1
|
Yoo J, Lee J, Ahn B, Han J, Lim MH. Multi-target-directed therapeutic strategies for Alzheimer's disease: controlling amyloid-β aggregation, metal ion homeostasis, and enzyme inhibition. Chem Sci 2025; 16:2105-2135. [PMID: 39810997 PMCID: PMC11726323 DOI: 10.1039/d4sc06762b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative dementia, marked by progressive cognitive decline and memory impairment. Despite advances in therapeutic research, single-target-directed treatments often fall short in addressing the complex, multifactorial nature of AD. This arises from various pathological features, including amyloid-β (Aβ) aggregate deposition, metal ion dysregulation, oxidative stress, impaired neurotransmission, neuroinflammation, mitochondrial dysfunction, and neuronal cell death. This review illustrates their interrelationships, with a particular emphasis on the interplay among Aβ, metal ions, and AD-related enzymes, such as β-site amyloid precursor protein cleaving enzyme 1 (BACE1), matrix metalloproteinase 9 (MMP9), lysyl oxidase-like 2 (LOXL2), acetylcholinesterase (AChE), and monoamine oxidase B (MAOB). We further underscore the potential of therapeutic strategies that simultaneously inhibit Aβ aggregation and address other pathogenic mechanisms. These approaches offer a more comprehensive and effective method for combating AD, overcoming the limitations of conventional therapies.
Collapse
Affiliation(s)
- Jeasang Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jimin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Byeongha Ahn
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul Seoul 02504 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
2
|
Ghosh P, Kundu A, Ganguly D. From experimental studies to computational approaches: recent trends in designing novel therapeutics for amyloidogenesis. J Mater Chem B 2025; 13:858-881. [PMID: 39664012 DOI: 10.1039/d4tb01890g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Amyloidosis is a condition marked by misfolded proteins that build up in tissues and eventually destroy organs. It has been connected to a number of fatal illnesses, including non-neuropathic and neurodegenerative conditions, which in turn have a significant influence on the worldwide health sector. The inability to identify the underlying etiology of amyloidosis has hampered efforts to find a treatment for the condition. Despite the identification of a multitude of putative pathogenic variables that may operate independently or in combination, the molecular mechanisms responsible for the development and progression of the disease remain unclear. A thorough investigation into protein aggregation and the impacts of toxic aggregated species will help to clarify the cytotoxicity of aggregation-mediated cellular apoptosis and lay the groundwork for future studies aimed at creating effective treatments and medications. This review article provides a thorough summary of the combination of various experimental and computational approaches to modulate amyloid aggregation. Further, an overview of the latest developments of novel therapeutic agents is given, along with a discussion of the possible obstacles and viewpoints on this developing field. We believe that the information provided by this review will help scientists create innovative treatment strategies that affect the way proteins aggregate.
Collapse
Affiliation(s)
- Pooja Ghosh
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies & Research (JISIASR) Kolkata, JIS University, GP Block, Sector-5, Salt Lake, Kolkata 700091, West Bengal, India.
| | - Agnibin Kundu
- Department of Medicine, District Hospital Howrah, 10, Biplabi Haren Ghosh Sarani Lane, Howrah 711101, West Bengal, India
| | - Debabani Ganguly
- Centre for Health Science & Technology, JIS Institute of Advanced Studies & Research (JISIASR) Kolkata, JIS University, GP Block, Sector-5, Salt Lake, Kolkata 700091, West Bengal, India.
| |
Collapse
|
3
|
Sehra N, Parmar R, Jain R. Peptide-based amyloid-beta aggregation inhibitors. RSC Med Chem 2024:d4md00729h. [PMID: 39882170 PMCID: PMC11773382 DOI: 10.1039/d4md00729h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/28/2024] [Indexed: 01/31/2025] Open
Abstract
Aberrant protein misfolding and accumulation is considered to be a major pathological pillar of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Aggregation of amyloid-β (Aβ) peptide leads to the formation of toxic amyloid fibrils and is associated with cognitive dysfunction and memory loss in Alzheimer's disease (AD). Designing molecules that inhibit amyloid aggregation seems to be a rational approach to AD drug development. Over the years, researchers have utilized a variety of therapeutic strategies targeting different pathways, extensively studying peptide-based approaches to understand AD pathology and demonstrate their efficacy against Aβ aggregation. This review highlights rationally designed peptide/mimetics, including structure-based peptides, metal-peptide chelators, stapled peptides, and peptide-based nanomaterials as potential amyloid inhibitors.
Collapse
Affiliation(s)
- Naina Sehra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S. A. S. Nagar Punjab 160062 India
| | - Rajesh Parmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S. A. S. Nagar Punjab 160062 India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S. A. S. Nagar Punjab 160062 India
| |
Collapse
|
4
|
Ye L, Ajuyo NMC, Wu Z, Yuan N, Xiao Z, Gu W, Zhao J, Pei Y, Min Y, Wang D. Molecular Integrative Study on Inhibitory Effects of Pentapeptides on Polymerization and Cell Toxicity of Amyloid-β Peptide (1-42). Curr Issues Mol Biol 2024; 46:10160-10179. [PMID: 39329958 PMCID: PMC11431437 DOI: 10.3390/cimb46090606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Alzheimer's Disease (AD) is a multifaceted neurodegenerative disease predominantly defined by the extracellular accumulation of amyloid-β (Aβ) peptide. In light of this, in the past decade, several clinical approaches have been used aiming at developing peptides for therapeutic use in AD. The use of cationic arginine-rich peptides (CARPs) in targeting protein aggregations has been on the rise. Also, the process of peptide development employing computational approaches has attracted a lot of attention recently. Using a structure database containing pentapeptides made from 20 L-α amino acids, we employed molecular docking to sort pentapeptides that can bind to Aβ42, then performed molecular dynamics (MD) analyses, including analysis of the binding stability, interaction energy, and binding free energy to screen ligands. Transmission electron microscopy (TEM), circular dichroism (CD), thioflavin T (ThT) fluorescence detection of Aβ42 polymerization, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, and the flow cytometry of reactive oxygen species (ROS) were carried out to evaluate the influence of pentapeptides on the aggregation and cell toxicity of Aβ42. Two pentapeptides (TRRRR and ARRGR) were found to have strong effects on inhibiting the aggregation of Aβ42 and reducing the toxicity of Aβ42 secreted by SH-SY5Y cells, including cell death, reactive oxygen species (ROS) production, and apoptosis.
Collapse
Affiliation(s)
- Lianmeng Ye
- Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Nuela Manka'a Che Ajuyo
- Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
| | - Zhongyun Wu
- Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Nan Yuan
- Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Zhengpan Xiao
- Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Wenyu Gu
- Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Jiazheng Zhao
- Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Yechun Pei
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Yi Min
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Dayong Wang
- Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Singh K, Kaur A, Goyal B, Goyal D. Harnessing the Therapeutic Potential of Peptides for Synergistic Treatment of Alzheimer's Disease by Targeting Aβ Aggregation, Metal-Mediated Aβ Aggregation, Cholinesterase, Tau Degradation, and Oxidative Stress. ACS Chem Neurosci 2024; 15:2545-2564. [PMID: 38979773 DOI: 10.1021/acschemneuro.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive multifaceted neurodegenerative disease and remains a formidable global health challenge. The current medication for AD gives symptomatic relief and, thus, urges us to look for alternative disease-modifying therapies based on a multitarget directed approach. Looking at the remarkable progress made in peptide drug development in the last decade and the benefits associated with peptides, they offer valuable chemotypes [multitarget directed ligands (MTDLs)] as AD therapeutics. This review recapitulates the current developments made in harnessing peptides as MTDLs in combating AD by targeting multiple key pathways involved in the disease's progression. The peptides hold immense potential and represent a convincing avenue in the pursuit of novel AD therapeutics. While hurdles remain, ongoing research offers hope that peptides may eventually provide a multifaceted approach to combat AD.
Collapse
Affiliation(s)
- Kamaljot Singh
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406 Punjab, India
| | - Anupamjeet Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406 Punjab, India
| | - Bhupesh Goyal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004 Punjab, India
| | - Deepti Goyal
- Department of Chemistry, DAV College, Sector 10, Chandigarh 160011, India
| |
Collapse
|
6
|
Abidi SMS, Sharma C, Randhawa S, Shukla AK, Acharya A. A review on nanotechnological perspective of "the amyloid cascade hypothesis" for neurodegenerative diseases. Int J Biol Macromol 2023; 253:126821. [PMID: 37690655 DOI: 10.1016/j.ijbiomac.2023.126821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by progressive degeneration of neurons which deteriorates the brain functions. An early detection of the onset of NDs is utmost important, as it will provide the fast treatment strategies to prevent further progression of the disease. Conventionally, accurate diagnosis of the brain related disorders is difficult in their early phase. To solve this problem, nanotechnology based neurofunctional imaging and biomarker detection techniques have been developed which allows high specificity and sensitivity towards screening and diagnosis of NDs. Another challenge to treat the brain related disorders is to overcome the complex integrity of blood-brain-barrier (BBB) for the delivery of theranostic agents. Fortunately, utilization of nanomaterials has been pursued as promising strategy to address this challenge. Herein, we critically highlighted the recent improvements in the field of neurodiagnostic and therapeutic approaches involving innovative strategies for diagnosis, and inhibition of protein aggregates. We have provided particular emphasis on the use of nanotechnology which can push forward the blooming research growth in this field to win the battle against devastating NDs.
Collapse
Affiliation(s)
- Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chandni Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Kaur A, Goyal B. Identification of new pentapeptides as potential inhibitors of amyloid-β 42 aggregation using virtual screening and molecular dynamics simulations. J Mol Graph Model 2023; 124:108558. [PMID: 37390790 DOI: 10.1016/j.jmgm.2023.108558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease mainly characterized by extracellular accumulation of amyloid-β (Aβ) peptide. Previous studies reported pentapeptide RIIGL as an effective inhibitor of Aβ aggregation and neurotoxicity induced by Aβ aggregates. In this work, a library of 912 pentapeptides based on RIIGL has been designed and assessed for their efficacy to inhibit Aβ42 aggregation using computational techniques. The top hit pentapeptides revealed by molecular docking were further assessed for their binding affinity with Aβ42 monomer using MM-PBSA (molecular mechanics Poisson-Boltzmann surface area) method. The MM-PBSA analysis identified RLAPV, RVVPI, and RIAPA, which bind to Aβ42 monomer with a higher binding affinity -55.80, -46.32, and -44.26 kcal/mol, respectively, as compared to RIIGL (ΔGbinding = -41.29 kcal/mol). The residue-wise binding free energy predicted hydrophobic contacts between Aβ42 monomer and pentapeptides. The secondary structure analysis of the conformational ensembles generated by molecular dynamics (MD) depicted remarkably enhanced sampling of helical and no β-sheet conformations in Aβ42 monomer on the incorporation of RVVPI and RIAPA. Notably, RVVPI and RIAPA destabilized the D23-K28 salt bridge in Aβ42 monomer, which plays a crucial role in Aβ42 oligomer stability and fibril formation. The MD simulations highlighted that the incorporation of proline and arginine in pentapeptides contributed to their strong binding with Aβ42 monomer. Furthermore, RVVPI and RIAPA prevented conformational conversion of Aβ42 monomer to aggregation-prone structures, which, in turn, resulted in a lower aggregation tendency of Aβ42 monomer.
Collapse
Affiliation(s)
- Apneet Kaur
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
8
|
Kalita S, Kalita S, Kawa AH, Shill S, Gupta A, Kumar S, Mandal B. Copper Chelating Cyclic Peptidomimetic Inhibits Aβ Fibrillogenesis. RSC Med Chem 2022; 13:761-774. [PMID: 35814930 PMCID: PMC9215124 DOI: 10.1039/d2md00019a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Misfolding of amyloid- peptide (A) and its subsequent aggregation into toxic oligomers is one of the leading causes of Alzheimer's disease (AD). As a therapeutic approach, cyclic peptides have been...
Collapse
|
9
|
Singh K, Kaur A, Goyal D, Goyal B. Mechanistic insights into the mitigation of Aβ aggregation and protofibril destabilization by a D–enantiomeric decapeptide rk10. Phys Chem Chem Phys 2022; 24:21975-21994. [DOI: 10.1039/d2cp02601e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
According to clinical studies, the development of Alzheimer’s disease (AD) is linked to the abnormal aggregation of amyloid-β (Aβ) peptides into toxic soluble oligomers, protofibrils as well as mature fibrils....
Collapse
|
10
|
Pal M, Ramu V, Musib D, Kunwar A, Biswas A, Roy M. Iron(III) Complex-Functionalized Gold Nanocomposite as a Strategic Tool for Targeted Photochemotherapy in Red Light. Inorg Chem 2021; 60:6283-6297. [PMID: 33887143 DOI: 10.1021/acs.inorgchem.1c00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iron(III)-phenolate/carboxylate complexes exhibiting photoredox chemistry and photoactivated reactive oxygen species (ROS) generation at their ligand-to-metal charge-transfer (LMCT) bands have emerged as potential strategic tools for photoactivated chemotherapy. Herein, the synthesis, in-depth characterization, photochemical assays, and remarkable red light-induced photocytotoxicities in adenocarcinomic human immortalized human keratinocytes (HaCaT) and alveolar basal epithelial (A549) cells of iron(III)-phenolate/carboxylate complex of molecular formula, [Fe(L1)(L2)] (1), where L1 is bis(3,5 di-tert-butyl-2-hydroxybenzyl)glycine and L2 is 5-(1,2-dithiolan-3-yl)-N-(1,10-phenanthroline-5-yl)pentanamide, and the gold nanocomposite functionalized with complex 1 (1-AuNPs) are reported. There was a significant red shift in the UV-visible absorption band on functionalization of complex 1 to the gold nanoparticles (λmax: 573 nm, 1; λmax: 660 nm, 1-AuNPs), rendering the nanocomposite an ideal candidate for photochemotherapeutic applications. The notable findings in our present studies are (i) the remarkable cytotoxicity of the nanocomposite (1-AuNPs) to A549 (IC50: 0.006 μM) and HaCaT (IC50: 0.0075 μM) cells in red light (600-720 nm, 30 J/cm2) while almost nontoxic (IC50 > 500 μg/mL, 0.053 μM) in the dark, (ii) the nontoxicity of 1-AuNPs to normal human diploid fibroblasts (WI-38) or human peripheral lung epithelial (HPL1D) cells (IC50 > 500 μg/mL, 0.053 μM) both in the dark and red light signifying the target-specific anticancer activity of the nanocomposite, (iii) localization of 1-AuNPs in mitochondria and partly nucleus, (iv) remarkable red light-induced generation of reactive oxygen species (ROS: 1O2, •OH) in vitro, (v) disruption of the mitochondrial membrane due to enhanced oxidative stress, and (vi) caspase 3/7-dependent apoptosis. A similar cytotoxic profile of complex 1 was another key finding of our studies. Overall, our current investigations show a new red light-absorbing iron(III)-phenolate/carboxylate complex-functionalized gold nanocomposite (1-AuNPs) as the emerging next-generation iron-based photochemotherapeutic agent for targeted cancer treatment modality.
Collapse
Affiliation(s)
- Maynak Pal
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West 795004, India
| | - Vanitha Ramu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, CV Raman Avenue, Bangalore 560012, India
| | - Dulal Musib
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West 795004, India
| | - Amit Kunwar
- Radiation and Photochemistry Division, Bhaba Atomic Research Center, Anushaktinagar, Mumbai 400085, India
| | - Arunima Biswas
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West 795004, India
| | - Mithun Roy
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West 795004, India
| |
Collapse
|