1
|
Zhu W, Liu L, Lao Y, He Y. Preparation of porous silica materials using a eucalyptus template method and its efficient adsorption of methylene blue. ENVIRONMENTAL TECHNOLOGY 2024; 45:4737-4749. [PMID: 37947794 DOI: 10.1080/09593330.2023.2283082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/05/2023] [Indexed: 11/12/2023]
Abstract
Methylene blue (MB) is a prevalent pollutant in organic wastewater. For this research, eucalyptus wood was used as a template, into which quartz powder dissolved in NaOH was grown, resulting in a low-cost and efficient porous silica adsorbent material (PSAM). This PSAM successfully replaces expensive materials for MB removal from water. Through the application of Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis, it became evident that PSAM displays a porous slit pore structure characterized by numerous active sites, leading to an impressive maximum specific surface area of 88.05 m²/g. The central objective of this research was to investigate the impact of experimental temperature, initial dye concentration, and pH on the adsorption process. The adsorption kinetics were analyzed using the pseudo-first-order and pseudo-second-order models, as well as the Langmuir model. Remarkably, PSAM exhibited a substantial maximum adsorption capacity of 90.01 mg/g at 293 K, achieving an adsorption rate of over 85% within a mere 10-minute timeframe. The thermodynamic analysis revealed that the adsorption of MB onto PSAM was characterized by spontaneity and accompanied by heat absorption. Fourier Transform Infrared (FTIR) and SEM comparisons of PSAM before and after adsorption indicated that MB adsorption primarily occurred through electrostatic gravitational binding. In comparison to other adsorbents, PSAM exhibited exceptional efficacy in removing MB from water.
Collapse
Affiliation(s)
- Wenxin Zhu
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, People's Republic of China
| | - Leping Liu
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, People's Republic of China
| | - YuanXia Lao
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, People's Republic of China
| | - Yan He
- School of Chemistry and Chemical Engineering and Guangxi Key Lab of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, People's Republic of China
| |
Collapse
|
2
|
Kjidaa B, Mchich Z, Aziz K, Saffaj N, Saffaj T, Mamouni R. Flexible Synthesis of Bio-Hydroxyapatite/Chitosan Hydrogel Beads for Highly Efficient Orange G Dye Removal: Batch and Recirculating Fixed-Bed Column Study. ACS OMEGA 2024; 9:8543-8556. [PMID: 38405537 PMCID: PMC10883016 DOI: 10.1021/acsomega.3c10054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024]
Abstract
The use of fish waste as a source material for the development of functional beads has significant potential applications in the fields of materials science and environmental sustainability. In this study, a biomaterial bead of chitosan was cross-linked with bio-hydroxyapatite (Bio-Hap/Cs) through the encapsulation process to create a stable and durable material. The beads are characterized using scanning electron microscopy combined with energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, and X-ray diffraction techniques. The adsorption efficiency of Bio-Hap/Cs hydrogel beads was evaluated by using Orange G (OG) dye in both batch and recirculating column systems, and the effect of various parameters on the adsorption capacity was investigated. In the batch study, it was found that OG removal increased with an increasing pH and adsorbent dose. However, in the recirculating column system, a higher bed height and lower flow rate led to increased removal of the OG dye. The kinetic study indicated that the pseudo-second-order model provided a good description of OG adsorption onto Bio-Hap/Cs beads in both batch and recirculating processes, with a high coefficient correlation. The maximum adsorbed amounts are found to be 19.944 mg g-1 and 9.472 mg g-1 in batch and recirculating processes, respectively. Therefore, Bio-Hap/Cs hydrogel beads have demonstrated an effective and reusable material for OG dye remediation from aqueous solutions using recirculating adsorption processes.
Collapse
Affiliation(s)
- Bouthayna Kjidaa
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Zaineb Mchich
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Khalid Aziz
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Nabil Saffaj
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Taoufiq Saffaj
- Laboratory
of Applied Organic Chemistry, Faculty of Sciences and Techniques of
Fez, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco
| | - Rachid Mamouni
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| |
Collapse
|
3
|
Latif MJ, Ali S, Jamil S, Bibi S, Jafar T, Rasheed A, Noreen S, Bashir A, Rauf Khan S. Comparative catalytic reduction and degradation with biodegradable sodium alginate based nanocomposite: Zinc oxide/N-doped carbon nitride/sodium alginate. Int J Biol Macromol 2024; 254:127954. [PMID: 37951425 DOI: 10.1016/j.ijbiomac.2023.127954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
Sodium alginate (SA) is a biodegradable macromolecule which is used to synthesize nanocomposites and their further use as catalysis. Zinc oxide (ZnO) and nitrogen doped carbon nitride (ND-C3N4) nanoparticles are prepared using solvothermal and hydrothermal methods, respectively. ZnO/ND-C3N4/SA nanocomposites are successfully synthesized by employing in-situ polymerization. The presence of essential functional groups is confirmed by Fourier transform infrared (FTIR) spectroscopic analysis. Controlled spherical morphology for ZnO nanoparticles, with an average diameter of ∼52 nm, is shown by Scanning electron microscopic (SEM) analysis, while rice-like grain structure with an average grain size ∼62 nm is exhibited by ND-C3N4 nanoparticles. The presence of required elements is confirmed by Energy dispersive X-ray spectroscopic (EDX) analysis. The crystalline nature of nanocomposites is verified by X-ray diffraction spectroscopic (XRD) analysis. The investigation of the catalytic efficiency for degradation and reduction of various organic dyes is carried out on nanoparticles and nanocomposites. Thorough examination and comparison of parameters, such as apparent rate constant (kapp), reduction time, percentage reduction, reduced concentration and half-life, are conducted for all substrates. The nanocomposites show greater efficiency than nanoparticles in both reactions: catalytic reduction and catalytic degradation.
Collapse
Affiliation(s)
| | - Sarmed Ali
- Faculty of Engineering, Østfold University College, Halden, Norway
| | - Saba Jamil
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shamsa Bibi
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Touseef Jafar
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ammara Rasheed
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sadia Noreen
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Arslan Bashir
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shanza Rauf Khan
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
4
|
Zou J, Li Y, Dong H, Ma N, Dai W. Well-constructed a water stable Cu-BTC@TpPa-1 binary composite with excellent capture ability toward malachite green. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124306-124315. [PMID: 37996590 DOI: 10.1007/s11356-023-31114-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Adsorptive removal of dyes (e.g., malachite green (MG)) from wastewater using commercially available adsorbents is not significantly efficient. Metal-organic frameworks (MOFs) such as Cu-BTC is considered as an excellent adsorbent in adsorption-separation filed. However, the water instability of Cu-BTC restricts its potential utilization in dye wastewater purification. In this paper, we have developed a novel metal/covalent-organic frameworks (Cu-BTC@TpPa-1) binary composite by solvothermal method. This composite serves as a multifunctional platform for the effective removal of MG from water. This Cu-BTC@TpPa-1 obviously keeps structural integrity soaked in water for 7 days. And its heat resistant performance can achieve 360 °C because of the TpPa-1 protection, which is outdistance to that of Cu-BTC. The adsorbed capacity of MG over Cu-BTC@TpPa-1 is exceptionally high, with an uptake of up to 64.12 mg/g, which is superior compared to previous adsorbents, highlighting its superior adsorption capabilities. The adsorptive performance was controlled by the associative effects of Cu-BTC and TpPa-1 with an association effect of π-complexation and electrostatic attraction. The Cu-BTC@TpPa-1 might be a prospective adsorbent for MG capture from industrial wastewater.
Collapse
Affiliation(s)
- Jiaying Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Yan Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Haotian Dong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Na Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Wei Dai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| |
Collapse
|
5
|
Salem MA, Salem IA, El-Dahrawy WM, El-Ghobashy MA. Nano-silica from white silica sand functionalized with PANI-SDS (SiO 2/PANI-SDS) as an adsorbent for the elimination of methylene blue from aqueous media. Sci Rep 2023; 13:18684. [PMID: 37907656 PMCID: PMC10618530 DOI: 10.1038/s41598-023-45873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Natural resources including sand are one of the best approaches for treating dye-polluted wastewater. The SiO2/PANI-SDS nanocomposite was synthesized by self-assembly and intermolecular interaction. The physicochemical features of the SiO2/PANI-SDS nanocomposite were explored by FT-IR, XRD, SEM, TEM, EDX, and N2 adsorption-desorption techniques to be evaluated as an adsorbent for the MB. The surface area of the SiO2/PANI-SDS is 23.317 m2/g, the pore size is 0.036 cm3/g, and the pore radius is 1.91 nm. Batch kinetic studies at different initial adsorbate, adsorbent and NaCl concentrations, and temperatures showed excellent pseudo-second-order. Several isotherm models were applied to evaluate the MB adsorption on the SiO2/PANI-SDS nanocomposite. According to R2 values the isotherm models were fitted in the following order: Langmuir > Dubinin-Radushkevich (D-R) > Freundlich. The adsorption/desorption process showed good reusability of the SiO2/PANI-SDS nanocomposite.
Collapse
Affiliation(s)
- Mohamed A Salem
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Ibrahim A Salem
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Wafaa M El-Dahrawy
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Marwa A El-Ghobashy
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
6
|
Ingrassia EB, Lemos ES, Escudero LB. Treatment of textile wastewater using carbon-based nanomaterials as adsorbents: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91649-91675. [PMID: 37525081 DOI: 10.1007/s11356-023-28908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Waste derived from the textile industry can contain a wide variety of pollutants of organic and inorganic natures, such as dyes (e.g., acid, basic, reactive, mordant dyes) and toxic metals (e.g., lead, chromium, cadmium). The presence of pollutants at high concentrations in textile waste makes them relevant sources of pollution in the environment. To solve this problem, various technologies have been developed for the removal of pollutants from these matrices. Thus, adsorption emerges as an efficient alternative for textile waste remediation, providing advantages as simplicity of operation, economy, possibility of using different adsorbent materials, and developing on-line systems that allow the reuse of the adsorbent during several adsorption/desorption cycles. This review will initially propose an introduction to the adsorption world, its fundamentals, and aspects related to kinetics, equilibrium, and thermodynamics. The possible mechanisms through which a pollutant can be retained on an adsorbent will be explained. The analytical techniques that offer valuable information to characterize the solid phases as well as each adsorbate/adsorbent system will be also commented. The most common synthesis techniques to obtain carbon nano-adsorbents have been also presented. In addition, the latest advances about the use of these adsorbents for the removal of pollutants from textile waste will be presented and discussed. The contributions reported in this manuscript demonstrated the use of highly efficient carbon-based nano-adsorbents for the removal of both organic and inorganic pollutants, reaching removal percentages from 65 to 100%.
Collapse
Affiliation(s)
- Estefanía Belén Ingrassia
- Laboratory of Environmental Biotechnology (BioTA), Interdisciplinary Institute of Basic Sciences (ICB), UNCUYO - CONICET, Faculty of Natural and Exact Sciences, National University of Cuyo, Padre Contreras 1300, 5500, Mendoza, Argentina
| | - Eliana Soledad Lemos
- Laboratory of Environmental Biotechnology (BioTA), Interdisciplinary Institute of Basic Sciences (ICB), UNCUYO - CONICET, Faculty of Natural and Exact Sciences, National University of Cuyo, Padre Contreras 1300, 5500, Mendoza, Argentina
| | - Leticia Belén Escudero
- Laboratory of Environmental Biotechnology (BioTA), Interdisciplinary Institute of Basic Sciences (ICB), UNCUYO - CONICET, Faculty of Natural and Exact Sciences, National University of Cuyo, Padre Contreras 1300, 5500, Mendoza, Argentina.
| |
Collapse
|
7
|
Chen J, Li Y, Liang G, Ma N, Dai W. Boosted capture of trace Cd(II) with a magnetic dual metal-organic-framework adsorbent. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
8
|
Mohanapriya V, Sakthivel R, Pham NDK, Cheng CK, Le HS, Dong TMH. Nanotechnology- A ray of hope for heavy metals removal. CHEMOSPHERE 2023; 311:136989. [PMID: 36309058 DOI: 10.1016/j.chemosphere.2022.136989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Environmental effects of heavy metal pollution are considered as a widespread problem throughout the world, as it jeopardizes human health and also reduces the sustainability of a cleaner environment. Removal of such noxious pollutants from wastewater is pivotal because it provides a propitious solution for a cleaner environment and water scarcity. Adsorption treatment plays a significant role in water remediation due to its potent treatment and low cost of adsorbents. In the last two decades, researchers have been highly focused on the modification of adsorption treatment by functionalized and surface-modified nanomaterials which has spurred intense research. The characteristics of nano adsorbents attract global scientists as it is also economically viable. This review shines its light on the functionalized nanomaterials application for heavy metals removal from wastewater and also highlights the importance of regeneration of nanomaterials in the view of visualizing the economic aspects along with a cleaner environment. The review also focused on the proper disposal of nanomaterials with crucial issues that persist in the adsorption process and also emphasize future research modification at a large-scale application in industries.
Collapse
Affiliation(s)
- V Mohanapriya
- Research scholar, Department of Civil Engineering, Government College of Technology, Coimbatore, 641013, India.
| | - R Sakthivel
- Department of Mechanical Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - Nguyen Dang Khoa Pham
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Huu Son Le
- Faculty of Automotive Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Thi Minh Hao Dong
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
9
|
Jeyavani V, Mukherjee SP. Crystal Phase and Morphology-Controlled Synthesis of Tungsten Oxide Nanostructures for Remarkably Ultrafast Adsorption and Separation of Organic Dyes. Inorg Chem 2022; 61:18119-18134. [DOI: 10.1021/acs.inorgchem.2c02715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Vijayakrishnan Jeyavani
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pashan, Pune411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Shatabdi Porel Mukherjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pashan, Pune411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
10
|
Chouaybi I, Ouassif H, Bettach M, Moujahid EM. Fast and high removal of acid red 97 dye from aqueous solution by adsorption onto a synthetic hydrocalumite: Structural characterization and retention mechanisms. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Advances in the role of natural gums-based hydrogels in water purification, desalination and atmospheric-water harvesting. Int J Biol Macromol 2022; 222:2888-2921. [DOI: 10.1016/j.ijbiomac.2022.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/01/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|
12
|
Salami BA, Oyehan TA, Gambo Y, Badmus SO, Tanimu G, Adamu S, Lateef SA, Saleh TA. Technological trends in nanosilica synthesis and utilization in advanced treatment of water and wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42560-42600. [PMID: 35380322 DOI: 10.1007/s11356-022-19793-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Water and wastewater treatment applications stand to benefit immensely from the design and development of new materials based on silica nanoparticles and their derivatives. Nanosilica possesses unique properties, including low toxicity, chemical inertness, and excellent biocompatibility, and can be developed from a variety of sustainable precursor materials. Herein, we provide an account of the recent advances in the synthesis and utilization of nanosilica for wastewater treatment. This review covers key physicochemical aspects of several nanosilica materials and a variety of nanotechnology-enabled wastewater treatment techniques such as adsorption, separation membranes, and antimicrobial applications. It also discusses the prospective design and tuning options for nanosilica production, such as size control, morphological tuning, and surface functionalization. Informative discussions on nanosilica production from agricultural wastes have been offered, with a focus on the synthesis methodologies and pretreatment requirements for biomass precursors. The characterization of the different physicochemical features of nanosilica materials using critical surface analysis methods is discussed. Bio-hybrid nanosilica materials have also been highlighted to emphasize the critical relevance of environmental sustainability in wastewater treatment. To guarantee the thoroughness of the review, insights into nanosilica regeneration and reuse are provided. Overall, it is envisaged that this work's insights and views will inspire unique and efficient nanosilica material design and development with robust properties for water and wastewater treatment applications.
Collapse
Affiliation(s)
- Babatunde Abiodun Salami
- Interdisciplinary Research Center for Construction and Building Materials, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Tajudeen Adeyinka Oyehan
- Geosciences Department, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Yahya Gambo
- Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Suaibu O Badmus
- Center for Integrative Petroleum Research, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Gazali Tanimu
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Sagir Adamu
- Chemical Engineering Department and Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Saheed A Lateef
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Tawfik A Saleh
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
13
|
Chu KH, Debord J, Harel M, Bollinger JC. Mirror, Mirror on the Wall, Which Is the Fairest of Them All? Comparing the Hill, Sips, Koble–Corrigan, and Liu Adsorption Isotherms. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Khim Hoong Chu
- Honeychem Research, Newtown, Wellington 6021, New Zealand
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Jean Debord
- Service de Pharmacologie-Toxicologie, Hôpital Dupuytren, Limoges, 87042, France
| | - Michel Harel
- Université de Limoges, Laboratoire Vie-Santé UR 24 134, Faculté de Médecine, Limoges, 87025, France
- Institut de Mathématiques de Toulouse, UMR CNRS 5219, Toulouse, 31062, France
| | - Jean-Claude Bollinger
- Université de Limoges, Laboratoire E2Lim, Faculté des Sciences & Techniques, Limoges, 87060, France
| |
Collapse
|
14
|
Dong H, Chen J, Wu D, Xue K, Ma N, Dai W. Well-constructed approach of exceptionally water-stable (mesoporous SiO 2)-on-(microporous Cu-BTC) composite for efficient methylene blue capture. NEW J CHEM 2022. [DOI: 10.1039/d2nj01993k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel (mesoporous SiO2)-on-(microporous Cu-BTC) exhibits good hydrothermal stability and methylene blue capture ability.
Collapse
Affiliation(s)
- Haotian Dong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jiehong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Danping Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Kunpeng Xue
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
- Welch Materials (Zhejiang), Inc, Jinhua 321000, China
| | - Na Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Wei Dai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|
15
|
Verification of pore size effect on aqueous-phase adsorption kinetics: A case study of methylene blue. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127119] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Singh R, Munya V, Are VN, Nayak D, Chattopadhyay S. A Biocompatible, pH-Sensitive, and Magnetically Separable Superparamagnetic Hydrogel Nanocomposite as an Efficient Platform for the Removal of Cationic Dyes in Wastewater Treatment. ACS OMEGA 2021; 6:23139-23154. [PMID: 34549115 PMCID: PMC8444210 DOI: 10.1021/acsomega.1c02720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
A series of environment-friendly cationic dye adsorbents, namely, pH-sensitive superparamagnetic hydrogel nanocomposite AA-VSA-P/SPIONs systems with different concentrations of superparamagnetic iron oxide nanoparticles (SPIONs; 1.2, 3.2, and 5.2 wt %), was synthesized by free-radical polymerization reaction using two pH-sensitive monomers, acrylic acid (AA) and vinylsulfonic acid (VSA), in an optimum ratio, in the presence of presynthesized SPIONs. The structural properties, thermal stability, and chemical configuration of AA-VSA-P/SPIONs systems with different weight percentages of SPIONs were characterized by XRD, TGA, Raman spectroscopy, and FTIR spectroscopy. The systems show substantial efficiency as dye adsorbents for removing cationic dyes (MB dye) from aqueous solution in neutral to alkaline medium. Further, these systems exhibit easy magnetic separation capabilities from aqueous solutions after dye adsorption, even for a very low weight percentage of SPIONs. The adsorption kinetics, mechanism, and isotherms of these systems were evaluated. The study suggests consistency with the pseudo-second-order kinetic model, following an intraparticle diffusion mechanism, where the heterogeneous surface of the system having different activation energies for adsorption plays the crucial role in dye adsorption via chemisorption for higher pH medium, which was further substantiated by excellent data fit with the Freundlich isotherm model. Biocompatibility and regeneration-ability studies establish the environment-friendliness and cost effectivity of the system.
Collapse
Affiliation(s)
- Rinki Singh
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Vikas Munya
- Department
of Physics, Indian Institute of Technology
Indore, Simrol, Indore 453552, India
| | - Venkata Narayana Are
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Debasis Nayak
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Sudeshna Chattopadhyay
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
- Department
of Physics, Indian Institute of Technology
Indore, Simrol, Indore 453552, India
- Department
of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| |
Collapse
|
17
|
Mudhoo A, Sillanpää M. Magnetic nanoadsorbents for micropollutant removal in real water treatment: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:4393-4413. [PMID: 34341658 PMCID: PMC8320315 DOI: 10.1007/s10311-021-01289-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/18/2021] [Indexed: 05/24/2023]
Abstract
Pure water will become a golden resource in the context of the rising pollution, climate change and the recycling economy, calling for advanced purification methods such as the use of nanostructured adsorbents. However, coming up with an ideal nanoadsorbent for micropollutant removal is a real challenge because nanoadsorbents, which demonstrate very good performances at laboratory scale, do not necessarily have suitable properties in in full-scale water purification and wastewater treatment systems. Here, magnetic nanoadsorbents appear promising because they can be easily separated from the slurry phase into a denser sludge phase by applying a magnetic field. Yet, there are only few examples of large-scale use of magnetic adsorbents for water purification and wastewater treatment. Here, we review magnetic nanoadsorbents for the removal of micropollutants, and we explain the integration of magnetic separation in the existing treatment plants. We found that the use of magnetic nanoadsorbents is an effective option in water treatment, but lacks maturity in full-scale water treatment facilities. The concentrations of magnetic nanoadsorbents in final effluents can be controlled by using magnetic separation, thus minimizing the ecotoxicicological impact. Academia and the water industry should better collaborate to integrate magnetic separation in full-scale water purification and wastewater treatment plants.
Collapse
Affiliation(s)
- Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837 Mauritius
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
18
|
Designing of bentonite based nanocomposite hydrogel for the adsorptive removal and controlled release of ampicillin. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114166] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Forghani M, Azizi A, Livani MJ, Kafshgari LA. Adsorption of lead(II) and chromium(VI) from aqueous environment onto metal-organic framework MIL-100(Fe): Synthesis, kinetics, equilibrium and thermodynamics. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121636] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Makhado E, Pandey S, Modibane KD, Kang M, Hato MJ. Sequestration of methylene blue dye using sodium alginate poly(acrylic acid)@ZnO hydrogel nanocomposite: Kinetic, Isotherm, and Thermodynamic Investigations. Int J Biol Macromol 2020; 162:60-73. [DOI: 10.1016/j.ijbiomac.2020.06.143] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 01/05/2023]
|
21
|
Zhang H, Guan W, Zhang L, Guan X, Wang S. Degradation of an Organic Dye by Bisulfite Catalytically Activated with Iron Manganese Oxides: The Role of Superoxide Radicals. ACS OMEGA 2020; 5:18007-18012. [PMID: 32743173 PMCID: PMC7391359 DOI: 10.1021/acsomega.0c01257] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/30/2020] [Indexed: 05/11/2023]
Abstract
Metal-activated bisulfite systems have been widely used to treat recalcitrant wastewater. However, due to the disadvantages of their narrow effective pH range and difficulty in recovering metal ions, homogeneous systems are severely limited in practical applications. To overcome these problems, Fe/Mn bimetallic catalysts with different molar ratios were prepared using a simple sol-gel method to activate bisulfite. Influential factors, such as catalyst and system types, catalyst dosage, bisulfite concentration, pH value, and bisulfite addition modes, were investigated. The new system exhibited a wide effective pH range and high degradation efficiency, and it was found that the dissolved oxygen content played an important role in the activation system. The radical quenching test showed that a superoxide radical (O2 •-), instead of a hydroxyl radical (HO•) or a sulfate radical (SO4 •-), was the main oxide species for the degradation of rhodamine B (RhB).
Collapse
Affiliation(s)
- Haifeng Zhang
- School of Chemistry Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Wenjia Guan
- School of Chemistry Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Lanhe Zhang
- School of Chemistry Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Xiaohui Guan
- School of Chemistry Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Shengli Wang
- School of Chemistry Engineering, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|