1
|
Zhuang R, Chang X, Sha J, Yu Z, Shi E, Lu M, Liu J, Zhang G, Zhou D, Li L. Optoelectronic-Coupled-Driven Microrobot for Biological Cargo Transport in Conductive Isosmotic Glucose Solution. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40299716 DOI: 10.1021/acsami.5c06042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Electric field-driven micro/nanorobots, as micro/nanodevices with autonomous motion capability, have emerged as promising candidates for targeted cargo delivery in biomedical applications due to their advantages of label-free operation, selectivity, and controllability. In biological systems, many biological cargos need to be operated in conductive isosmotic solutions to ensure their viability. However, in the conductive solution, electric field-driven micro/nanorobots exhibit significantly reduced propulsion performance, despite retaining the capability to manipulate cargos by the dielectrophoretic force. This limitation restricts the wider applicability of electric field-driven micro/nanorobots in biomedical fields. This paper presents a novel optoelectronic-coupled-driven α-Fe2O3@aTiO2/Au microrobot, which exhibits significantly improved mobility and enables biological cargo transportation in the conductive isosmotic glucose solution. Benefiting from the flowerlike surface structure and composite photocatalytic material, the proposed microrobot exhibits enhanced photocatalytic capability, enabling efficient propulsion in glucose solution under light irradiation. In addition, the motion behavior of the microrobot under light, electric, and optoelectronic-coupled fields is investigated. It is found that the speed of the microrobot could exceed 300 μm/s under coupled fields, which is more than ten times faster than that of previously reported electric field-driven micro/nanorobots. Due to the magnetic property, the proposed microrobot can be precisely navigated under the guidance of an external uniform magnetic field. Furthermore, the proposed microrobot can achieve the transportation of various biological cargos in a conductive isosmotic glucose solution. The proposed microrobot opens a new avenue for targeted delivery and holds great potential for applications in the biological and pharmaceutical fields.
Collapse
Affiliation(s)
- Rencheng Zhuang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 400722, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Xiaocong Chang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 400722, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Jinrui Sha
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 400722, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Zehao Yu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 400722, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Enbo Shi
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 400722, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Minqiao Lu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Junmin Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 400722, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Guangyu Zhang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Dekai Zhou
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 400722, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Longqiu Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| |
Collapse
|
2
|
Cheng H, Ma B, Ji A, Yao H, Chen P, Zhai W, Gao S, Shi L, Hu H. Janus-Structured Micro/Nanomotors: Self-Propelled Mechanisms and Biomedical Applications. Biomater Res 2025; 29:0155. [PMID: 40191071 PMCID: PMC11971528 DOI: 10.34133/bmr.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/19/2025] [Accepted: 02/09/2025] [Indexed: 04/09/2025] Open
Abstract
Self-propelled micro/nanomotors (MNMs), which can convert other energy into mechanical motion, have attracted considerable attention due to their potential applications in diverse fields. Due to the asymmetric structures and 2 or more chemically discrepant composites constructed in the Janus nanoparticles, asymmetrical forces can be created in the physical environment. Thus, MNMs with Janus structures have been widely studied for revealing possible driving mechanisms. This tutorial review covers the most representative examples of Janus-structured MNMs developed so far, which are self-propelled by different mechanisms. We focus on Janus MNMs that exhibit self-propelled motion in liquid environments and their potential applications in biomedicine, including drug delivery, cancer therapy, bioimaging, and biosensing. The driving mechanisms and challenges associated with constructing asymmetric fields are deeply discussed, along with future opportunities for these versatile and promising MNMs. This review provides an overview of the rapidly evolving field of MNMs and their potential applications, serving as a valuable resource for researchers and others interested in this field.
Collapse
Affiliation(s)
- Haoyan Cheng
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology,
Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Beng Ma
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology,
Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Anqi Ji
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology,
Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Haonan Yao
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology,
Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Pan Chen
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Wenyang Zhai
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology,
Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Shegan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Linlin Shi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Hao Hu
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology,
Henan University of Science and Technology, Luoyang 471023, P. R. China
| |
Collapse
|
3
|
Weerarathna IN, Kumar P, Dzoagbe HY, Kiwanuka L. Advancements in Micro/Nanorobots in Medicine: Design, Actuation, and Transformative Application. ACS OMEGA 2025; 10:5214-5250. [PMID: 39989765 PMCID: PMC11840590 DOI: 10.1021/acsomega.4c09806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/25/2025]
Abstract
In light of the ongoing technological transformation, embracing advancements that foster shared benefits is essential. Nanorobots, a breakthrough within nanotechnology, have demonstrated significant potential in fields such as medicine, where diagnostic and therapeutic applications are the primary focus areas. This review provides a comprehensive overview of nanotechnology, robots, and their evolving role in medical applications, particularly highlighting the use of nanorobots. Various design strategies and operational principles, including sensors, actuators, and nanocontrollers, are discussed based on prior research. Key nanorobot medical applications include biomedical imaging, biosensing, minimally invasive surgery, and targeted drug delivery, each utilizing advanced actuation technologies to enhance precision. The paper further examines recent progress in micro/nanorobot actuation and addresses important considerations for the future, including biocompatibility, control, navigation, delivery, targeting, safety, and ethical implications. This review offers a holistic perspective on how nanorobots can reshape medical practices, paving the way for precision medicine and improved patient outcomes.
Collapse
Affiliation(s)
- Induni Nayodhara Weerarathna
- Department
of Biomedical Sciences, Datta Meghe Institute
of Higher Education and Research (Deemed to be University), Wardha, Maharashtra-442001, India
| | - Praveen Kumar
- Department
of Computer Science and Medical Engineering, Datta Meghe Institute of Higher Education and Research (Deemed to
be University), Wardha, Maharashtra-442001, India
| | - Hellen Yayra Dzoagbe
- Datta
Meghe College of Pharmacy, Datta Meghe Institute of Higher Education
and Research, (Deemed to be University), Wardha, Maharashtra-442001, India
| | - Lydia Kiwanuka
- Department
of Medical Radiology and Imaging Technology, Datta Meghe Institute of Higher Education and Research (Deemed to
be University), Wardha, Maharashtra-442001, India
| |
Collapse
|
4
|
Maric T, Eklund Thamdrup LH, Boisen A. Shape-controlled movement of Zn/SU-8 micromotors. NANOSCALE ADVANCES 2024:d4na00721b. [PMID: 39600826 PMCID: PMC11587533 DOI: 10.1039/d4na00721b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Creating micromotors (MMs) that will have the highest possible velocities has become one of the main focuses in the field of autonomous microdevices research. The importance of velocity stems from various autonomous microdevices applications, ranging from faster drug delivery to the eradication of various bacterial biofilms using only mechanical movement. To investigate how different shapes affect the velocity of Zn/SU-8 micromotors in acid solution, we fabricated micromotors with various geometries (Zn/SU-8/Cylindrical, Zn/SU-8/Rectangular cuboid, Zn/SU-8/Triangular prism, Zn/SU-8/Pentagonal prism and Zn/SU-8/Pentagrammic prism MMs). This is the first comparative study where shape has been isolated as the critical factor influencing micromotor velocity under the same catalytic surface conditions. Our results demonstrate that Zn/SU-8/Rectangular cuboid and Zn/SU-8/Triangular prism MMs exhibit significantly higher average velocities compared to the other studied MMs. The shape-optimized Zn/SU-8 micromotors, characterized by their simple synthesis process and low cost, offer significant potential to enhance efficiency and navigation in both environmental and medical applications through precise movement control.
Collapse
Affiliation(s)
- Tijana Maric
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark Ørsted Plads, 2800 Kgs. Lyngby Denmark
- Department of Health Technology, Technical University of Denmark 2800 Kgs. Lyngby Denmark
| | - Lasse Højlund Eklund Thamdrup
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark Ørsted Plads, 2800 Kgs. Lyngby Denmark
- Department of Health Technology, Technical University of Denmark 2800 Kgs. Lyngby Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark Ørsted Plads, 2800 Kgs. Lyngby Denmark
- Department of Health Technology, Technical University of Denmark 2800 Kgs. Lyngby Denmark
| |
Collapse
|
5
|
Guo Q, Zeng B, Cao Y, Li X, Chen J, Wang W, Tang J. Modular Micromotor Fabrication with Self-Focusing Lithography. SMALL METHODS 2024:e2401388. [PMID: 39511855 DOI: 10.1002/smtd.202401388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Synthetic Janus micro/nanomotors can efficiently convert ambient energy into asymmetrical self-propulsive force, overcoming random thermal fluctuations and enabling autonomous migration. Further modifications to the motors can equip them with different functional modules to meet different needs. However, developing a versatile and high-yield fabrication method for multifunctional Janus micromotors remains challenging. In this study, a modular fabrication approach for micromotors with a particle-tip structure based on the self-focusing lithography induced by an array of TiO2 microspheres is presented. By adjusting the tip composition or loading, precise programming of motor functionality is achieved, allowing for various capabilities such as photoredox reaction-induced propulsion, fluorescent imaging, electric and magnetic navigation. Furthermore, the flexibility of this fabrication method by selectively loading materials onto two tips is demonstrated to achieve multifunctionality within a micromotor unit. This study proposes a straightforward and versatile approach for modular functional micromotors.
Collapse
Affiliation(s)
- Qingxin Guo
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Binglin Zeng
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Yingnan Cao
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Xiaofeng Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Jingyuan Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, 999077, China
- HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, Hong Kong, 999077, China
| |
Collapse
|
6
|
Hu N, Ding L, Wang A, Zhou W, Zhang C, Zhang B, Yin R. Comprehensive modeling of corkscrew motion in micro-/nano-robots with general helical structures. Nat Commun 2024; 15:7399. [PMID: 39191756 DOI: 10.1038/s41467-024-51518-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Micro-/nano-robots (MNRs) have impressive potential in minimally invasive targeted therapeutics through blood vessels, which has disruptive impact to improving human health. However, the clinical use of MNRs has yet to happen due to intrinsic limitations, such as overcoming blood flow. These bottlenecks have not been empirically solved. To tackle them, a full understanding of MNR behaviors is necessary as the first step. The common movement principle of MNRs is corkscrew motion with a helical structure. The existing dynamic model is only applicable to standard helical MNRs. In this paper, we propose a dynamic model for general MNRs without structure limitations. Comprehensive simulations and experiments were conducted, which shows the validity and accuracy of our model. Such a model can serve as a reliable basis for the design, optimization, and control of MNRs and as a powerful tool for gaining fluid dynamic insights, thus accelerating the development of the field.
Collapse
Affiliation(s)
- Ningning Hu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Lujia Ding
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Aihui Wang
- School of Automation and Electrical Engineering, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Wenju Zhou
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Chris Zhang
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bing Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Ruixue Yin
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
7
|
Mao M, Wu Y, He Q. Recent advances in targeted drug delivery for the treatment of glioblastoma. NANOSCALE 2024; 16:8689-8707. [PMID: 38606460 DOI: 10.1039/d4nr01056f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Glioblastoma multiforme (GBM) is one of the highly malignant brain tumors characterized by significant morbidity and mortality. Despite the recent advancements in the treatment of GBM, major challenges persist in achieving controlled drug delivery to tumors. The management of GBM poses considerable difficulties primarily due to unresolved issues in the blood-brain barrier (BBB)/blood-brain tumor barrier (BBTB) and GBM microenvironment. These factors limit the uptake of anti-cancer drugs by the tumor, thus limiting the therapeutic options. Current breakthroughs in nanotechnology provide new prospects concerning unconventional drug delivery approaches for GBM treatment. Specifically, swimming nanorobots show great potential in active targeted delivery, owing to their autonomous propulsion and improved navigation capacities across biological barriers, which further facilitate the development of GBM-targeted strategies. This review presents an overview of technological progress in different drug administration methods for GBM. Additionally, the limitations in clinical translation and future research prospects in this field are also discussed. This review aims to provide a comprehensive guideline for researchers and offer perspectives on further development of new drug delivery therapies to combat GBM.
Collapse
Affiliation(s)
- Meng Mao
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China.
| | - Yingjie Wu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China.
| | - Qiang He
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
8
|
Yang Q, Zhou X, Lou B, Zheng N, Chen J, Yang G. An F OF 1-ATPase motor-embedded chromatophore as a nanorobot for overcoming biological barriers and targeting acidic tumor sites. Acta Biomater 2024; 179:207-219. [PMID: 38513724 DOI: 10.1016/j.actbio.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Despite the booming progress of anticancer nanomedicines in the past two decades, precise tumor-targetability and sufficient tumor-accumulation are less successful and still require further research. To tackle this challenge, herein we present a biomolecular motor (FOF1-ATPase)-embedded chromatophore as nanorobot to efficiently overcome biological barriers, and thoroughly investigate its chemotactic motility, tumor-accumulation ability and endocytosis. Chromatophores embedded with FOF1-ATPase motors were firstly extracted from Thermus thermophilus, then their properties were fully characterized. Specifically, two microfluidic platforms (laminar flow microchip and tumor microenvironment (TME) microchip) were designed and developed to fully investigate the motility, tumor-accumulation ability and endocytosis of the chromatophore nanorobot (CN). The results from the laminar flow microchip indicated that the obtained CN possessed the strongly positive chemotaxis towards protons. And the TME microchip experiments verified that the CN had a desirable tumor-accumulation ability. Cellular uptake experiments demonstrated that the CN efficiently promoted the endocytosis of the fluorescence DiO into the HT-29 cells. And the in vivo studies revealed that the intravenously administered CN exhibited vigorous tumor-targetability and accumulation ability as well as highly efficient antitumor efficacy. All the results suggested that FOF1-ATPase motors-embedded CN could be promising nanomachines with powerful self-propulsion for overcoming physiological barriers and tumor-targeted drug delivery. STATEMENT OF SIGNIFICANCE: In this study, we demonstrated that FOF1-ATPase-embedded chromatophore nanorobots exhibit a strong proton chemotaxis, which not only plays a key role in tumor-targetability and accumulation, but also promotes tumor tissue penetration and internalization. The results of in vitro and in vivo studies indicated that drug-loaded chromatophore nanorobots are capable to simultaneously accomplish tumor-targeting, accumulation, penetration and internalization for enhanced tumor therapy. Our study provides a fundamental basis for further study on FOF1-ATPase-embedded chromatophore as tumor-targeting drug delivery systems that have promising clinical applications. It offers a new and more efficient delivery vehicle for cancer related therapeutics.
Collapse
Affiliation(s)
- Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xuhui Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Bang Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ning Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jiale Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
9
|
Pu R, Yang X, Mu H, Xu Z, He J. Current status and future application of electrically controlled micro/nanorobots in biomedicine. Front Bioeng Biotechnol 2024; 12:1353660. [PMID: 38314349 PMCID: PMC10834684 DOI: 10.3389/fbioe.2024.1353660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Using micro/nanorobots (MNRs) for targeted therapy within the human body is an emerging research direction in biomedical science. These nanoscale to microscale miniature robots possess specificity and precision that are lacking in most traditional treatment modalities. Currently, research on electrically controlled micro/nanorobots is still in its early stages, with researchers primarily focusing on the fabrication and manipulation of these robots to meet complex clinical demands. This review aims to compare the fabrication, powering, and locomotion of various electrically controlled micro/nanorobots, and explore their advantages, disadvantages, and potential applications.
Collapse
Affiliation(s)
- Ruochen Pu
- Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Xiyu Yang
- Shanghai Bone Tumor Institution, Shanghai, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoran Mu
- Shanghai Bone Tumor Institution, Shanghai, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonghua Xu
- Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin He
- Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Katzmeier F, Simmel FC. Microrobots powered by concentration polarization electrophoresis (CPEP). Nat Commun 2023; 14:6247. [PMID: 37802992 PMCID: PMC10558450 DOI: 10.1038/s41467-023-41923-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/21/2023] [Indexed: 10/08/2023] Open
Abstract
Second-order electrokinetic flow around colloidal particles caused by concentration polarization electro-osmosis (CPEO) can result in a phoretic motion of asymmetric particle dimers in a homogeneous AC electrical field, which we refer to as concentration polarization electro-phoresis (CPEP). To demonstrate this actuation mechanism, we created particle dimers from micron-sized silica spheres with sizes 1.0 μm and 2.1 μm by connecting them with DNA linker molecules. The dimers can be steered along arbitrarily chosen paths within a 2D plane by controlling the orientation of the AC electric field in a fluidic chamber with the joystick of a gamepad. Further utilizing induced dipole-dipole interactions, we demonstrate that particle dimers can be used to controllably pick up monomeric particles and release them at any desired position, and also to assemble several particles into groups. Systematic experiments exploring the dependence of the dimer migration speed on the electric field strength, frequency, and buffer composition align with the theoretical framework of CPEO and provide parameter ranges for the operation of our microrobots. Furthermore, experiments with a variety of asymmetric particles, such as fragmented ceramic, borosilicate glass, acrylic glass, agarose gel, and ground coffee particles, as well as yeast cells, demonstrate that CPEP is a generic phenomenon that can be expected for all charged dielectric particles.
Collapse
Affiliation(s)
- Florian Katzmeier
- Department of Bioscience, TUM School of Natural Sciences, Technical University Munich, D-85748, Garching, Germany
| | - Friedrich C Simmel
- Department of Bioscience, TUM School of Natural Sciences, Technical University Munich, D-85748, Garching, Germany.
| |
Collapse
|
11
|
Liu J, Huang Z, Yue H, Zhuang R, Li L, Chang X, Zhou D. A magnetic field-driven multi-functional "medical ship" for intestinal tissue collection in vivo. NANOSCALE 2023; 15:15831-15839. [PMID: 37743755 DOI: 10.1039/d3nr03770c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The incidence of intestinal cancer has risen significantly. Because of the many challenges posed by the complex environment of the intestine, it is difficult to diagnose accurately and painlessly using conventional methods, which requires the development of new body-friendly diagnostic methods. Micro- and nanomotors show great potential for biomedical applications in restricted environments. However, the difficulty of recycling has been a constraint in the collection of biological tissues for diagnostic purposes. Here, we propose a multi-functional "medical ship" (MFMS) that can be rapidly driven by a magnetic field and can reversibly "open" and "close" its internal storage space under NIR laser irradiation. It provides a transportation and recovery platform for micro- and nanomotors and cargoes. In addition, fast selection of the MFMS and magnetic nanoparticles (MNPs) can be realized through adjusting the strength and frequency of the external magnetic field. Rapid encapsulation of intestinal tissues by MNPs was achieved using a low-frequency rotating magnetic field. In addition, we demonstrated the controlled release of MNPs using the MFMS and the collection of intestinal tissues. The proposed MFMS is an intelligent and controllable transportation platform with a simple structure, which is expected to be a new tool for performing medical tasks within the digestive system.
Collapse
Affiliation(s)
- Junmin Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Zhiyuan Huang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Honger Yue
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Rencheng Zhuang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Longqiu Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Xiaocong Chang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
- Chongqing Research Institute of Harbin Institute of Technology, Chongqing, 400722, China
| | - Dekai Zhou
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
- Chongqing Research Institute of Harbin Institute of Technology, Chongqing, 400722, China
| |
Collapse
|
12
|
Ye Y, Tian H, Jiang J, Huang W, Zhang R, Li H, Liu L, Gao J, Tan H, Liu M, Peng F, Tu Y. Magnetically Actuated Biodegradable Nanorobots for Active Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300540. [PMID: 37382399 PMCID: PMC10477856 DOI: 10.1002/advs.202300540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/27/2023] [Indexed: 06/30/2023]
Abstract
An efficient and cost-effective therapeutic vaccine is highly desirable for the prevention and treatment of cancer, which helps to strengthen the immune system and activate the T cell immune response. However, initiating such an adaptive immune response efficiently remains challenging, especially the deficient antigen presentation by dendritic cells (DCs) in the immunosuppressive tumor microenvironment. Herein, an efficient and dynamic antigen delivery system based on the magnetically actuated OVA-CaCO3 -SPIO robots (OCS-robots) is rationally designed for active immunotherapy. Taking advantage of the unique dynamic features, the developed OCS-robots achieve controllable motion capability under the rotating magnetic field. Specifically, with the active motion, the acid-responsiveness of OCS-robots is beneficial for the tumor acidity attenuating and lysosome escape as well as the subsequent antigen cross-presentation of DCs. Furthermore, the dynamic OCS-robots boost the crosstalk between the DCs and antigens, which displays prominent tumor immunotherapy effect on melanoma through cytotoxic T lymphocytes (CTLs). Such a strategy of dynamic vaccine delivery system enables the active activation of immune system based on the magnetically actuated OCS-robots, which presents a plausible paradigm for incredibly efficient cancer immunotherapy by designing multifunctional and novel robot platforms in the future.
Collapse
Affiliation(s)
- Yicheng Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Hao Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jiamiao Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Weichang Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Ruotian Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Huaan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Lu Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Junbin Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Haixin Tan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Meihuan Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Fei Peng
- School of Materials Science and EngineeringSun Yat‐Sen UniversityGuangzhou510275China
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
13
|
Maric T, Løvind A, Zhang Z, Geng J, Boisen A. Near-Infrared Light-Driven Mesoporous SiO 2 /Au Nanomotors for Eradication of Pseudomonas aeruginosa Biofilm. Adv Healthc Mater 2023; 12:e2203018. [PMID: 36732890 PMCID: PMC11468959 DOI: 10.1002/adhm.202203018] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/11/2023] [Indexed: 02/04/2023]
Abstract
Bacterial biofilms are linked to several diseases and cause resistant and chronic infections in immune-compromised patients. Nanomotors comprise a new field of research showing a great promise within biomedicine but pose challenges in terms of biocompatibility. Nanomotors propelled by thermophoresis could overcome this challenge, as they leave no waste product during propulsion. In this study, mesoporous-silica nanoparticles are coated with a thin layer of gold to make nanomotors, which can be driven by near-infrared (NIR) light irradiation. The prepared mesoporous SiO2 -Au nanomotors exhibit efficient self-propulsion when exposed to NIR irradiation, they penetrate deep through a biofilm matrix, and disperse the biofilm in situ due to the photothermal effect on the Au part of the nanomotors. The velocities of such nanomotors are investigated at different wavelengths and laser powers. Furthermore, the study examines the ability of these nanomotors to eradicate Pseudomonas aeruginosa (P. aeruginosa) biofilm under NIR light irradiation. The conducted study shows that the nanomotor's velocity increases with increasing laser power. The mesoporous SiO2 /Au nanomotors show excellent capabilities to eradicate P. aeruginosa biofilms even under short (30 s-3 min) irradiation time. This study shows great promise for overcoming the challenges related to bacterial biofilm eradication.
Collapse
Affiliation(s)
- Tijana Maric
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkØrsted PladsKgs. Lyngby2800Denmark
- Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Amalie Løvind
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkØrsted PladsKgs. Lyngby2800Denmark
- Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Zhongyang Zhang
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkØrsted PladsKgs. Lyngby2800Denmark
- Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Jiayue Geng
- College of Marine Life SciencesOcean University of ChinaNo.5 Yushan RoadQingdao266003China
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkØrsted PladsKgs. Lyngby2800Denmark
- Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
| |
Collapse
|
14
|
Chen X, Chen X, Elsayed M, Edwards H, Liu J, Peng Y, Zhang HP, Zhang S, Wang W, Wheeler AR. Steering Micromotors via Reprogrammable Optoelectronic Paths. ACS NANO 2023; 17:5894-5904. [PMID: 36912818 DOI: 10.1021/acsnano.2c12811] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Steering micromotors is important for using them in practical applications and as model systems for active matter. This functionality often requires magnetic materials in the micromotor, taxis behavior of the micromotor, or the use of specifically designed physical boundaries. Here, we develop an optoelectronic strategy that steers micromotors with programmable light patterns. In this strategy, light illumination turns hydrogenated amorphous silicon conductive, generating local electric field maxima at the edge of the light pattern that attracts micromotors via positive dielectrophoresis. As an example, metallo-dielectric Janus microspheres that self-propelled under alternating current electric fields were steered by static light patterns along customized paths and through complex microstructures. Their long-term directionality was also rectified by ratchet-shaped light patterns. Furthermore, dynamic light patterns that varied in space and time enabled more advanced motion controls such as multiple motion modes, parallel control of multiple micromotors, and the collection and transport of motor swarms. This optoelectronic steering strategy is highly versatile and compatible with a variety of micromotors, and thus it possesses the potential for their programmable control in complex environments.
Collapse
Affiliation(s)
- Xi Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Xiaowen Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mohamed Elsayed
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3E1, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Harrison Edwards
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
| | - Jiayu Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yixin Peng
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - H P Zhang
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuailong Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Aaron R Wheeler
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| |
Collapse
|
15
|
Gao Q, Yang Z, Zhu R, Wang J, Xu P, Liu J, Chen X, Yan Z, Peng Y, Wang Y, Zheng H, Cai F, Wang W. Ultrasonic Steering Wheels: Turning Micromotors by Localized Acoustic Microstreaming. ACS NANO 2023; 17:4729-4739. [PMID: 36815761 DOI: 10.1021/acsnano.2c11070] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ability to steer micromotors in specific directions and at precise speeds is highly desired for their use in complex environments. However, a generic steering strategy that can be applied to micromotors of all types and surface coatings is yet to be developed. Here, we report that ultrasound of ∼100 kHz can spin a spherical micromotor so that it turns left or right when moving forward, or that it moves in full circles. The direction and angular speeds of their spinning and the radii of circular trajectories are precisely tunable by varying ultrasound voltages and frequencies, as well as particle properties such as its radius, materials, and coating thickness. Such spinning is hypothesized to originate from the circular microstreaming flows localized around a solid microsphere vibrating in ultrasound. In addition to causing a micromotor to spin, such streaming flows also helped release cargos from a micromotor during a capture-transport-release mission. Localized microstreaming does not depend on or interference with a specific propulsion mechanism and can steer a wide variety of micromotors. This work suggests that ultrasound can be used to steer microrobots in complex, biologically relevant environments as well as to steer microorganisms and cells.
Collapse
Affiliation(s)
- Qiang Gao
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Zhou Yang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Ruitong Zhu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Jinping Wang
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Pengzhao Xu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Jiayu Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Xiaowen Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Zuyao Yan
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Yixin Peng
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Yanping Wang
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Feiyan Cai
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Wei Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| |
Collapse
|
16
|
Wang J, Dong Y, Ma P, Wang Y, Zhang F, Cai B, Chen P, Liu BF. Intelligent Micro-/Nanorobots for Cancer Theragnostic. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201051. [PMID: 35385160 DOI: 10.1002/adma.202201051] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most intractable diseases owing to its high mortality rate and lack of effective diagnostic and treatment tools. Advancements in micro-/nanorobot (MNR)-assisted sensing, imaging, and therapeutics offer unprecedented opportunities to develop MNR-based cancer theragnostic platforms. Unlike ordinary nanoparticles, which exhibit Brownian motion in biofluids, MNRs overcome viscous resistance in an ultralow Reynolds number (Re << 1) environment by effective self-propulsion. This unique locomotion property has motivated the advanced design and functionalization of MNRs as a basis for next-generation cancer-therapy platforms, which offer the potential for precise distribution and improved permeation of therapeutic agents. Enhanced barrier penetration, imaging-guided operation, and biosensing are additionally studied to enable the promising cancer-related applications of MNRs. Herein, the recent advances in MNR-based cancer therapy are comprehensively addresses, including actuation engines, diagnostics, medical imaging, and targeted drug delivery; promising research opportunities that can have a profound impact on cancer therapy over the next decade is highlighted.
Collapse
Affiliation(s)
- Jie Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yue Dong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peng Ma
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yu Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Fangyu Zhang
- Department of Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bocheng Cai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
17
|
Zhou H, Yuan Y, Wang Z, Ren Z, Hu M, Lu J, Gao H, Pan C, Zhao W, Zhu B. Co-delivery of doxorubicin and quercetin by Janus Hollow Silica Nanomotors for overcoming multidrug resistance in breast MCF-7/Adr cells. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Sun M, Chan KF, Zhang Z, Wang L, Wang Q, Yang S, Chan SM, Chiu PWY, Sung JJY, Zhang L. Magnetic Microswarm and Fluoroscopy-Guided Platform for Biofilm Eradication in Biliary Stents. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201888. [PMID: 35474246 DOI: 10.1002/adma.202201888] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Biofilm eradication from medical implants is of fundamental importance, and the treatment of biofilm-associated pathogen infections on inaccessible biliary stents remains challenging. Magnetically driven microrobots with controlled motility, accessibility to the tiny lumen, and swarm enhancement effects can physically disrupt the deleterious biostructures while not developing drug resistance. Magnetic urchin-like capsule robots (MUCRs) loaded with magnetic liquid metal droplets (MLMDs, antibacterial agents) are designed using natural sunflower pollen, and the therapeutic effect of swarming MUCR@MLMDs is explored for eradicating complex mixtures of bacterial biofilm within biliary stents collected from patients. The external magnetic field triggers the emergence of the microswarm and induces MLMDs to transform their shape into spheroids and rods with sharp edges. The inherent natural microspikes of MUCRs and the obtained sharp edges of MLMDs actively rupture the dense biological matrix and multiple species of embedded bacterial cells by exerting mechanical force, finally achieving synergistic biofilm eradication. The microswarm is precisely and rapidly deployed into the biliary stent via endoscopy in 10 min. Notably, fluoroscopy imaging is used to track and navigate the locomotion of microswarm in biliary stents in real-time. The microswarm has great potential for treating bacterial biofilm infections associated with medical implants.
Collapse
Affiliation(s)
- Mengmeng Sun
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Kai Fung Chan
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin NT, Hong Kong SAR, China
| | - Zifeng Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Lu Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin NT, Hong Kong SAR, China
| | - Qinglong Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Shihao Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Philip Wai Yan Chiu
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin NT, Hong Kong SAR, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Joseph Jao Yiu Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin NT, Hong Kong SAR, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Gas generation due to photocatalysis as a method to reduce the resistance force in the process of motors motion at the air-liquid interface. J Colloid Interface Sci 2022; 627:774-782. [PMID: 35901558 DOI: 10.1016/j.jcis.2022.07.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022]
Abstract
HYPOTHESIS The problem of the development of miniature motors able to move on the air-liquid interface at low Reynolds numbers is a crucial challenge due to dominating role of viscous force. To solve this problem the chemical generation of gas can be used. Generated gas pushes liquid out from the surfer surface, so the resistance force is reduced. EXPERIMENTS Surfer composed of TiO2 nanoparticles and ferromagnetic cobalt microparticles moves at the interface of an aqueous solution of hydrogen peroxide under the action of magnetic force. After irradiation with UV or visible light, the gas cavern is formed at the surfer surface due to photo-catalytic decomposition of hydrogen peroxide. As a result, the area of surfer contact with liquid is reduced. FINDINGS The resistance force acting on the surfer is reduced due to the liquid pushing out from the surfer surface. This effect is strengthened with the increase in the intensity of gas generation. The resistance force is increased when increasing the liquid viscosity or using a surfactant. The proposed method allows control of the velocity of the motors in a rather wide range by changing the gradient of the magnetic field and parameters of light.
Collapse
|
20
|
Li J, Kollipara PS, Liu Y, Yao K, Liu Y, Zheng Y. Opto-Thermocapillary Nanomotors on Solid Substrates. ACS NANO 2022; 16:8820-8826. [PMID: 35594375 PMCID: PMC9949610 DOI: 10.1021/acsnano.1c09800] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Motors that can convert different forms of energy into mechanical work are of profound importance to the development of human societies. The evolution of micromotors has stimulated many advances in drug delivery and microrobotics for futuristic applications in biomedical engineering and nanotechnology. However, further miniaturization of motors toward the nanoscale is still challenging because of the strong Brownian motion of nanomotors in liquid environments. Here, we develop light-driven opto-thermocapillary nanomotors (OTNM) operated on solid substrates where the interference of Brownian motion is effectively suppressed. Specifically, by optically controlling particle-substrate interactions and thermocapillary actuation, we demonstrate the robust orbital rotation of 80 nm gold nanoparticles around a laser beam on a solid substrate. With on-chip operation capability in an ambient environment, our OTNM can serve as light-driven engines to power functional devices at the nanoscale.
Collapse
Affiliation(s)
- Jingang Li
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pavana Siddhartha Kollipara
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ya Liu
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Kan Yao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yaoran Liu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
21
|
AC electrohydrodynamic propulsion and rotation of active particles of engineered shape and asymmetry. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Harraq A, Choudhury BD, Bharti B. Field-Induced Assembly and Propulsion of Colloids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3001-3016. [PMID: 35238204 PMCID: PMC8928473 DOI: 10.1021/acs.langmuir.1c02581] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/19/2022] [Indexed: 05/07/2023]
Abstract
Electric and magnetic fields have enabled both technological applications and fundamental discoveries in the areas of bottom-up material synthesis, dynamic phase transitions, and biophysics of living matter. Electric and magnetic fields are versatile external sources of energy that power the assembly and self-propulsion of colloidal particles. In this Invited Feature Article, we classify the mechanisms by which external fields impact the structure and dynamics in colloidal dispersions and augment their nonequilibrium behavior. The paper is purposely intended to highlight the similarities between electrically and magnetically actuated phenomena, providing a brief treatment of the origin of the two fields to understand the intrinsic analogies and differences. We survey the progress made in the static and dynamic assembly of colloids and the self-propulsion of active particles. Recent reports of assembly-driven propulsion and propulsion-driven assembly have blurred the conceptual boundaries and suggest an evolution in the research of nonequilibrium colloidal materials. We highlight the emergence of colloids powered by external fields as model systems to understand living matter and provide a perspective on future challenges in the area of field-induced colloidal phenomena.
Collapse
Affiliation(s)
- Ahmed
Al Harraq
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Brishty Deb Choudhury
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
23
|
Xu K, Liu B. Recent progress in actuation technologies of micro/nanorobots. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:756-765. [PMID: 34367859 PMCID: PMC8313975 DOI: 10.3762/bjnano.12.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/08/2021] [Indexed: 05/29/2023]
Abstract
As a research field of robotics, micro/nanorobots have been extensively studied in recent years because of their important application prospects in biomedical fields, such as medical diagnosis, nanoscale surgery, and targeted therapy. In this article, recent progress on micro/nanorobots is reviewed regarding actuation technologies. First, the different actuation mechanisms are divided into two types, external field actuation and self-actuation. Then, a few latest achievements on actuation methods are presented. On this basis, the principles of various actuation methods and their limitations are also analyzed. Finally, some key challenges in the development of micro/nanorobots are summarized and the next development direction of the field is explored.
Collapse
Affiliation(s)
- Ke Xu
- School of Information & Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Bing Liu
- School of Information & Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| |
Collapse
|
24
|
Wang S, Xu J, Zhou Q, Geng P, Wang B, Zhou Y, Liu K, Peng F, Tu Y. Biodegradability of Micro/Nanomotors: Challenges and Opportunities. Adv Healthc Mater 2021; 10:e2100335. [PMID: 33960139 DOI: 10.1002/adhm.202100335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/23/2021] [Indexed: 12/25/2022]
Abstract
Micro/nanomotors (MNMs) are miniature machines that can convert chemical or external energy into their own mechanical motions. In previous decades, significant efforts have been made to improve the performance of MNMs. For practical applications, the biodegradability of MNMs is an important aspect that must be considered, particularly in the biomedical field. In this review, recent progress in the biodegradability of MNMs and their potential applications are summarized. Different biodegradable materials, including metals and polymers, or other strategies for the fabrication of MNMs, are presented. Current challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Shuanghu Wang
- The Laboratory of Clinical Pharmacy The Sixth Affiliated Hospital of Wenzhou Medical University The People's Hospital of Lishui Lishui Zhejiang 323000 China
- School of Pharmaceutical Sciences Guangdong Provincial Key Laboratory of New Drug Screening Southern Medical University Guangzhou 510515 China
| | - Jia Xu
- The Laboratory of Clinical Pharmacy The Sixth Affiliated Hospital of Wenzhou Medical University The People's Hospital of Lishui Lishui Zhejiang 323000 China
| | - Quan Zhou
- The Laboratory of Clinical Pharmacy The Sixth Affiliated Hospital of Wenzhou Medical University The People's Hospital of Lishui Lishui Zhejiang 323000 China
| | - Peiwu Geng
- The Laboratory of Clinical Pharmacy The Sixth Affiliated Hospital of Wenzhou Medical University The People's Hospital of Lishui Lishui Zhejiang 323000 China
| | - Bo Wang
- The Laboratory of Clinical Pharmacy The Sixth Affiliated Hospital of Wenzhou Medical University The People's Hospital of Lishui Lishui Zhejiang 323000 China
| | - Yunfang Zhou
- The Laboratory of Clinical Pharmacy The Sixth Affiliated Hospital of Wenzhou Medical University The People's Hospital of Lishui Lishui Zhejiang 323000 China
| | - Kun Liu
- School of Pharmaceutical Sciences Guangdong Provincial Key Laboratory of New Drug Screening Southern Medical University Guangzhou 510515 China
| | - Fei Peng
- School of Materials Science and Engineering Sun Yat‐Sen University Guangzhou 510275 China
| | - Yingfeng Tu
- School of Pharmaceutical Sciences Guangdong Provincial Key Laboratory of New Drug Screening Southern Medical University Guangzhou 510515 China
| |
Collapse
|
25
|
Mujtaba J, Liu J, Dey KK, Li T, Chakraborty R, Xu K, Makarov D, Barmin RA, Gorin DA, Tolstoy VP, Huang G, Solovev AA, Mei Y. Micro-Bio-Chemo-Mechanical-Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007465. [PMID: 33893682 DOI: 10.1002/adma.202007465] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Wireless nano-/micromotors powered by chemical reactions and/or external fields generate motive forces, perform tasks, and significantly extend short-range dynamic responses of passive biomedical microcarriers. However, before micromotors can be translated into clinical use, several major problems, including the biocompatibility of materials, the toxicity of chemical fuels, and deep tissue imaging methods, must be solved. Nanomaterials with enzyme-like characteristics (e.g., catalase, oxidase, peroxidase, superoxide dismutase), that is, nanozymes, can significantly expand the scope of micromotors' chemical fuels. A convergence of nanozymes, micromotors, and microfluidics can lead to a paradigm shift in the fabrication of multifunctional micromotors in reasonable quantities, encapsulation of desired subsystems, and engineering of FDA-approved core-shell structures with tuneable biological, physical, chemical, and mechanical properties. Microfluidic methods are used to prepare stable bubbles/microbubbles and capsules integrating ultrasound, optoacoustic, fluorescent, and magnetic resonance imaging modalities. The aim here is to discuss an interdisciplinary approach of three independent emerging topics: micromotors, nanozymes, and microfluidics to creatively: 1) embrace new ideas, 2) think across boundaries, and 3) solve problems whose solutions are beyond the scope of a single discipline toward the development of micro-bio-chemo-mechanical-systems for diverse bioapplications.
Collapse
Affiliation(s)
- Jawayria Mujtaba
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jinrun Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Krishna K Dey
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
| | - Rik Chakraborty
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Kailiang Xu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
- School of Information Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Roman A Barmin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Dmitry A Gorin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Valeri P Tolstoy
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Petergof, St. Petersburg, 198504, Russia
| | - Gaoshan Huang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Alexander A Solovev
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
26
|
Zhang X, Fu Q, Duan H, Song J, Yang H. Janus Nanoparticles: From Fabrication to (Bio)Applications. ACS NANO 2021; 15:6147-6191. [PMID: 33739822 DOI: 10.1021/acsnano.1c01146] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Janus nanoparticles (JNPs) refer to the integration of two or more chemically discrepant composites into one structure system. Studies into JNPs have been of significant interest due to their interesting characteristics stemming from their asymmetric structures, which can integrate different functional properties and perform more synergetic functions simultaneously. Herein, we present recent progress of Janus particles, comprehensively detailing fabrication strategies and applications. First, the classification of JNPs is divided into three blocks, consisting of polymeric composites, inorganic composites, and hybrid polymeric/inorganic JNPs composites. Then, the fabrication strategies are alternately summarized, examining self-assembly strategy, phase separation strategy, seed-mediated polymerization, microfluidic preparation strategy, nucleation growth methods, and masking methods. Finally, various intriguing applications of JNPs are presented, including solid surfactants agents, micro/nanomotors, and biomedical applications such as biosensing, controlled drug delivery, bioimaging, cancer therapy, and combined theranostics. Furthermore, challenges and future works in this field are provided.
Collapse
Affiliation(s)
- Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| |
Collapse
|
27
|
Huang T, Ibarlucea B, Caspari A, Synytska A, Cuniberti G, de Graaf J, Baraban L. Impact of surface charge on the motion of light-activated Janus micromotors. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:39. [PMID: 33755813 PMCID: PMC7987638 DOI: 10.1140/epje/s10189-021-00008-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/04/2021] [Indexed: 05/26/2023]
Abstract
Control over micromotors' motion is of high relevance for lab-on-a-chip and biomedical engineering, wherein such particles encounter complex microenvironments. Here, we introduce an efficient way to influence Janus micromotors' direction of motion and speed by modifying their surface properties and those of their immediate surroundings. We fabricated light-responsive Janus micromotors with positive and negative surface charge, both driven by ionic self-diffusiophoresis. These were used to observe direction-of-motion reversal in proximity to glass substrates for which we varied the surface charge. Quantitative analysis allowed us to extract the dependence of the particle velocity on the surface charge density of the substrate. This constitutes the first quantitative demonstration of the substrate's surface charge on the motility of the light-activated diffusiophoretic motors in water. We provide qualitative understanding of these observations in terms of osmotic flow along the substrate generated through the ions released by the propulsion mechanism. Our results constitute a crucial step in moving toward practical application of self-phoretic artificial micromotors.
Collapse
Affiliation(s)
- Tao Huang
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Technische Universität Dresden, 01062, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Bergoi Ibarlucea
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Technische Universität Dresden, 01062, Dresden, Germany
| | - Anja Caspari
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Alla Synytska
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
- Institute of Physical Chemistry and Polymer Physics, Technische Universität, 01062, Dresden, Germany
| | - Gianaurelio Cuniberti
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Technische Universität Dresden, 01062, Dresden, Germany
| | - Joost de Graaf
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Larysa Baraban
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany.
| |
Collapse
|
28
|
Li B, Wang YL, Shi G, Gao Y, Shi X, Woodward CE, Forsman J. Phase Transitions of Oppositely Charged Colloidal Particles Driven by Alternating Current Electric Field. ACS NANO 2021; 15:2363-2373. [PMID: 33576616 PMCID: PMC8023798 DOI: 10.1021/acsnano.0c04095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We study systems containing oppositely charged colloidal particles under applied alternating current electric fields (AC fields) using overdamped Langevin dynamics simulations in three dimensions. We obtain jammed bands perpendicular to the field direction under intermediate frequencies and lanes parallel with the field under low frequencies. These structures also depend upon the particle charges. The pathway for generating jammed bands follows a stepwise mechanism, and intermediate bands are observed during lane formation in some systems. We investigate the component of the pressure tensors in the direction parallel to the field and observe that the jammed to lane transition occurs at a critical value for this pressure. We also find that the stable steady states appear to satisfy the principle of maximum entropy production. Our results may help to improve the understand of the underlying mechanisms for these types of dynamic phase transitions and the subsequent cooperative assemblies of colloidal particles under such non-equilibrium conditions.
Collapse
Affiliation(s)
- Bin Li
- Laboratory
of Theoretical and Computational Nanoscience, CAS Key Laboratory for
Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in
Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
- Theoretical
Chemistry, Chemical Center, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Yong-Lei Wang
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Guang Shi
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yangyang Gao
- Key
Laboratory of Beijing City on Preparation and Processing of Novel
Polymer Materials, Beijing University of
Chemical Technology, Beijing 10029, China
- State Key
Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 10029, China
| | - Xinghua Shi
- Laboratory
of Theoretical and Computational Nanoscience, CAS Key Laboratory for
Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in
Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Clifford E. Woodward
- School
of Physical, Environmental and Mathematical Sciences, University College,
ADFA, University of New South Wales, Canberra, ACT 2600, Australia
| | - Jan Forsman
- Theoretical
Chemistry, Chemical Center, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| |
Collapse
|
29
|
Gao C, Wang Y, Ye Z, Lin Z, Ma X, He Q. Biomedical Micro-/Nanomotors: From Overcoming Biological Barriers to In Vivo Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000512. [PMID: 32578282 DOI: 10.1002/adma.202000512] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/20/2020] [Indexed: 05/20/2023]
Abstract
Self-propelled micro- and nanomotors (MNMs) have shown great potential for applications in the biomedical field, such as active targeted delivery, detoxification, minimally invasive diagnostics, and nanosurgery, owing to their tiny size, autonomous motion, and navigation capacities. To enter the clinic, biomedical MNMs request the biodegradability of their manufacturing materials, the biocompatibility of chemical fuels or externally physical fields, the capability of overcoming various biological barriers (e.g., biofouling, blood flow, blood-brain barrier, cell membrane), and the in vivo visual positioning for autonomous navigation. Herein, the recent advances of synthetic MNMs in overcoming biological barriers and in vivo motion-tracking imaging techniques are highlighted. The challenges and future research priorities are also addressed. With continued attention and innovation, it is believed that, in the future, biomedical MNMs will pave the way to improve the targeted drug delivery efficiency.
Collapse
Affiliation(s)
- Changyong Gao
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150080, China
| | - Yong Wang
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen, 518055, China
| | - Zihan Ye
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen, 518055, China
| | - Zhihua Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150080, China
| | - Xing Ma
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen, 518055, China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150080, China
| |
Collapse
|
30
|
Duan Y, Zhao X, Sun M, Hao H. Research Advances in the Synthesis, Application, Assembly, and Calculation of Janus Materials. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04304] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Xia Zhao
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| | - Miaomiao Sun
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| | - Hong Hao
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| |
Collapse
|
31
|
Chen W, Wen Y, Fan X, Sun M, Tian C, Yang M, Xie H. Magnetically actuated intelligent hydrogel-based child-parent microrobots for targeted drug delivery. J Mater Chem B 2021; 9:1030-1039. [PMID: 33398321 DOI: 10.1039/d0tb02384a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Small intestine-targeted drug delivery by oral administration has aroused the growing interest of researchers. In this work, the child-parent microrobot (CPM) as a vehicle protects the child microrobots (CMs) under a gastric acid environment and releases them in the small intestinal environment. The intelligent hydrogel-based CPMs with sphere, mushroom, red blood cell, and teardrop shapes are fabricated by an extrusion-dripping method. The CPMs package uniform CMs, which are fabricated by designed microfluidic (MF) devices. The fabrication mechanism and tunability of CMs and CPMs with different sizes and shapes are analyzed, modeled, and simulated. The shape of CPM can affect its drug release efficiency and kinetic characteristics. A vision-feedback magnetic driving system (VMDS) actuates and navigates CPM along the predefined path to the destination and continuously releases drug in the simulated intestinal fluid (SIF, a low Reynolds number (Re) regime) using a new motion control method with the tracking-learning-detection (TLD) algorithm. The newly designed CPM combines the advantages of powerful propulsion, good biocompatibility, and remarkable drug loading and release capacity at the intestinal level, which is expected to be competent for oral administration of small intestine-targeted therapy in the future.
Collapse
Affiliation(s)
- Weinan Chen
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Wang J, Ahmed R, Zeng Y, Fu K, Soto F, Sinclair B, Soh HT, Demirci U. Engineering the Interaction Dynamics between Nano-Topographical Immunocyte-Templated Micromotors across Scales from Ions to Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005185. [PMID: 33174334 DOI: 10.1002/smll.202005185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Manufacturing mobile artificial micromotors with structural design factors, such as morphology nanoroughness and surface chemistry, can improve the capture efficiency through enhancing contact interactions with their surrounding targets. Understanding the interplay of such parameters targeting high locomotion performance and high capture efficiency at the same time is of paramount importance, yet, has so far been overlooked. Here, an immunocyte-templated nano-topographical micromotor is engineered and their interactions with various targets across multiple scales, from ions to cells are investigated. The macrophage templated nanorough micromotor demonstrates significantly increased surface interactions and significantly improved and highly efficient removal of targets from complex aqueous solutions, including in plasma and diluted blood, when compared to smooth synthetic material templated micromotors with the same size and surface chemistry. These results suggest that the surface nanoroughness of the micromotors for the locomotion performance and interactions with the multiscale targets should be considered simultaneously, for they are highly interconnected in design considerations impacting applications across scales.
Collapse
Affiliation(s)
- Jie Wang
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Rajib Ahmed
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Yitian Zeng
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305-4034, USA
| | - Kaiyu Fu
- Department of Electrical Engineering and Department of Radiology, Stanford University, Stanford, CA, 94305-4034, USA
| | - Fernando Soto
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Bob Sinclair
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305-4034, USA
| | - Hyongsok Tom Soh
- Department of Electrical Engineering and Department of Radiology, Stanford University, Stanford, CA, 94305-4034, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| |
Collapse
|
33
|
Salinas G, Pavel I, Sojic N, Kuhn A. Electrochemistry‐Based Light‐Emitting Mobile Systems. ChemElectroChem 2020. [DOI: 10.1002/celc.202001104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gerardo Salinas
- Univ. Bordeaux, CNRS Bordeaux INP, ISM, UMR 5255 33607 Pessac France
| | | | - Neso Sojic
- Univ. Bordeaux, CNRS Bordeaux INP, ISM, UMR 5255 33607 Pessac France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS Bordeaux INP, ISM, UMR 5255 33607 Pessac France
| |
Collapse
|
34
|
Xiao Z, Duan S, Xu P, Cui J, Zhang H, Wang W. Synergistic Speed Enhancement of an Electric-Photochemical Hybrid Micromotor by Tilt Rectification. ACS NANO 2020; 14:8658-8667. [PMID: 32530617 DOI: 10.1021/acsnano.0c03022] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A hybrid micromotor is an active colloid powered by more than one power source, often exhibiting expanded functionality and controllability than those of a singular energy source. However, these power sources are often applied orthogonally, leading to stacked propulsion that is just a sum of two independent mechanisms. Here, we report that TiO2-Pt Janus micromotors, when subject to both UV light and AC electric fields, move up to 90% faster than simply adding up the speed powered by either source. This unexpected synergy between light and electric fields, we propose, arises from the fact that an electrokinetically powered TiO2-Pt micromotor moves near a substrate with a tilted Janus interface that, upon the application of an electric field, becomes rectified to be vertical to the substrate. Control experiments with magnetic fields and three types of micromotors unambiguously and quantitatively show that the tilting angle of a micromotor correlates positively with its instantaneous speed, reaching maximum at a vertical Janus interface. Such "tilting-induced retardation" could affect a wide variety of chemically powered micromotors, and our findings are therefore helpful in understanding the dynamics of micromachines in confinement.
Collapse
Affiliation(s)
- Zuyao Xiao
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shifang Duan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Pengzhao Xu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jingqin Cui
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Hepeng Zhang
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
35
|
Wang W, Lv X, Moran JL, Duan S, Zhou C. A practical guide to active colloids: choosing synthetic model systems for soft matter physics research. SOFT MATTER 2020; 16:3846-3868. [PMID: 32285071 DOI: 10.1039/d0sm00222d] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Synthetic active colloids that harvest energy stored in the environment and swim autonomously are a popular model system for active matter. This emerging field of research sits at the intersection of materials chemistry, soft matter physics, and engineering, and thus cross-talk among researchers from different backgrounds becomes critical yet difficult. To facilitate this interdisciplinary communication, and to help soft matter physicists with choosing the best model system for their research, we here present a tutorial review article that describes, in appropriate detail, six experimental systems of active colloids commonly found in the physics literature. For each type, we introduce their background, material synthesis and operating mechanisms and notable studies from the soft matter community, and comment on their respective advantages and limitations. In addition, the main features of each type of active colloid are summarized into two useful tables. As materials chemists and engineers, we intend for this article to serve as a practical guide, so those who are not familiar with the experimental aspects of active colloids can make more informed decisions and maximize their creativity.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Xianglong Lv
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Jeffrey L Moran
- Department of Mechanical Engineering, George Mason University, Fairfax, USA
| | - Shifang Duan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Chao Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| |
Collapse
|
36
|
Lin X, Xu B, Zhu H, Liu J, Solovev A, Mei Y. Requirement and Development of Hydrogel Micromotors towards Biomedical Applications. RESEARCH (WASHINGTON, D.C.) 2020. [PMID: 32728669 DOI: 10.1155/2020/7659749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
With controllable size, biocompatibility, porosity, injectability, responsivity, diffusion time, reaction, separation, permeation, and release of molecular species, hydrogel microparticles achieve multiple advantages over bulk hydrogels for specific biomedical procedures. Moreover, so far studies mostly concentrate on local responses of hydrogels to chemical and/or external stimuli, which significantly limit the scope of their applications. Tetherless micromotors are autonomous microdevices capable of converting local chemical energy or the energy of external fields into motive forces for self-propelled or externally powered/controlled motion. If hydrogels can be integrated with micromotors, their applicability can be significantly extended and can lead to fully controllable responsive chemomechanical biomicromachines. However, to achieve these challenging goals, biocompatibility, biodegradability, and motive mechanisms of hydrogel micromotors need to be simultaneously integrated. This review summarizes recent achievements in the field of micromotors and hydrogels and proposes next steps required for the development of hydrogel micromotors, which become increasingly important for in vivo and in vitro bioapplications.
Collapse
Affiliation(s)
- Xinyi Lin
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Borui Xu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Hong Zhu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Jinrun Liu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Alexander Solovev
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Yongfeng Mei
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
37
|
Lin X, Xu B, Zhu H, Liu J, Solovev A, Mei Y. Requirement and Development of Hydrogel Micromotors towards Biomedical Applications. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7659749. [PMID: 32728669 PMCID: PMC7368969 DOI: 10.34133/2020/7659749] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
With controllable size, biocompatibility, porosity, injectability, responsivity, diffusion time, reaction, separation, permeation, and release of molecular species, hydrogel microparticles achieve multiple advantages over bulk hydrogels for specific biomedical procedures. Moreover, so far studies mostly concentrate on local responses of hydrogels to chemical and/or external stimuli, which significantly limit the scope of their applications. Tetherless micromotors are autonomous microdevices capable of converting local chemical energy or the energy of external fields into motive forces for self-propelled or externally powered/controlled motion. If hydrogels can be integrated with micromotors, their applicability can be significantly extended and can lead to fully controllable responsive chemomechanical biomicromachines. However, to achieve these challenging goals, biocompatibility, biodegradability, and motive mechanisms of hydrogel micromotors need to be simultaneously integrated. This review summarizes recent achievements in the field of micromotors and hydrogels and proposes next steps required for the development of hydrogel micromotors, which become increasingly important for in vivo and in vitro bioapplications.
Collapse
Affiliation(s)
- Xinyi Lin
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Borui Xu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Hong Zhu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Jinrun Liu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Alexander Solovev
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Yongfeng Mei
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|