(HITP)2 electrode maintained a reversible capacity of 876 mA h g-1 even after 1000 cycles. The different rate capacities were 1655, 1129, and 721 mA h g-1 at 5C, 10C and 20C, respectively. The excellent electrochemical performance of the Si/Ni3(HITP)2 electrode in terms of improved cycle life and rate capability results from the open channels of the MOF network, which are beneficial for the movement of Li+ ions through the electrolyte to the electrode and the mitigation of stress by volume expansion of Si. We believe that the coupling of conductive Ni3(HITP)2 with Si is a potential way to make an anode for high-performance LIBs.
Collapse
Affiliation(s)
- Aqsa Nazir
- Department of Materials Science and Engineering, Chonnam National University, 77, Yongbongro, Bukgu, Gwangju 61186, South Korea.
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhu G, Jiang M, Ma Y, Luo W, Wang L, Jiang W, Yang J. A carbon network strategy to synthesize silicon–carbon anodes toward regulated morphologies during molten salt reduction. CrystEngComm 2020. [DOI: 10.1039/d0ce00751j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a carbon network strategy was proposed to prepare Si/SiOx/C anodes with regulated morphologies during molten salt reduction.
Collapse
Affiliation(s)
- Guanjia Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| | - Miaomiao Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| | - Yuanyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| |
Collapse
|
33
|
Hollow core-shell structured Si@NiAl-LDH composite as high-performance anode material in lithium-ion batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135331] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Zhao K, Cheng L, Ye F, Cheng S, Cui X. Preparation and Performance of Si 3N 4 Hollow Microspheres by the Template Method and Carbothermal Reduction Nitridation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39054-39061. [PMID: 31564095 DOI: 10.1021/acsami.9b11336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Silicon nitride (Si3N4) hollow microspheres with smaller particle size and narrower distribution can be used to prepare closed-cell ceramics as the pore-forming agent to improve heat insulation performance and wave-transparent performance of porous Si3N4 ceramics. In this work, Si3N4 hollow microspheres with a diameter of about 1 μm and a wall thickness of approximately 150 nm were prepared by using the template method combined with the carbothermal reduction nitridation method. The optimum preparation temperature of the Si3N4 hollow microspheres is 1450 °C. The morphology, microstructure, and phase composition of the prepared Si3N4 hollow microspheres were characterized. The formation mechanism of the Si3N4 hollow microspheres was discussed. The dielectric properties of Si3N4 hollow microspheres were measured using the waveguide method at 8.2-12.4 GHz. The results show that the wave-transparent performance of the Si3N4 hollow microspheres is similar to those of α-Si3N4 particles. It can be used as the pore-forming agent or matrix for preparing lightweight, heat-insulating, wave-transparent, and high-strength porous Si3N4 ceramics.
Collapse
Affiliation(s)
- Kai Zhao
- Science and Technology on Thermostructural Composite Materials Laboratory , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Laifei Cheng
- Science and Technology on Thermostructural Composite Materials Laboratory , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Fang Ye
- Science and Technology on Thermostructural Composite Materials Laboratory , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Shuo Cheng
- Science and Technology on Thermostructural Composite Materials Laboratory , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Xuefeng Cui
- Science and Technology on Thermostructural Composite Materials Laboratory , Northwestern Polytechnical University , Xi'an 710072 , China
| |
Collapse
|
35
|
Huang X, Cen D, Wei R, Fan H, Bao Z. Synthesis of Porous Si/C Composite Nanosheets from Vermiculite with a Hierarchical Structure as a High-Performance Anode for Lithium-Ion Battery. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26854-26862. [PMID: 31310092 DOI: 10.1021/acsami.9b06976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Silicon nanosheets are fascinating anode materials for lithium-ion batteries because of their high specific capacities, structural stability, and fast kinetics in alloying/dealloying with Li. The nanosheets can be synthesized through chemical vapor deposition (CVD), topochemical reaction, and templating method. After coating with a carbon nanolayer, they exhibit enhanced electrochemical performance. However, it is challenging to synthesize ultrathin carbon-coated silicon nanosheets. In this work, porous silicon/carbon (pSi/C) composite nanosheets are synthesized by reducing the carbon-coated expanded vermiculite with metallic Al in the molten salts. The as-prepared pSi/C nanosheets retain the layered nanostructure of vermiculite, with a thickness of less than 50 nm. The carbon nanolayer serves as the diffusion barrier and mechanical support for the growth of mesoporous silicon nanosheets. The anode of pSi/C nanosheets achieves remarkable electrochemical performance, exhibiting a reversible capacity of 1837 mA h g-1 at 4 A g-1 and retaining 71.5% of the initial capacity after 500 cycles. The process can be extended to the synthesis of the pSi/C composite nanotube by using other carbon-coated silicate templates such as halloysite.
Collapse
Affiliation(s)
- Xi Huang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Dingcheng Cen
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Run Wei
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Hualin Fan
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Zhihao Bao
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering , Tongji University , Shanghai 200092 , China
| |
Collapse
|
36
|
Zhang J, Fan S, Wang H, Qian J, Yang H, Ai X, Liu J. Surface-Bound Silicon Nanoparticles with a Planar-Oriented N-Type Polymer for Cycle-Stable Li-Ion Battery Anode. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13251-13256. [PMID: 30874420 DOI: 10.1021/acsami.9b00939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Silicon is now well-recognized to be a promising alternative anode for advanced lithium-ion batteries because of its highest capacity available today; however, its insufficiently high Coulombic efficiency upon cycling remains a major challenge for practical application. To overcome this challenge, we have developed a facile mechanochemical method to synthesize a core-shell-structured Si/polyphenylene composite (Si/PPP) with a n-type conductive PPP layer tightly bonded in a planar orientation to the surfaces of Si nanocores. Because of its compactness and flexibility, the outer PPP layer can protect the Si core from contacting the electrolyte and maintaining the structural stability of electrode/electrolyte interface during cycles. As a result, the Si/PPP anode demonstrated a high reversible capacity of ∼2387 mAh g-1, a stable cycleability with 88.5% capacity retention over 500 cycles, and, particularly, a high Coulombic efficiency of 99.7% upon extended cycling, offering a new insight for future development of high-capacity and cycle-stable Si anode.
Collapse
Affiliation(s)
- Jingmin Zhang
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry & Molecule, Science , Wuhan University , Wuhan 430072 , China
| | - Sijia Fan
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry & Molecule, Science , Wuhan University , Wuhan 430072 , China
| | - Hui Wang
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry & Molecule, Science , Wuhan University , Wuhan 430072 , China
| | - Jiangfeng Qian
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry & Molecule, Science , Wuhan University , Wuhan 430072 , China
| | - Hanxi Yang
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry & Molecule, Science , Wuhan University , Wuhan 430072 , China
| | - Xinping Ai
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry & Molecule, Science , Wuhan University , Wuhan 430072 , China
| | - Jincheng Liu
- Research Institute , EVE Battery Corporation Limited , Huizhou 516006 , China
| |
Collapse
|
37
|
Weng W, Zeng C, Xiao W. In Situ Pyrolysis Concerted Formation of Si/C Hybrids during Molten Salt Electrolysis of SiO 2@Polydopamine. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9156-9163. [PMID: 30789694 DOI: 10.1021/acsami.9b00265] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aiming to enhanced productivity and improved functionality of electrolytic silicon from electroreduction of solid silica in molten salts, we herein report a one-pot electrochemical preparation of Si/C hybrids via pyrolysis-cum-electrolysis (PCE) of SiO2@polydopamine (SiO2@PDA) in molten NaCl-CaCl2 at 800 °C. The obtained hybrids, denoted Si@C@Si, are composed of outmost silicon thin layers due to electrodeposition, sandwiched N-doped carbon hollow spheres derived from pyrolysis of PDA, and encapsulated silicon nanoparticles stemming from direct electrodeoxidation of SiO2. The PCE protocol shows intriguing merits on accelerated electroreduction of SiO2 and retarded generation of inconvenient SiC. The preparation conditions of Si@C@Si are optimized by varying electrolysis time and applied voltage, with the optimal conditions being identified as PCE at 2.6 V for 2 h. When evaluated as an anode for lithium-ion batteries, the obtained Si@C@Si exhibits a reversible specific capacity of 904 mAh g-1 after 100 galvanostatic charge/discharge cycles at 500 mA g-1. The proposed PCE method is highlighted as an intensified Si extraction method for advanced lithium-ion batteries, promising practical applications.
Collapse
Affiliation(s)
- Wei Weng
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy , Wuhan University , Wuhan 430072 , P. R. China
| | - Chen Zeng
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy , Wuhan University , Wuhan 430072 , P. R. China
| | - Wei Xiao
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
38
|
Chen Q, Zhu R, He Q, Liu S, Wu D, Fu H, Du J, Zhu J, He H. In situ synthesis of a silicon flake/nitrogen-doped graphene-like carbon composite from organoclay for high-performance lithium-ion battery anodes. Chem Commun (Camb) 2019; 55:2644-2647. [PMID: 30742143 DOI: 10.1039/c8cc10036e] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A silicon flake/nitrogen-doped graphene-like carbon composite was prepared from organoclay via an in situ strategy, involving carbonization followed by low-temperature aluminothermic reduction. The pre-formed carbon sheets within the confined interlayer space of clay acted as nanotemplates for in situ synthesizing silicon flakes. As a lithium-ion battery anode, the composite exhibited excellent electrochemical properties.
Collapse
Affiliation(s)
- Qingze Chen
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | | | | | | | | | | | | | | | | |
Collapse
|