1
|
Lawanprasert A, Singh H, Pimcharoen S, Vargas MG, Dewan A, Kirimanjeswara GS, Medina SH. Heat stable and intrinsically sterile liquid protein formulations. Nat Commun 2024; 15:10897. [PMID: 39738105 PMCID: PMC11685576 DOI: 10.1038/s41467-024-55304-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/09/2024] [Indexed: 01/01/2025] Open
Abstract
Over 80% of biologic drugs, and 90% of vaccines, require temperature-controlled conditions throughout the supply chain to minimize thermal inactivation and contamination. This cold chain is costly, requires stringent oversight, and is impractical in remote environments. Here, we report chemical dispersants that non-covalently solvate proteins within fluorous liquids to alter their thermodynamic equilibrium and reduce conformational flexibility. This generates non-aqueous, fluorine-based liquid protein formulations that biochemically rigidify protein structure to yield thermally stable biologics at extreme temperatures (up to 90 °C). These non-aqueous formulations are impervious to contamination by microorganismal pathogens, degradative enzymes, and environmental impurities, and display comparable pre-clinical pharmacokinetics and safety profiles to standard saline protein samples. As a result, we deliver a fluorochemical formulation paradigm that may limit the need for cold chain logistics of protein reagents and biopharmaceuticals.
Collapse
Affiliation(s)
- Atip Lawanprasert
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Harminder Singh
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Sopida Pimcharoen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | | | - Arshiya Dewan
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
- Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, PA, USA
| | - Girish S Kirimanjeswara
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
- Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Scott H Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
2
|
Buddhiraju HS, Yadav DN, Dey S, Eswar K, Padmakumar A, Rengan AK. Advances in Peptide-Decorated Targeted Drug Delivery: Exploring Therapeutic Potential and Nanocarrier Strategies. ACS APPLIED BIO MATERIALS 2024; 7:4879-4893. [PMID: 37996391 DOI: 10.1021/acsabm.3c00711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Peptides are ideal biologicals for targeted drug delivery and have also been increasingly employed as theranostic tools in treating various diseases, including cancer, with minimal or no side effects. Owing to their receptor-specificity, peptide-mediated drug delivery aids in targeted drug delivery with better pharmacological biodistribution. Nanostructured self-assembled peptides and peptide-drug conjugates demonstrate enhanced stability and performance and captivating biological effects in comparison with conventional peptides. Moreover, they serve as valuable tools for establishing interfaces between drug carriers and biological systems, enabling the traversal of multiple biological barriers encountered by peptide-drug conjugates on their journeys to their intended targets. Peptide-based drugs play a pivotal role in the field of medicine and hold great promise for addressing a wide range of complex diseases such as cancer and autoimmune disorders. Nanotechnology has revolutionized the fields of medicine, biomedical engineering, biotechnology, and engineering sciences over the past two decades. With the help of nanotechnology, better delivery of peptides to the target site could be achieved by exploiting the small size, increased surface area, and passive targeting ability of the nanocarrier. Furthermore, nanocarriers also ensure safe delivery of the peptide moieties to the target site, protecting them from degradation. Nanobased peptide delivery systems would be of significant importance in the near future for the successful targeted and efficient delivery of peptides. This review focuses on peptide-drug conjugates and nanoparticle-mediated self-assembled peptide delivery systems in cancer therapeutics.
Collapse
Affiliation(s)
- Hima Sree Buddhiraju
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Dokkari Nagalaxmi Yadav
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Sreenath Dey
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Kalyani Eswar
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Ananya Padmakumar
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| |
Collapse
|
3
|
Singh H, Lawanprasert A, Utkarsh, Pimcharoen S, Dewan A, Rahoi D, Kirimanjeswara GS, Medina SH. Decoupling Fluorous Protein Coatings Yield Heat-Stable and Intrinsically Sterile Bioformulations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38893-38904. [PMID: 39013021 PMCID: PMC11299136 DOI: 10.1021/acsami.4c03724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 07/18/2024]
Abstract
Thermal inactivation is a major bottleneck to the scalable production, storage, and transportation of protein-based reagents and therapies. Failures in temperature control both compromise protein bioactivity and increase the risk of microorganismal contamination. Herein, we report the rational design of fluorochemical additives that promiscuously bind to and coat the surfaces of proteins to enable their stable dispersion within fluorous solvents. By replacing traditional aqueous liquids with fluorinated media, this strategy conformationally rigidifies proteins to preserve their structure and function at extreme temperatures (≥90 °C). We show that fluorous protein formulations resist contamination by bacterial, fungal, and viral pathogens, which require aqueous environments for survival, and display equivalent serum bioavailability to standard saline samples in animal models. Importantly, by designing dispersants that decouple from the protein surface in physiologic solutions, we deliver a fluorochemical formulation that does not alter the pharmacologic function or safety profile of the functionalized protein in vivo. As a result, this nonaqueous protein storage paradigm is poised to open technological opportunities in the design of shelf-stable protein reagents and biopharmaceuticals.
Collapse
Affiliation(s)
- Harminder Singh
- Department
of Biomedical Engineering, Pennsylvania
State University, University Park, Pennsylvania 16802-4400, United States
| | - Atip Lawanprasert
- Department
of Biomedical Engineering, Pennsylvania
State University, University Park, Pennsylvania 16802-4400, United States
| | - Utkarsh
- Department
of Biomedical Engineering, Pennsylvania
State University, University Park, Pennsylvania 16802-4400, United States
| | - Sopida Pimcharoen
- Department
of Biomedical Engineering, Pennsylvania
State University, University Park, Pennsylvania 16802-4400, United States
| | - Arshiya Dewan
- Department
of Veterinary and Biomedical Sciences, Pennsylvania
State University, University Park, Pennsylvania 16802-4400, United States
| | - Dane Rahoi
- Animal
Diagnostics Laboratory, Pennsylvania State
University, University Park, Pennsylvania 16802-4400, United States
| | - Girish S. Kirimanjeswara
- Department
of Veterinary and Biomedical Sciences, Pennsylvania
State University, University Park, Pennsylvania 16802-4400, United States
- Center
for Infectious Disease Dynamics, Pennsylvania
State University, University Park, Pennsylvania 16802-4400, United States
- Center
for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, Pennsylvania 16802-4400, United States
| | - Scott H. Medina
- Department
of Biomedical Engineering, Pennsylvania
State University, University Park, Pennsylvania 16802-4400, United States
- Huck
Institutes
of the Life Sciences, Pennsylvania State
University, University Park, Pennsylvania 16802-4400, United States
| |
Collapse
|
4
|
Liu J, Zhou Y, Lyu Q, Yao X, Wang W. Targeted protein delivery based on stimuli-triggered nanomedicine. EXPLORATION (BEIJING, CHINA) 2024; 4:20230025. [PMID: 38939867 PMCID: PMC11189579 DOI: 10.1002/exp.20230025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/07/2023] [Indexed: 06/29/2024]
Abstract
Protein-based drugs have shown unique advantages to treat various diseases in recent years. However, most protein therapeutics in clinical use are limited to extracellular targets with low delivery efficiency. To realize targeted protein delivery, a series of stimuli-triggered nanoparticle formulations have been developed to improve delivery efficiency and reduce off-target release. These smart nanoparticles are designed to release cargo proteins in response to either internal or external stimuli at pathological tissues. In this way, varieties of protein-based drugs including antibodies, enzymes, and pro-apoptotic proteins can be effectively delivered to desired sites for the treatment of cancer, inflammation, metabolic diseases, and so on with minimal side effects. In this review, recent advances in the design of stimuli-triggered nanomedicine for targeted protein delivery in different biomedical applications will be discussed. A deeper understanding of these emerging strategies helps develop more efficient protein delivery systems for clinical use in the future.
Collapse
Affiliation(s)
- Jinzhao Liu
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Yang Zhou
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Qingyang Lyu
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Xiaotong Yao
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Department of ChemistryFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Weiping Wang
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| |
Collapse
|
5
|
Miller MA, Medina S. Life at the interface: Engineering bio-nanomaterials through interfacial molecular self-assembly. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1966. [PMID: 38725255 PMCID: PMC11090466 DOI: 10.1002/wnan.1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/15/2024]
Abstract
Interfacial self-assembly describes the directed organization of molecules and colloids at phase boundaries. Believed to be fundamental to the inception of primordial life, interfacial assembly is exploited by a myriad of eukaryotic and prokaryotic organisms to execute physiologic activities and maintain homeostasis. Inspired by these natural systems, chemists, engineers, and materials scientists have sought to harness the thermodynamic equilibria at phase boundaries to create multi-dimensional, highly ordered, and functional nanomaterials. Recent advances in our understanding of the biophysical principles guiding molecular assembly at gas-solid, gas-liquid, solid-liquid, and liquid-liquid interphases have enhanced the rational design of functional bio-nanomaterials, particularly in the fields of biosensing, bioimaging and biotherapy. Continued development of non-canonical building blocks, paired with deeper mechanistic insights into interphase self-assembly, holds promise to yield next generation interfacial bio-nanomaterials with unique, and perhaps yet unrealized, properties. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Michael A Miller
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
6
|
Chan A, Tsourkas A. Intracellular Protein Delivery: Approaches, Challenges, and Clinical Applications. BME FRONTIERS 2024; 5:0035. [PMID: 38282957 PMCID: PMC10809898 DOI: 10.34133/bmef.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024] Open
Abstract
Protein biologics are powerful therapeutic agents with diverse inhibitory and enzymatic functions. However, their clinical use has been limited to extracellular applications due to their inability to cross plasma membranes. Overcoming this physiological barrier would unlock the potential of protein drugs for the treatment of many intractable diseases. In this review, we highlight progress made toward achieving cytosolic delivery of recombinant proteins. We start by first considering intracellular protein delivery as a drug modality compared to existing Food and Drug Administration-approved drug modalities. Then, we summarize strategies that have been reported to achieve protein internalization. These techniques can be broadly classified into 3 categories: physical methods, direct protein engineering, and nanocarrier-mediated delivery. Finally, we highlight existing challenges for cytosolic protein delivery and offer an outlook for future advances.
Collapse
Affiliation(s)
| | - Andrew Tsourkas
- Department of Bioengineering,
University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Kim I, Elliott JC, Lawanprasert A, Wood GM, Simon JC, Medina SH. Real-Time, In Situ Imaging of Macrophages via Phase-Change Peptide Nanoemulsions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301673. [PMID: 37452514 PMCID: PMC10787802 DOI: 10.1002/smll.202301673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Macrophages are specialized phagocytes that play central roles in immunity and tissue repair. Their diverse functionalities have led to an evolution of new allogenic and autologous macrophage products. However, realizing the full therapeutic potential of these cell-based therapies requires development of imaging technologies that can track immune cell migration within tissues in real-time. Such innovations will not only inform treatment regimens and empower interpretation of therapeutic outcomes but also enable prediction and early intervention during adverse events. Here, phase-changing nanoemulsion contrast agents are reported that permit real-time, continuous, and high-fidelity ultrasound imaging of macrophages in situ. Using a de novo designed peptide emulsifier, liquid perfluorocarbon nanoemulsions are prepared and show that rational control over interfacial peptide assembly affords formulations with tunable acoustic sensitivity, macrophage internalization, and in cellulo stability. Imaging experiments demonstrate that emulsion-loaded macrophages can be readily visualized using standard diagnostic B-mode and Doppler ultrasound modalities. This allows on-demand and long-term tracking of macrophages within porcine coronary arteries, as an exemplary model. The results demonstrate that this platform is poised to open new opportunities for non-invasive, contrast-enhanced imaging of cell-based immunotherapies in tissues, while leveraging the low-cost, portable, and safe nature of diagnostic ultrasound.
Collapse
Affiliation(s)
- Inhye Kim
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Jacob C Elliott
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Atip Lawanprasert
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Grace M Wood
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Julianna C Simon
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Scott H Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802-4400, USA
| |
Collapse
|
8
|
Nair RR, Seo EW, Hong S, Jung KO, Kim D. Pentafluorobenzene: Promising Applications in Diagnostics and Therapeutics. ACS APPLIED BIO MATERIALS 2023; 6:4081-4099. [PMID: 37721519 DOI: 10.1021/acsabm.3c00676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Pentafluorobenzene (PFB) represents a class of aromatic fluorine compounds employed exclusively across a spectrum of chemical and biological applications. PFBs are credited with developing various chemical synthesis techniques, networks and biopolymers, bioactive materials, and targeted drug delivery systems. The first part of this review delves into recent developments in PFB-derived molecules for diagnostic purposes. In the latter segment, PFB's role in the domain of theragnostic applications is discussed. The review elucidates different mechanisms and interaction strategies applied in leveraging PFBs to formulate diagnostic and theragnostic tools, substantiated by proper examples. The utilization of PFBs emerges as an enabler, facilitating manifold reactions, improving materials' properties, and even opening avenues for explorative research.
Collapse
Affiliation(s)
- Ratish R Nair
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eun Woo Seo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seongje Hong
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kyung Oh Jung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dokyoung Kim
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
- UC San Diego Materials Research Science and Engineering Center, 9500 Gilman Drive, La Jolla, California 92093, United States
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
9
|
Graceffa V. Intracellular protein delivery: New insights into the therapeutic applications and emerging technologies. Biochimie 2023; 213:82-99. [PMID: 37209808 DOI: 10.1016/j.biochi.2023.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
The inability to cross the plasma membranes traditionally limited the therapeutic use of recombinant proteins. However, in the last two decades, novel technologies made delivering proteins inside the cells possible. This allowed researchers to unlock intracellular targets, once considered 'undruggable', bringing a new research area to emerge. Protein transfection systems display a large potential in a plethora of applications. However, their modality of action is often unclear, and cytotoxic effects are elevated, whereas experimental conditions to increase transfection efficacy and cell viability still need to be identified. Furthermore, technical complexity often limits in vivo experimentation, while challenging industrial and clinical translation. This review highlights the applications of protein transfection technologies, and then critically discuss the current methodologies and their limitations. Physical membrane perforation systems are compared to systems exploiting cellular endocytosis. Research evidence of the existence of either extracellular vesicles (EVs) or cell-penetrating peptides (CPPs)- based systems, that circumvent the endosomal systems is critically analysed. Commercial systems, novel solid-phase reverse protein transfection systems, and engineered living intracellular bacteria-based mechanisms are finally described. This review ultimately aims at finding new methodologies and possible applications of protein transfection systems, while helping the development of an evidence-based research approach.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University (ATU), Sligo, Ireland.
| |
Collapse
|
10
|
Huang D, Wang J, Wen B, Zhao Y. Emerging diagnostic and therapeutic technologies based on ultrasound-triggered biomaterials. MATERIALS FUTURES 2023; 2:032001. [DOI: 10.1088/2752-5724/acdf05] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Abstract
Ultrasound (US) is a kind of acoustic wave with frequency higher than 20 kHz. Learning from the echo detection ability of bats and dolphins, scientists applied US for clinical imaging by sending out US waves and detecting echoes with shifted intensities and frequencies from human tissue. US has long played a critical role in noninvasive, real-time, low-cost and portable diagnostic imaging. With the in-depth study of US in multidisciplinary fields, US and US-responsive materials have shown practical value in not only disease diagnosis, but also disease treatment. In this review, we introduce the recently proposed and representative US-responsive materials for biomedical applications, including diagnostic and therapeutic applications. We focused on US-mediated physicochemical therapies, such as sonodynamic therapy, high-intensity focused US ablation, sonothermal therapy, thrombolysis, etc, and US-controlled delivery of chemotherapeutics, gases, genes, proteins and bacteria. We conclude with the current challenges facing the clinical translation of smart US-responsive materials and prospects for the future development of US medicine.
Collapse
|
11
|
Mitrovic J, Richey G, Kim S, Guler MO. Peptide Hydrogels and Nanostructures Controlling Biological Machinery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11935-11945. [PMID: 37589176 PMCID: PMC10469456 DOI: 10.1021/acs.langmuir.3c01269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 08/18/2023]
Abstract
Peptides are versatile building blocks for the fabrication of various nanostructures that result in the formation of hydrogels and nanoparticles. Precise chemical functionalization promotes discrete structure formation, causing controlled bioactivity and physical properties for functional materials development. The conjugation of small molecules on amino acid side chains determines their intermolecular interactions in addition to their intrinsic peptide characteristics. Molecular information affects the peptide structure, formation, and activity. In this Perspective, peptide building blocks, nanostructure formation mechanisms, and the properties of these peptide materials are discussed with the results of recent publications. Bioinstructive and stimuli-responsive peptide materials have immense impacts on the nanomedicine field including drug delivery, cellular engineering, regenerative medicine, and biomedicine.
Collapse
Affiliation(s)
- Jovana Mitrovic
- The Pritzker School of Molecular
Engineering, The University of Chicago, Chicago, Illinois 60637 United States
| | - Gabriella Richey
- The Pritzker School of Molecular
Engineering, The University of Chicago, Chicago, Illinois 60637 United States
| | - Sarah Kim
- The Pritzker School of Molecular
Engineering, The University of Chicago, Chicago, Illinois 60637 United States
| | - Mustafa O. Guler
- The Pritzker School of Molecular
Engineering, The University of Chicago, Chicago, Illinois 60637 United States
| |
Collapse
|
12
|
Wen Z, Liu C, Teng Z, Jin Q, Liao Z, Zhu X, Huo S. Ultrasound meets the cell membrane: for enhanced endocytosis and drug delivery. NANOSCALE 2023; 15:13532-13545. [PMID: 37548587 DOI: 10.1039/d3nr02562d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Endocytosis plays a crucial role in drug delivery for precision therapy. As a non-invasive and spatiotemporal-controllable stimulus, ultrasound (US) has been utilized for improving drug delivery efficiency due to its ability to enhance cell membrane permeability. When US meets the cell membrane, the well-known cavitation effect generated by US can cause various biophysical effects, facilitating the delivery of various cargoes, especially nanocarriers. The comprehension of recent progress in the biophysical mechanism governing the interaction between ultrasound and cell membranes holds significant implications for the broader scientific community, particularly in drug delivery and nanomedicine. This review will summarize the latest research results on the biological effects and mechanisms of US-enhanced cellular endocytosis. Moreover, the latest achievements in US-related biomedical applications will be discussed. Finally, challenges and opportunities of US-enhanced endocytosis for biomedical applications will be provided.
Collapse
Affiliation(s)
- Zihao Wen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zihao Teng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Quanyi Jin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zhihuan Liao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
13
|
Lawanprasert A, Sloand JN, Vargas MG, Singh H, Eldor T, Miller MA, Pimcharoen S, Wang J, Leighow SM, Pritchard JR, Dokholyan NV, Medina SH. Deciphering the Mechanistic Basis for Perfluoroalkyl-Protein Interactions. Chembiochem 2023; 24:e202300159. [PMID: 36943393 PMCID: PMC10364144 DOI: 10.1002/cbic.202300159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/23/2023]
Abstract
Although rarely used in nature, fluorine has emerged as an important elemental ingredient in the design of proteins with altered folding, stability, oligomerization propensities, and bioactivity. Adding to the molecular modification toolbox, here we report the ability of privileged perfluorinated amphiphiles to noncovalently decorate proteins to alter their conformational plasticity and potentiate their dispersion into fluorous phases. Employing a complementary suite of biophysical, in-silico and in-vitro approaches, we establish structure-activity relationships defining these phenomena and investigate their impact on protein structural dynamics and intracellular trafficking. Notably, we show that the lead compound, perfluorononanoic acid, is 106 times more potent in inducing non-native protein secondary structure in select proteins than is the well-known helix inducer trifluoroethanol, and also significantly enhances the cellular uptake of complexed proteins. These findings could advance the rational design of fluorinated proteins, inform on potential modes of toxicity for perfluoroalkyl substances, and guide the development of fluorine-modified biologics with desirable functional properties for drug discovery and delivery applications.
Collapse
Affiliation(s)
- Atip Lawanprasert
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Janna N. Sloand
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Mariangely González Vargas
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
- Department of Industrial Engineering, University of Puerto Rico, Mayagüez, Puerto Rico 00682
| | - Harminder Singh
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Tomer Eldor
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Michael A. Miller
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Sopida Pimcharoen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA, 17033
| | - Scott M. Leighow
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Justin R. Pritchard
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA, 16802
| | - Nikolay V. Dokholyan
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
- Department of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA, 17033
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Hershey, PA, USA, 17033
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA, 16802
| | - Scott H. Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA, 16802
| |
Collapse
|
14
|
Huang D, Wang J, Song C, Zhao Y. Ultrasound-responsive matters for biomedical applications. Innovation (N Y) 2023; 4:100421. [PMID: 37192908 PMCID: PMC10182333 DOI: 10.1016/j.xinn.2023.100421] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/03/2023] [Indexed: 05/18/2023] Open
Abstract
Ultrasound (US) is a biofavorable mechanical wave that has shown practical significance in biomedical fields. Due to the cavitation effect, sonoluminescence, sonoporation, pyrolysis, and other biophysical and chemical effects, a wide range of matters have been elucidated to be responsive to the stimulus of US. This review addresses and discusses current developments in US-responsive matters, including US-breakable intermolecular conjugations, US-catalytic sonosensitizers, fluorocarbon compounds, microbubbles, and US-propelled micro- and nanorobots. Meanwhile, the interactions between US and advanced matters create various biochemical products and enhanced mechanical effects, leading to the exploration of potential biomedical applications, from US-facilitated biosensing and diagnostic imaging to US-induced therapeutic applications and clinical translations. Finally, the current challenges are summarized and future perspectives on US-responsive matters in biomedical applications and clinical translations are proposed.
Collapse
Affiliation(s)
- Danqing Huang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Jinglin Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Chuanhui Song
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Huang D, Cai L, Li N, Zhao Y. Ultrasound-trigged micro/nanorobots for biomedical applications. SMART MEDICINE 2023; 2:e20230003. [PMID: 39188275 PMCID: PMC11235770 DOI: 10.1002/smmd.20230003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/09/2023] [Indexed: 08/28/2024]
Abstract
Micro- and nanorobots (MNRs) propelled by external actuations have broad potential in biomedical applications. Among the numerous external excitations, ultrasound (US) features outstanding practical significance with merits of its noninvasiveness, tunability, penetrability, and biocompatibility. Attributing to various physiochemical effects of US, it can propel the MNRs with sophisticated structures through asymmetric acoustic streaming, bubble oscillation, and so on. In this review, we introduce several advanced and representative US-propelled MNRs with inhomogeneous density distribution, asymmetric shape, hollow cavity, etc. The potential biomedical applications of these cutting-edge MNRs are also presented, including intracellular delivery, harmful substances collection, and so on. Furthermore, we conclude the advantages and limitations of US-propelled MNRs and prospect their future developments in multidisciplinary fields.
Collapse
Affiliation(s)
- Danqing Huang
- Institute of Translational MedicineNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Lijun Cai
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Ning Li
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yuanjin Zhao
- Institute of Translational MedicineNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
16
|
Son H, Shin J, Park J. Recent progress in nanomedicine-mediated cytosolic delivery. RSC Adv 2023; 13:9788-9799. [PMID: 36998521 PMCID: PMC10043881 DOI: 10.1039/d2ra07111h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Cytosolic delivery of bioactive agents has exhibited great potential to cure undruggable targets and diseases. Because biological cell membranes are a natural barrier for living cells, efficient delivery methods are required to transfer bioactive and therapeutic agents into the cytosol. Various strategies that do not require cell invasive and harmful processes, such as endosomal escape, cell-penetrating peptides, stimuli-sensitive delivery, and fusogenic liposomes, have been developed for cytosolic delivery. Nanoparticles can easily display functionalization ligands on their surfaces, enabling many bio-applications for cytosolic delivery of various cargo, including genes, proteins, and small-molecule drugs. Cytosolic delivery uses nanoparticle-based delivery systems to avoid degradation of proteins and keep the functionality of other bioactive molecules, and functionalization of nanoparticle-based delivery vehicles imparts a specific targeting ability. With these advantages, nanomedicines have been used for organelle-specific tagging, vaccine delivery for enhanced immunotherapy, and intracellular delivery of proteins and genes. Optimization of the size, surface charges, specific targeting ability, and composition of nanoparticles is needed for various cargos and target cells. Toxicity issues with the nanoparticle material must be managed to enable clinical use.
Collapse
Affiliation(s)
- Hangyu Son
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea 222 Banpo-daero, Seocho-gu Seoul 06591 Republic of Korea
| | - Jeongsu Shin
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea 222 Banpo-daero, Seocho-gu Seoul 06591 Republic of Korea
| | - Joonhyuck Park
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea 222 Banpo-daero, Seocho-gu Seoul 06591 Republic of Korea
| |
Collapse
|
17
|
Zielińska A, Eder P, Karczewski J, Szalata M, Hryhorowicz S, Wielgus K, Szalata M, Dobrowolska A, Atanasov AG, Słomski R, Souto EB. Tocilizumab-coated solid lipid nanoparticles loaded with cannabidiol as a novel drug delivery strategy for treating COVID-19: A review. Front Immunol 2023; 14:1147991. [PMID: 37033914 PMCID: PMC10073701 DOI: 10.3389/fimmu.2023.1147991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Commonly used clinical strategies against coronavirus disease 19 (COVID-19), including the potential role of monoclonal antibodies for site-specific targeted drug delivery, are discussed here. Solid lipid nanoparticles (SLN) tailored with tocilizumab (TCZ) and loading cannabidiol (CBD) are proposed for the treatment of COVID-19 by oral route. TCZ, as a humanized IgG1 monoclonal antibody and an interleukin-6 (IL-6) receptor agonist, can attenuate cytokine storm in patients infected with SARS-CoV-2. CBD (an anti-inflammatory cannabinoid and TCZ agonist) alleviates anxiety, schizophrenia, and depression. CBD, obtained from Cannabis sativa L., is known to modulate gene expression and inflammation and also shows anti-cancer and anti-inflammatory properties. It has also been recognized to modulate angiotensin-converting enzyme II (ACE2) expression in SARS-CoV-2 target tissues. It has already been proven that immunosuppressive drugs targeting the IL-6 receptor may ameliorate lethal inflammatory responses in COVID-19 patients. TCZ, as an immunosuppressive drug, is mainly used to treat rheumatoid arthritis, although several attempts have been made to use it in the active hyperinflammatory phase of COVID-19, with promising outcomes. TCZ is currently administered intravenously. It this review, we discuss the potential advances on the use of SLN for oral administration of TCZ-tailored CBD-loaded SLN, as an innovative platform for managing SARS-CoV-2 and related infections.
Collapse
Affiliation(s)
| | - Piotr Eder
- Department of Gastroenterology, Dietetics, and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Jacek Karczewski
- Department of Environmental Medicine/Department of Gastroenterology, Human Nutrition and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Marlena Szalata
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Szymon Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences Poznan, Poznan, Poland
| | - Karolina Wielgus
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Milena Szalata
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants National Research Institute, Poznan, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics, and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Biotechnology, Magdalenka, Poland
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences Poznan, Poznan, Poland
| | - Eliana B. Souto
- UCIBIO – Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Lim I, Yu Lin E, Garcia J, Jia S, Sommerhalter RE, Ghosh SK, Gladysz JA, Sletten EM. Shortwave Infrared Fluorofluorophores for Multicolor In Vivo Imaging. Angew Chem Int Ed Engl 2023; 62:e202215200. [PMID: 36470851 PMCID: PMC9892283 DOI: 10.1002/anie.202215200] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Developing chemical tools to detect and influence biological processes is a cornerstone of chemical biology. Here we combine two tools which rely on orthogonality- perfluorocarbons and multiplexed shortwave infrared (SWIR) fluorescence imaging- to visualize nanoemulsions in real time in living mice. Drawing inspiration from fluorous and SWIR fluorophore development, we prepared two SWIR-emissive, fluorous-soluble chromenylium polymethine dyes. These are the most red-shifted fluorous fluorophores- "fluorofluorophores"-to date. After characterizing the dyes, their utility was demonstrated by tracking perfluorocarbon nanoemulsion biodistribution in vivo. Using an excitation-multiplexed approach to image two variables simultaneously, we gained insight into the importance of size and surfactant identity on biodistribution.
Collapse
Affiliation(s)
- Irene Lim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, CA 90095, USA
| | - Eric Yu Lin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, CA 90095, USA
| | - Joseph Garcia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, CA 90095, USA
| | - Shang Jia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, CA 90095, USA
| | - Robert E Sommerhalter
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, TX 77842, USA
| | - Subrata K Ghosh
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, TX 77842, USA
| | - John A Gladysz
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, TX 77842, USA
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, CA 90095, USA
| |
Collapse
|
19
|
Crowley NA, Medina SH. Targeted and transient opening of the blood brain barrier in discrete neurocircuits and brain regions. Neuropsychopharmacology 2023; 48:253-254. [PMID: 35851872 PMCID: PMC9700744 DOI: 10.1038/s41386-022-01380-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nicole A Crowley
- Department of Biology, Penn State University, University Park, PA, 16802, USA.
- Department of Biomedical Engineering, Penn State University, University Park, PA, 16802, USA.
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA.
| | - Scott H Medina
- Department of Biomedical Engineering, Penn State University, University Park, PA, 16802, USA.
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA.
| |
Collapse
|
20
|
Chen H, Wang Y, Liu Y, Zou Q, Yu J. Sensing of Fluidic Features Using Colloidal Microswarms. ACS NANO 2022; 16:16281-16291. [PMID: 36197321 DOI: 10.1021/acsnano.2c05281] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sensing of key parameters in fluidic environments has attracted extensive attention because the physical features of body fluids could be used for point-of-care disease diagnosis. Although various sensing methods have been investigated, effective sensing strategies of microenvironments remains a major challenge. In this paper, we propose an approach that can realize sensing of fluidic viscosity and ionic strength using microswarms formed by simple colloidal nanoparticles. The influences of fluidic ionic strength and viscosity on two swarm behaviors are analyzed (i.e., the spreading of circular vortex-like swarms and the elongation of elliptical swarms). The data models for quantifying the fluidic viscosity and ionic strength are obtained from experiments, and the fluidic features can be sensed successfully using the swarm behaviors. Furthermore, we demonstrate that the microswarms have the capability of passing through tortuous and narrow microchannels for sensing. Continuous sensing of different fluidic environments using swarms is also realized. Finally, the sensing of viscosity and ionic strength of porcine whole blood is presented, which also validates the feasibility of the sensing strategy.
Collapse
Affiliation(s)
- Hui Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen518129, China
| | - Yibin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen518129, China
| | - Yuezhen Liu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Qian Zou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen518129, China
| |
Collapse
|
21
|
Fluorinated Protein and Peptide Materials for Biomedical Applications. Pharmaceuticals (Basel) 2022; 15:ph15101201. [PMID: 36297312 PMCID: PMC9609677 DOI: 10.3390/ph15101201] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Fluorination represents one of the most powerful modern design strategies to impart biomacromolecules with unique functionality, empowering them for widespread application in the biomedical realm. However, the properties of fluorinated protein materials remain unpredictable due to the heavy context-dependency of the surrounding atoms influenced by fluorine’s strong electron-withdrawing tendencies. This review aims to discern patterns and elucidate design principles governing the biochemical synthesis and rational installation of fluorine into protein and peptide sequences for diverse biomedical applications. Several case studies are presented to deconvolute the overgeneralized fluorous stabilization effect and critically examine the duplicitous nature of the resultant enhanced chemical and thermostability as it applies to use as biomimetic therapeutics, drug delivery vehicles, and bioimaging modalities.
Collapse
|
22
|
Ma P, Lai X, Luo Z, Chen Y, Loh XJ, Ye E, Li Z, Wu C, Wu YL. Recent advances in mechanical force-responsive drug delivery systems. NANOSCALE ADVANCES 2022; 4:3462-3478. [PMID: 36134346 PMCID: PMC9400598 DOI: 10.1039/d2na00420h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/15/2022] [Indexed: 06/16/2023]
Abstract
Mechanical force responsive drug delivery systems (in terms of mechanical force induced chemical bond breakage or physical structure destabilization) have been recently explored to exhibit a controllable pharmaceutical release behaviour at a molecular level. In comparison with chemical or biological stimulus triggers, mechanical force is not only an external but also an internal stimulus which is closely related to the physiological status of patients. However, although this mechanical force stimulus might be one of the most promising and feasible sources to achieve on-demand pharmaceutical release, current research in this field is still limited. Hence, this tutorial review aims to comprehensively evaluate the recent advances in mechanical force-responsive drug delivery systems based on different types of mechanical force, in terms of direct stimulation by compressive, tensile, and shear force, or indirect/remote stimulation by ultrasound and a magnetic field. Furthermore, the exciting developments and current challenges in this field will also be discussed to provide a blueprint for potential clinical translational research of mechanical force-responsive drug delivery systems.
Collapse
Affiliation(s)
- Panqin Ma
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Xiyu Lai
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Ying Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis, #08-03 138634 Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis, #08-03 138634 Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis, #08-03 138634 Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) Agency for Science, Technology, and Research (ASTAR) Singapore 138634 Singapore
- Department of Materials Science and Engineering, National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| |
Collapse
|
23
|
Chen N, He Y, Zang M, Zhang Y, Lu H, Zhao Q, Wang S, Gao Y. Approaches and materials for endocytosis-independent intracellular delivery of proteins. Biomaterials 2022; 286:121567. [DOI: 10.1016/j.biomaterials.2022.121567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
|
24
|
Lin C, Chen YZ, Wu B, Yang MT, Liu CQ, Zhao Y. Advances and prospects of ultrasound targeted drug delivery systems using biomaterial-modified micro/nanobubbles for tumor therapy. Curr Med Chem 2022; 29:5062-5075. [PMID: 35362371 DOI: 10.2174/0929867329666220331110315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 11/22/2022]
Abstract
The incidence of malignant tumors is rising rapidly and tends to be in the younger, which has been one of the most important factors endangering the safety of human life. Ultrasound micro/nanobubbles, as a noninvasive and highly specific antitumor strategy, can reach and destroy tumor tissue through their effects of cavitation and acoustic perforation under the guidance of ultrasound. Meanwhile, micro/nanobubbles are now used as a novel drug carrier, releasing drugs at a target region, especially on the prospects of biomaterial-modified micro/nanobubbles as a dual modality for drug delivery and therapeutic monitoring. and successful evaluation of the sonoporation mechanism(s), ultrasound parameters, drug type and dose will need to be addressed before translating this technology for clinical use. Therefore, this paper collects the literature on the experimental and clinical studies of ultrasound biomaterial-modified micro/nanobubbles therapy in vitro and in vivo in recent years.
Collapse
Affiliation(s)
- Chen Lin
- Medical College of China three Gorges University;Yichang; China
| | - Ye-Zi Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University; Yichang; China
| | - Bo Wu
- Medical College of China three Gorges University;Yichang; China
| | - Meng-Ting Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University; Yichang; China
| | - Chao-Qi Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University; Yichang; China
| | - Yun Zhao
- Medical College of China three Gorges University;Yichang; China
| |
Collapse
|
25
|
Abdul Manas NHB, Abang Zaidel DN, Wan Azelee NI, Zaharah Mohd Fuzi SF, Mazila Ramli AN, Shaarani S, Illias RM, Karim NA. Delivery of bioencapsulated proteins. SMART NANOMATERIALS FOR BIOENCAPSULATION 2022:63-75. [DOI: 10.1016/b978-0-323-91229-7.00004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Huang J, Zhang X, Fu K, Wei G, Su Z. Stimulus-responsive nanomaterials under physical regulation for biomedical applications. J Mater Chem B 2021; 9:9642-9657. [PMID: 34807221 DOI: 10.1039/d1tb02130c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer is a growing threat to human beings. Traditional treatments for malignant tumors usually involve invasive means to healthy human tissues, such as surgical treatment and chemotherapy. In recent years the use of specific stimulus-responsive materials in combination with some non-contact, non-invasive stimuli can lead to better efficacy and has become an important area of research. It promises to develop personalized treatment systems for four types of physical stimuli: light, ultrasound, magnetic field, and temperature. Nanomaterials that are responsive to these stimuli can be used to enhance drug delivery, cancer treatment, and tissue engineering. This paper reviews the principles of the stimuli mentioned above, their effects on materials, and how they work with nanomaterials. For this aim, we focus on specific applications in controlled drug release, cancer therapy, tissue engineering, and virus detection, with particular reference to recent photothermal, photodynamic, sonodynamic, magnetothermal, radiation, and other types of therapies. It is instructive for the future development of stimulus-responsive nanomaterials for these aspects.
Collapse
Affiliation(s)
- Jinzhu Huang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Kun Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
27
|
Estabrook DA, Day RA, Sletten EM. Redox-Responsive Gene Delivery from Perfluorocarbon Nanoemulsions through Cleavable Poly(2-oxazoline) Surfactants. Angew Chem Int Ed Engl 2021; 60:17362-17367. [PMID: 33930255 PMCID: PMC8319079 DOI: 10.1002/anie.202102413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/20/2021] [Indexed: 12/19/2022]
Abstract
The clinical utility of emulsions as delivery vehicles is hindered by a dependence on passive release. Stimuli-responsive emulsions overcome this limitation but rely on external triggers or are composed of nanoparticle-stabilized droplets that preclude sizes necessary for biomedical applications. Here, we employ cleavable poly(2-oxazoline) diblock copolymer surfactants to form perfluorocarbon (PFC) nanoemulsions that release cargo upon exposure to glutathione. These surfactants allow for the first example of redox-responsive nanoemulsions in cellulo. A noncovalent fluorous tagging strategy is leveraged to solubilize a GFP plasmid inside the PFC nanoemulsions, whereupon protein expression is achieved selectively when employing a stimuli-responsive surfactant. This work contributes a methodology for non-viral gene delivery and represents a general approach to nanoemulsions that respond to endogenous stimuli.
Collapse
Affiliation(s)
- Daniel A Estabrook
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young, Dr. E., Los Angeles, CA, 90095, USA
| | - Rachael A Day
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young, Dr. E., Los Angeles, CA, 90095, USA
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young, Dr. E., Los Angeles, CA, 90095, USA
| |
Collapse
|
28
|
Sloand JN, Rokni E, Watson CT, Miller MA, Manning KB, Simon JC, Medina SH. Ultrasound-Responsive Nanopeptisomes Enable Synchronous Spatial Imaging and Inhibition of Clot Growth in Deep Vein Thrombosis. Adv Healthc Mater 2021; 10:e2100520. [PMID: 34137205 DOI: 10.1002/adhm.202100520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/25/2021] [Indexed: 01/22/2023]
Abstract
Deep vein thrombosis (DVT) is a life-threatening blood clotting condition that, if undetected, can cause deadly pulmonary embolisms. Critical to its clinical management is the ability to rapidly detect, monitor, and treat thrombosis. However, current diagnostic imaging modalities lack the resolution required to precisely localize vessel occlusions and enable clot monitoring in real time. Here, we rationally design fibrinogen-mimicking fluoropeptide nanoemulsions, or nanopeptisomes (NPeps), that allow contrast-enhanced ultrasound imaging of thrombi and synchronous inhibition of clot growth. The theranostic duality of NPeps is imparted via their intrinsic binding to integrins overexpressed on platelets activated during coagulation. The platelet-bound nanoemulsions can be vaporized and oscillate in an applied acoustic field to enable contrast-enhanced Doppler ultrasound detection of thrombi. Concurrently, nanoemulsions bound to platelets competitively inhibit secondary platelet-fibrinogen binding to disrupt further clot growth. Continued development of this synchronous theranostic platform may open new opportunities for image-guided, non-invasive, interventions for DVT and other vascular diseases.
Collapse
Affiliation(s)
- Janna N. Sloand
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Eric Rokni
- Graduate Program in Acoustics The Pennsylvania State University University Park PA 16802 USA
| | - Connor T. Watson
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Michael A. Miller
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Keefe B. Manning
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Julianna C. Simon
- Graduate Program in Acoustics The Pennsylvania State University University Park PA 16802 USA
| | - Scott H. Medina
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
29
|
Estabrook DA, Day RA, Sletten EM. Redox‐Responsive Gene Delivery from Perfluorocarbon Nanoemulsions through Cleavable Poly(2‐oxazoline) Surfactants. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Daniel A. Estabrook
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E. Young, Dr. E. Los Angeles CA 90095 USA
| | - Rachael A. Day
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E. Young, Dr. E. Los Angeles CA 90095 USA
| | - Ellen M. Sletten
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E. Young, Dr. E. Los Angeles CA 90095 USA
| |
Collapse
|
30
|
Sloand JN, Miller MA, Medina SH. Fluorinated peptide biomaterials. Pept Sci (Hoboken) 2021; 113:e24184. [PMID: 34541446 PMCID: PMC8448251 DOI: 10.1002/pep2.24184] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Fluorinated compounds, while rarely used by nature, are emerging as fundamental ingredients in biomedical research, with applications in drug discovery, metabolomics, biospectroscopy, and, as the focus of this review, peptide/protein engineering. Leveraging the fluorous effect to direct peptide assembly has evolved an entirely new class of organofluorine building blocks from which unique and bioactive materials can be constructed. Here, we discuss three distinct peptide fluorination strategies used to design and induce peptide assembly into nano-, micro-, and macrosupramolecular states that potentiate high-ordered organization into material scaffolds. These fluorine-tailored peptide assemblies employ the unique fluorous environment to boost biofunctionality for a broad range of applications, from drug delivery to antibacterial coatings. This review provides foundational tactics for peptide fluorination and discusses the utility of these fluorous-directed hierarchical structures as material platforms in diverse biomedical applications.
Collapse
Affiliation(s)
- Janna N Sloand
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA
| | - Michael A Miller
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA
| | - Scott H Medina
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
31
|
Lawanprasert A, Chau A, Sloand JN, Hannifin S, Medina SH. Tuning the Interfacial Properties of Fluorous Colloids Toward Ultrasound Programmable Bioactivity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5989-5998. [PMID: 33522791 DOI: 10.1021/acsami.0c20352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid-in-liquid emulsions are kinetically stable colloids that undergo liquid-to-gas phase transitions in response to thermal or acoustic stimuli. Perfluorocarbons (PFCs) are preferred species as their highly fluorinated nature imparts unique properties that are unparalleled by nonfluorinated counterparts. However, traditional methods to prepare PFC emulsions lack the ability to precisely tune the thermodynamic stability of the fluorous-water interphase and consequently control their vaporization behavior. Here, we report a privileged fluoroalkanoic acid that undergoes concentration-dependent assembly on the surfaces of fluorous droplets to modulate interfacial tension. This allows for the rational formulation of orthogonal PFC droplets that can be programmed to vaporize at specified ultrasound powers. We exploit this behavior in two exemplary biomedical settings by developing emulsions that aid ultrasound-mediated hemostasis and enable bioorthogonal delivery of molecular sensors to mammalian cells. Mechanistic insights gained from these studies can be generalized to tune the thermodynamic interfacial equilibria of PFC emulsions toward designing controllable tools for precision medicine.
Collapse
Affiliation(s)
- Atip Lawanprasert
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Alda Chau
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Janna N Sloand
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Sean Hannifin
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
- Immunology Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Scott H Medina
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
32
|
Miller MA, Sletten EM. Perfluorocarbons in Chemical Biology. Chembiochem 2020; 21:3451-3462. [PMID: 32628804 PMCID: PMC7736518 DOI: 10.1002/cbic.202000297] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/03/2020] [Indexed: 01/10/2023]
Abstract
Perfluorocarbons, saturated carbon chains in which all the hydrogen atoms are replaced with fluorine, form a separate phase from both organic and aqueous solutions. Though perfluorinated compounds are not found in living systems, they can be used to modify biomolecules to confer orthogonal behavior within natural systems, such as improved stability, engineered assembly, and cell-permeability. Perfluorinated groups also provide handles for purification, mass spectrometry, and 19 F NMR studies in complex environments. Herein, we describe how the unique properties of perfluorocarbons have been employed to understand and manipulate biological systems.
Collapse
Affiliation(s)
- Margeaux A Miller
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E Young Dr E, Los Angeles, CA, 90095, USA
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E Young Dr E, Los Angeles, CA, 90095, USA
| |
Collapse
|
33
|
Li D, Li X, Yang F, Yuan R, Xiang Y. Targeted Delivery of DNA Framework-Encapsulated Native Therapeutic Protein into Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54489-54496. [PMID: 33253532 DOI: 10.1021/acsami.0c17887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A protein-based therapy is significantly challenged by the successful delivery of native proteins into the targeted cancer cells. We address this challenge here using an all-sealed divalent aptamer tetrahedral DNA framework (asdTDF) delivery platform, in which the protein drug is encapsulated inside the cavity of the framework stoichiometrically via a reversible chemical bond. The ligase-assisted seal of the nicks results in highly enhanced TDF stability of the against nuclease digestion to effectively protect the therapeutic protein from degradation. In addition, the divalent aptamer sequences incorporated into the framework favor it with a target-specific and efficient delivery capability. Importantly, upon being readily delivered into the targeted cancer cells, endogenous glutathione can trigger the release of the native therapeutic protein from the TDF in a traceless fashion by cleaving the reversible chemical bond, thereby leading to effective apoptosis of the specific cancer cells.
Collapse
Affiliation(s)
- Daxiu Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xia Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Fang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
34
|
Decker RE, Lamantia ZE, Emrick TS, Figueiredo ML. Sonodelivery in Skeletal Muscle: Current Approaches and Future Potential. Bioengineering (Basel) 2020; 7:E107. [PMID: 32916815 PMCID: PMC7552685 DOI: 10.3390/bioengineering7030107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
There are currently multiple approaches to facilitate gene therapy via intramuscular gene delivery, such as electroporation, viral delivery, or direct DNA injection with or without polymeric carriers. Each of these methods has benefits, but each method also has shortcomings preventing it from being established as the ideal technique. A promising method, ultrasound-mediated gene delivery (or sonodelivery) is inexpensive, widely available, reusable, minimally invasive, and safe. Hurdles to utilizing sonodelivery include choosing from a large variety of conditions, which are often dependent on the equipment and/or research group, and moderate transfection efficiencies when compared to some other gene delivery methods. In this review, we provide a comprehensive look at the breadth of sonodelivery techniques for intramuscular gene delivery and suggest future directions for this continuously evolving field.
Collapse
Affiliation(s)
- Richard E. Decker
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (R.E.D.); (Z.E.L.)
| | - Zachary E. Lamantia
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (R.E.D.); (Z.E.L.)
| | - Todd S. Emrick
- Department of Polymer Science & Engineering, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA;
| | - Marxa L. Figueiredo
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (R.E.D.); (Z.E.L.)
| |
Collapse
|
35
|
Yadav AK, Hernandez S, Su S, Chan J. Acoustic-based chemical tools for profiling the tumor microenvironment. Curr Opin Chem Biol 2020; 57:114-121. [PMID: 32769068 DOI: 10.1016/j.cbpa.2020.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/02/2020] [Accepted: 06/22/2020] [Indexed: 01/19/2023]
Abstract
Acoustic-based imaging modalities (e.g. ultrasonography and photoacoustic imaging) have emerged as powerful approaches to noninvasively visualize the interior of the body due to their biocompatibility and the ease of sound transmission in tissue. These technologies have recently been augmented with an array of chemical tools that enable the study and modulation of the tumor microenvironment at the molecular level. In addition, the application of ultrasound and ultrasound-responsive materials has been used for drug delivery with high spatiotemporal control. In this review, we highlight recent advances (in the last 2-3 years) in acoustic-based chemical tools and technologies suitable for furthering our understanding of molecular events in complex tumor microenvironments.
Collapse
Affiliation(s)
- Anuj K Yadav
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Selena Hernandez
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Shengzhang Su
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Jefferson Chan
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
| |
Collapse
|
36
|
Simonson AW, Aronson MR, Medina SH. Supramolecular Peptide Assemblies as Antimicrobial Scaffolds. Molecules 2020; 25:E2751. [PMID: 32545885 PMCID: PMC7355828 DOI: 10.3390/molecules25122751] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial discovery in the age of antibiotic resistance has demanded the prioritization of non-conventional therapies that act on new targets or employ novel mechanisms. Among these, supramolecular antimicrobial peptide assemblies have emerged as attractive therapeutic platforms, operating as both the bactericidal agent and delivery vector for combinatorial antibiotics. Leveraging their programmable inter- and intra-molecular interactions, peptides can be engineered to form higher ordered monolithic or co-assembled structures, including nano-fibers, -nets, and -tubes, where their unique bifunctionalities often emerge from the supramolecular state. Further advancements have included the formation of macroscopic hydrogels that act as bioresponsive, bactericidal materials. This systematic review covers recent advances in the development of supramolecular antimicrobial peptide technologies and discusses their potential impact on future drug discovery efforts.
Collapse
Affiliation(s)
- Andrew W. Simonson
- Department of Biomedical Engineering, The Pennsylvania State University, Suite 122, CBE Building, University Park, PA 16802-4400, USA; (A.W.S.); (M.R.A.)
| | - Matthew R. Aronson
- Department of Biomedical Engineering, The Pennsylvania State University, Suite 122, CBE Building, University Park, PA 16802-4400, USA; (A.W.S.); (M.R.A.)
| | - Scott H. Medina
- Department of Biomedical Engineering, The Pennsylvania State University, Suite 122, CBE Building, University Park, PA 16802-4400, USA; (A.W.S.); (M.R.A.)
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802-4400, USA
| |
Collapse
|