1
|
Santos-Sánchez G, Cruz-Chamorro I. Plant-derived bioactive peptides and protein hydrolysates for managing MAFLD: A systematic review of in vivo effects. Food Chem 2025; 481:143956. [PMID: 40147387 DOI: 10.1016/j.foodchem.2025.143956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) represents a growing health concern worldwide. Among the pursuit of therapeutic interventions, interest in natural bioactive compounds has intensified because of their potential hepatoprotective effects. This systematic review aims to evaluate the impact of plant-derived hydrolysates and peptides on MAFLD through the current literatures, encompassing their mechanisms of action. Key outcomes evaluated included changes in liver enzymes, liver lipid content, inflammation markers, and histopathological improvements. Preliminary findings suggest a potential beneficial effect of plant-derived hydrolysates and peptides on the improvement of MAFLD-related parameters, with mechanisms implicating antioxidant, anti-inflammatory, and lipid-lowering properties. This review highlights emerging evidence supporting the potential therapeutic role of plant-derived hydrolysates and peptides in the management of MAFLD. However, more well-designed clinical trials with larger sample sizes and longer durations are warranted to elucidate their efficacy, optimal dose, and long-term safety.
Collapse
Affiliation(s)
- Guillermo Santos-Sánchez
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), 28049 Madrid, Spain.
| | - Ivan Cruz-Chamorro
- Facultad de Enfermería, Universidad de Castilla-La Mancha, 02071 Albacete, Spain.
| |
Collapse
|
2
|
Swan J, Szabó Z, Peters J, Kummu O, Kemppi A, Rahtu-Korpela L, Konzack A, Hakkola J, Pasternack A, Ritvos O, Kerkelä R, Magga J. Inhibition of activin receptor 2 signalling ameliorates metabolic dysfunction-associated steatotic liver disease in western diet/L-NAME induced cardiometabolic disease. Biomed Pharmacother 2024; 175:116683. [PMID: 38705130 DOI: 10.1016/j.biopha.2024.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024] Open
Abstract
OBJECTIVE Blockade of activin 2 receptor (ACVR2) signaling has been shown to improve insulin sensitivity and aid in weight loss. Inhibition of ACVR2 signaling restores cardiac function in multiple heart failure models. However, its potential in the treatment of obesity-related cardiometabolic disease remains unknown. Here, we investigated targeting ACVR2 signaling in cardiometabolic disease manifested with metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS Mice were fed a high-fat, high-sugar diet combined with the administration of nitric oxide synthase inhibitor L-NAME in drinking water, which causes hypertensive stress. For the last eight weeks, the mice were treated with the soluble ACVR2B decoy receptor (sACVR2B-Fc). RESULTS sACVR2B-Fc protected against the development of comorbidities associated with cardiometabolic disease. This was most pronounced in the liver where ACVR2 blockade attenuated the development of MASLD including cessation of pro-fibrotic activation. It also significantly reduced total plasma cholesterol levels, impeded brown adipose tissue whitening, and improved cardiac diastolic function. In vitro, ACVR2 ligands activin A, activin B and GDF11 induced profibrotic signaling and the proliferation of human cardiac fibroblasts. CONCLUSIONS Blockade of ACVR2B exerts broad beneficial effects for therapy of cardiometabolic disease. By reducing obesity, ameliorating cardiovascular deterioration and restraining MASLD, blockade of ACVR2B signaling proves a potential target in MASLD and its comorbidities.
Collapse
Affiliation(s)
- Julia Swan
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland; Biocenter Oulu, University of Oulu, Aapistie 5, Oulu 90220, Finland.
| | - Zoltán Szabó
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Juliana Peters
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Outi Kummu
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland; Biocenter Oulu, University of Oulu, Aapistie 5, Oulu 90220, Finland; Medical Research Centre Oulu, Oulu University Hospital and University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Anna Kemppi
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Lea Rahtu-Korpela
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Anja Konzack
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland; Biocenter Oulu, University of Oulu, Aapistie 5, Oulu 90220, Finland; Medical Research Centre Oulu, Oulu University Hospital and University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Jukka Hakkola
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland; Biocenter Oulu, University of Oulu, Aapistie 5, Oulu 90220, Finland; Medical Research Centre Oulu, Oulu University Hospital and University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00014, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00014, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland; Biocenter Oulu, University of Oulu, Aapistie 5, Oulu 90220, Finland; Medical Research Centre Oulu, Oulu University Hospital and University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Johanna Magga
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland; Biocenter Oulu, University of Oulu, Aapistie 5, Oulu 90220, Finland.
| |
Collapse
|
3
|
Smith KR, Wang W, Miller MR, Boucher M, Reynold JE, Daurio NA, Li D, Hirenallur-Shanthappa D, Ahn Y, Beebe DA, Kelly KL, Ross TT, Bence KK, Wan M. GPAT1 Deficiency in Mice Modulates NASH Progression in a Model-Dependent Manner. Cell Mol Gastroenterol Hepatol 2023; 17:279-291. [PMID: 37844795 PMCID: PMC10829521 DOI: 10.1016/j.jcmgh.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD), and its more severe form, nonalcoholic steatohepatitis (NASH), is the leading cause for liver failure and liver cancer. Although the etiology is likely multifactorial, genes involved in regulating lipid metabolism are enriched in human NAFLD genome-wide association studies (GWAS), pointing to dysregulated lipid metabolism as a major pathogenic factor. Glycerol-3-phosphate acyltransferase 1 (GPAT1), encoded by GPAM, converts acyl-CoAs and glycerol-3-phosphate into lysophosphatidic acid and has been shown to regulate lipid accumulation in the liver. However, its role in mediating the progression from NAFLD to NASH has not been explored. METHODS GPAT1-deficient mice were generated and challenged with diets inducing hepatic steatosis and NASH. Effects of GPAT1 deficiency on lipid and systemic metabolic end points were evaluated. RESULTS Ablating GPAT1 globally or specifically in mouse hepatocytes reduced hepatic steatosis in the context of diet-induced or genetic obesity. Interestingly, blunting of progression from NAFLD to NASH in global GPAT1 knockout (KO) mice was model dependent. GPAT1 KO mice were protected from choline deficient, amino acid defined high-fat diet-induced NASH development, but not from the high fat, high carbohydrate, and high cholesterol diet-induced NASH. CONCLUSIONS Our preclinical data support the notion that lipid metabolism pathways regulated by GPAT1 in hepatocytes play an essential role in NASH progression, albeit in a model-dependent manner.
Collapse
Affiliation(s)
- Kathleen R Smith
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Wenshan Wang
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Melissa R Miller
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Magalie Boucher
- WRDM Drug Safety, Research and Development, Pfizer Inc, Groton, Connecticut
| | - Jessica E Reynold
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Natalie A Daurio
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Dongmei Li
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | | | - Youngwook Ahn
- WRDM Target Sciences, Pfizer Inc, Cambridge, Massachusetts
| | - David A Beebe
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Kenneth L Kelly
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Trenton T Ross
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Kendra K Bence
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Min Wan
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts.
| |
Collapse
|
4
|
Structural basis of the acyl-transfer mechanism of human GPAT1. Nat Struct Mol Biol 2023; 30:22-30. [PMID: 36522428 DOI: 10.1038/s41594-022-00884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022]
Abstract
Glycerol-3-phosphate acyltransferase (GPAT)1 is a mitochondrial outer membrane protein that catalyzes the first step of de novo glycerolipid biosynthesis. Hepatic expression of GPAT1 is linked to liver fat accumulation and the severity of nonalcoholic fatty liver diseases. Here we present the cryo-EM structures of human GPAT1 in substrate analog-bound and product-bound states. The structures reveal an N-terminal acyltransferase domain that harbors important catalytic motifs and a tightly associated C-terminal domain that is critical for proper protein folding. Unexpectedly, GPAT1 has no transmembrane regions as previously proposed but instead associates with the membrane via an amphipathic surface patch and an N-terminal loop-helix region that contains a mitochondrial-targeting signal. Combined structural, computational and functional studies uncover a hydrophobic pathway within GPAT1 for lipid trafficking. The results presented herein lay a framework for rational inhibitor development for GPAT1.
Collapse
|
5
|
Bissoondial TL, Pellicano AJ, Goldberg ID, Narayan P. Identification of disease-associated microRNA in a diet-induced model of nonalcoholic steatohepatitis. Mol Omics 2021; 17:911-916. [PMID: 34757352 DOI: 10.1039/d1mo00274k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emerging evidence suggests that microRNA dysregulation plays an important role in nonalcoholic steatohepatitis. Using a model of diet-induced liver disease that progresses to fibrosis and hepatocellular carcinoma, we identify a set of 22 microRNA with robust correlation with liver enzyme levels and liver collagen content. These disease-asssociated miRs play pivotal roles in steatosis, extracellular matrix deposition and liver cancer, and may form the basis for identification of therapeutic strategies against this form of liver disease.
Collapse
Affiliation(s)
| | | | | | - Prakash Narayan
- Department of Preclinical Research, Angion Biomedica Corp., USA.
| |
Collapse
|
6
|
Hepatic mRNA Expression Levels of the Oncogenes Alpha-Fetoprotein and Osteopontin as Diagnostics for Liver Cancer in a Murine Model of Diet-Induced Non-Alcoholic Steatohepatitis. Processes (Basel) 2021. [DOI: 10.3390/pr9091516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is associated with an increased risk of hepatocellular carcinoma (HCC). Expression levels of hepatic oncogenes, alpha-fetoprotein (afp) and osteopontin (opn)/secreted phosphoprotein 1 (spp1), were investigated using a model of diet-induced NASH. Mice were randomized to a standard diet or a fast-food diet (FFD) for 17 months. Livers from the FFD cohort exhibited hallmark characteristics of NASH with liver fibrosis, with a subset of animals exhibiting HCC. Expression levels of hepatic afp and opn/spp1 were elevated ~2.5 and ~5-fold, respectively, in the FFD cohort. Hepatic opn/spp1 exhibited a direct (r = 0.65) and significant (p < 0.01) correlation with liver hydroxyproline content. Receiver operating characteristic (ROC) curve analysis for hepatic afp, as a diagnostic for HCC, returned an area under (AU) ROC 0.84, a sensitivity of 87.5%, a specificity of 77% and a threshold of >1.05-fold change in mRNA level. The use of hepatic opn/ssp1 as a diagnostic for HCC returned an AUROC 0.88, a sensitivity of 83.3%, a specificity of 86.7% and a threshold of >2.4-fold change in mRNA level. These data point to a transformation of NASH to an oncotype with hepatic oncogene levels as a diagnostic for NASH.
Collapse
|
7
|
Collagen Characterization in a Model of Nonalcoholic Steatohepatitis with Fibrosis; A Call for Development of Targeted Therapeutics. Molecules 2021; 26:molecules26113316. [PMID: 34205850 PMCID: PMC8198364 DOI: 10.3390/molecules26113316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Left untreated, nonalcoholic fatty liver disease can progress to nonalcoholic steatohepatitis (NASH), fibrosis, and end-stage liver disease. To date, few if any therapies have proven effective against NASH with fibrosis. Quantification and qualification of hepatic scar might enable development of more effective targeted therapies. In a murine model of NASH induced by diet, we characterized fibrillar collagen deposition within the hepatic parenchyma. At harvest, livers from the modified diet cohort exhibited NASH with fibrosis. Transcriptomic analysis of hepatic tissue revealed increased col1a1, col1a2, and col3a1, each of which correlated directly with hepatic hydroxyproline content. Circular polarized microscopic analysis of Picrosirius red-stained liver sections revealed deposition of collagen type I within the parenchyma. Development of therapeutics designed to mitigate collagen type I accumulation might prove effective in NASH with fibrosis.
Collapse
|
8
|
Liver Biopsy Hydroxyproline Content Is a Diagnostic for Hepatocellular Carcinoma in Murine Models of Nonalcoholic Steatohepatitis. Diagnostics (Basel) 2020; 10:diagnostics10100784. [PMID: 33020436 PMCID: PMC7601536 DOI: 10.3390/diagnostics10100784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/20/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
There is increasing evidence that nonalcoholic steatohepatitis (NASH) is a risk factor for hepatocellular carcinoma (HCC) in the absence of cirrhosis, a phenomenon termed noncirrhotic HCC. Early diagnosis of HCC is critical to a favorable prognosis. We tested the hypothesis that hydroxyproline content of liver biopsy samples is diagnostic for HCC in murine models of NASH induced by diet or by diet and chemicals. The training set comprised mice fed a standard diet or a fast-food diet with or without administration of thioacetamide. At harvest, livers from the modified diet cohort exhibited NASH with a subset of NASH livers exhibiting HCC. Hydroxyproline content was measured in liver biopsy samples with tissue in the NASH+HCC cohort sampled from the remote, nontumor parenchyma. Plotting the receiver operating characteristics (ROC) with hydroxyproline as the continuous variable against the absence or presence of HCC yielded an area under ROC of 0.87, a threshold of >0.18 μg hydroxyproline/mg liver and sensitivity of 91% with a specificity of 83.3%. The use of liver hydroxyproline content as a diagnostic for HCC in a test set comprising healthy, NASH and NASH+HCC livers proved 87% accurate.
Collapse
|