1
|
Dutta D, Singh NS, Verma AK. Genotoxicity, acute and sub-acute toxicity profiles of methanolic Cordyceps militaris (L.) Fr. extract in Swiss Albino Mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118603. [PMID: 39067832 DOI: 10.1016/j.jep.2024.118603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cordyceps militaris, a traditional medicinal fungus, parasitizes the intestines of lepidopteron pupae or larvae, predominantly during the winter, and undergoes fruiting in the summer or autumn. Compounds extracted from C. militaris have demonstrated a broad spectrum of pharmacological effects, including antioxidant, anti-tumor, anti-metastatic, anti-inflammatory, antiviral, anti-diabetic, and various others. AIM OF THE STUDY Herein, our study aimed at elucidating the acute, sub-acute toxicity, and genotoxicity profiles of C. militaris methanolic extract following oral administration in Swiss albino mice, representing the inaugural comprehensive exploration of the toxicological and safety profiles of C. militaris. MATERIALS AND METHODS Prior studies have predominantly focused on its biological activities rather than its toxicity. Acute oral toxicity study was conducted at 500, 1000, and 2000 mg/Kg B.W. doses of C. militaris over a 14-day period. For sub-acute toxicity study, three groups of mice were administered 100, 300, and 600 mg/Kg B.W. of C. militaris extract for 28 consecutive days; one group served as a control. Mice were monitored for their body weight and behavioural changes once daily. Hematological, serum biochemical, histopathological, histomorphometric, seminal parameters, and mutagenic investigations were performed post-treatment period. RESULTS Acute oral toxicity study at 2000 mg/Kg revealed no signs of toxicity, with an LD50 value surpassing 2000 mg/Kg. No occurrences of mortality observed, and no significant changes were noted in body weight, organ weight, or behaviour. Hematological analysis illustrated a marked upsurge in RBC, Hb, HCT, PLT, MPV, and PCT, alongside minor variations in differential leucocyte count post 28-day treatment. Liver enzyme tests indicated slight elevation in ALP, while renal enzyme tests showed alterations in CRE and BUN levels. Genotoxicity profile and histopathological assessments of the liver, spleen, testis, and ovary manifested no remarkable irregularities, except for mild renal toxicity. Seminal parameters including sperm concentration, motility and testosterone levels demonstrated a noteworthy increase. CONCLUSIONS The study sheds light on the potential risks and safety considerations associated with C. militaris-based medicinal products. These findings establish a foundation for further investigations and the refinement of dosage optimization in the application of C. militaris, with the aim of mitigating any potential adverse effects.
Collapse
Affiliation(s)
- Diksha Dutta
- Department of Zoology, Cell and Biochemical Technology Laboratory, Cotton University, Guwahati, 781001, Assam, India.
| | - Namram Sushindrajit Singh
- Department of Zoology, Cell and Biochemical Technology Laboratory, Cotton University, Guwahati, 781001, Assam, India.
| | - Akalesh Kumar Verma
- Department of Zoology, Cell and Biochemical Technology Laboratory, Cotton University, Guwahati, 781001, Assam, India.
| |
Collapse
|
2
|
Wang H, Cheng C, Ding J, Qian R, Luo T, Zheng L, Chen Y. Trifluoperazine effect on human sperm: The accumulation of reactive oxygen species and the decrease in the mitochondrial membrane potential. Reprod Toxicol 2024; 130:108730. [PMID: 39369966 DOI: 10.1016/j.reprotox.2024.108730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/05/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
A strong link between antipsychotic drug use and reduced human sperm quality has been reported. Trifluoperazine (TFP), a commonly used antipsychotic, is now being explored for anticancer applications. Although there are hints that TFP might affect the male reproductive system, its impact on human sperm quality remains uncertain. Using a human sperm and TFP in vitro coculture system, we examined the effect of TFP (12.5, 25, 50 and 100 μM) on human sperm function and physiological parameters. The results showed that 50 μM and 100 μM TFP induced the accumulation of reactive oxygen species (ROS) and a decrease in the mitochondrial membrane potential (MMP) of human sperm, leading to decreased sperm viability, while 25 μM TFP inhibited only the penetration ability, total sperm motility, and progressive motility. Although 12.5 μM and 25 μM TFP increased [Ca2+]i in human sperm, they did not affect capacitation or the acrosome reaction. These results may be explained by the observation that 12.5 μM and 25 μM TFP did not increase tyrosine phosphorylation in human sperm, although TFP increased [Ca2+]i in a time-course traces similar to that of progesterone. Our results indicated that TFP could cause male reproductive toxicity by inducing the accumulation of ROS and a decrease in the MMP in human sperm.
Collapse
Affiliation(s)
- Houpeng Wang
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; School of Public Health, Jiangxi Medical College, Nanchang University, China
| | - Cheng Cheng
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jing Ding
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Ruirui Qian
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Tao Luo
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Liping Zheng
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; School of Public Health, Jiangxi Medical College, Nanchang University, China.
| | - Ying Chen
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
3
|
Cardoso E, Mathias MDL, Monarca RI, Gabriel SI. Assessing Optimal Cell Counts in Sperm Shape Abnormality Assays in Rodents. Animals (Basel) 2023; 13:3324. [PMID: 37958079 PMCID: PMC10649842 DOI: 10.3390/ani13213324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/01/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Rodents have been the preferred models for the evaluation of the toxicity of pollutants and drugs and their genotoxic effects, including sperm shape abnormalities. The scientific literature is dominated by studies conducted with model animals in laboratory conditions, but a generally accepted and standardized protocol addressing the optimal number of sperm cells to count is still lacking. In this study, we reviewed the literature regarding the number of counted sperm cells in such assessments, published from 1969 to 2023. To infer the number of counts providing the best cost/benefit regarding the robustness of the assay results, a new dataset involving the analysis of two populations of wild rodents was produced. We evaluated the frequency of sperm shape abnormalities in a total of 50 wild brown rats (Rattus norvegicus) captured in two port cities, aiming to detect the impact of differential sperm cell counts in the obtained results. During necropsy, the fresh epididymis tail of adult male rats was excised, and sperm cells were fixated in slides. For each animal, a total of 300, 500, 1000, and 2000 cells were sequentially counted, and head abnormalities were registered. Counting 300 sperm cells failed to detect significant differences between groups and 500 counts resulted in marginally significant differences. Only when 1000 or 2000 sperm cells were counted, significant differences emerged between groups. We propose that studies addressing sperm shape abnormalities should standardize counts to an optimal value of 1000 cells per animal, warranting robust statistical results while providing the best compromise concerning labor time.
Collapse
Affiliation(s)
- Elizandra Cardoso
- CESAM—Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (E.C.); (M.d.L.M.); (R.I.M.)
| | - Maria da Luz Mathias
- CESAM—Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (E.C.); (M.d.L.M.); (R.I.M.)
| | - Rita I. Monarca
- CESAM—Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (E.C.); (M.d.L.M.); (R.I.M.)
| | - Sofia I. Gabriel
- CESAM—Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (E.C.); (M.d.L.M.); (R.I.M.)
- Departamento de Biologia da Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Derbak H, Imre K, Benabdelhak AC, Moussaoui M, Kribeche A, Kebbi R, Ayad A. Effect of Peganum harmala Total Alkaloid Extract on Sexual Behavior and Sperm Parameters in Male Mice. Vet Sci 2023; 10:498. [PMID: 37624285 PMCID: PMC10459670 DOI: 10.3390/vetsci10080498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
The study was designed to evaluate the effects of the total alkaloid extract of Algerian Peganum harmala seeds on sexual behavior and male reproductive function. After two weeks of acclimatization, the male mice were randomly divided into four groups (seven mice in each group). For 35 days, the extract was administered orally at dose levels of 6.25, 12.5, and 25 mg/kg body weight per day to the respective groups of male mice (n = 7) and normal saline daily to the control group. On day 28, sexual behavior parameters were recorded. At the end of the trial, reproductive organ weights, sperm quality, seminal fructose, and testosterone hormone levels were evaluated. The three treated groups were compared with the control using statistical variance analysis (one-way ANOVA, p < 0.05), followed by Tukey's test. The results of the groups treated with 12.5 and 6.25 mg/kg of P. harmala alkaloid revealed the MF and IF parameters to be the lowest compared to the control group (p < 0.05). However, the male mice treated with 25 mg/kg recorded the highest values. A low significant value of ML was observed in the group treated with 25 mg/kg of the total alkaloid extract of P. harmala compared to the control group (p < 0.01), while a rise was observed in the concentration group treated with 6.25 mg/kg. Regarding IL, the male mice treated with different concentrations of the total alkaloid extract of P. harmala recorded a higher time than the control group. Moreover, an increase in the gonadosomatic index was noticed in all groups compared to the control group. However, there was a significant (p < 0.01) decrease in the sperm counts of the groups treated with 12.5 mg/kg and 6.25 mg/kg. However, there was no significant difference in the motility, membrane integrity, and total antioxidant capacity of sperm cells compared to the control. The extract treatment also brought about a non-significant increase in fructose content of the seminal vesicle and serum testosterone level. The findings of this study demonstrate that the extract acts in a dose-dependent manner, and it has varying effects on the reproductive parameters of male mice.
Collapse
Affiliation(s)
- Hanane Derbak
- Department of Biological and Environmental Sciences, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia 06000, Algeria; (H.D.); (A.C.B.); (M.M.); (R.K.)
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania
| | - Amira Chahrazad Benabdelhak
- Department of Biological and Environmental Sciences, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia 06000, Algeria; (H.D.); (A.C.B.); (M.M.); (R.K.)
| | - Mohamed Moussaoui
- Department of Biological and Environmental Sciences, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia 06000, Algeria; (H.D.); (A.C.B.); (M.M.); (R.K.)
- Pharmaceutical Sciences Research Center (CRSP), Constantine 25000, Algeria
| | - Amina Kribeche
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometrics (L3BS), University of Bejaia, Bejaia 06000, Algeria;
| | - Rosa Kebbi
- Department of Biological and Environmental Sciences, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia 06000, Algeria; (H.D.); (A.C.B.); (M.M.); (R.K.)
| | - Abdelhanine Ayad
- Department of Biological and Environmental Sciences, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia 06000, Algeria; (H.D.); (A.C.B.); (M.M.); (R.K.)
| |
Collapse
|
5
|
da Silva AAS, de Santi F, Hinton BT, Cerri PS, Sasso-Cerri E. Venlafaxine increases aromatization, reduces apical V-ATPase in clear cells and induces increased number of mast cells and smooth muscle cells death in rat cauda epididymis. Life Sci 2023; 315:121329. [PMID: 36584913 DOI: 10.1016/j.lfs.2022.121329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Depressive disorders (DD) have affected millions of people worldwide. Venlafaxine, antidepressant of the class of serotonin and norepinephrine reuptake inhibitors, has been prescribed for the treatment of DD. In rat testes, venlafaxine induces testosterone (T) aromatization and increases estrogen levels. Aromatase is a key enzyme for the formation of estrogen in the epididymis, an essential organ for male fertility. We investigated the impact of serotonergic/noradrenergic venlafaxine effect on the epididymal cauda region, focusing on aromatase, V-ATPase and EGF epithelial immunoexpression, smooth muscle (SM) integrity and mast cells number (MCN). Male rats were distributed into control (CG; n = 10) and venlafaxine (VFG, n = 10) groups. VFG received 30 mg/kg b.w. of venlafaxine for 35 days. The epididymal cauda was processed for light and transmission electron microscopy (TEM). The expression of connexin 43 (Cx43) and estrogen alpha (Esr1), adrenergic (Adra1a) and serotonergic (Htr1b) receptors were analyzed. Clear cells (CCs) area, SM thickness, viable spermatozoa (VS) and MCN were evaluated. Apoptosis was confirmed by TUNEL and TEM. The following immunoreactions were performed: T, aromatase, T/aromatase co-localization, V-ATPase, EGF, Cx43 and PCNA. The increased Adra1a and reduced Htr1b expressions confirmed the noradrenergic and serotonergic venlafaxine effects, respectively, corroborating the increased MCN, apoptosis and atrophy of SM. In VFG, the epithelial EGF increased, explaining Cx43 overexpression and basal cells mitotic activity. T aromatization and Esr1 downregulation indicate high estrogen levels, explaining CCs hypertrophy and changes in the V-ATPase localization, corroborating VS reduction. Thus, in addition to serotonergic/noradrenergic effects, T/estrogen imbalance, induced by venlafaxine, impairs epididymal structure and function.
Collapse
Affiliation(s)
- André Acácio Souza da Silva
- São Paulo State University (Unesp), School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, Brazil
| | - Fabiane de Santi
- Federal University of São Paulo, Department of Morphology and Genetics, São Paulo, Brazil
| | - Barry T Hinton
- University of Virginia, School of Medicine, Department of Cell Biology, Charlottesville, USA
| | - Paulo Sérgio Cerri
- São Paulo State University (Unesp), School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, Brazil
| | - Estela Sasso-Cerri
- São Paulo State University (Unesp), School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, Brazil.
| |
Collapse
|
6
|
Madrigal-Bujaidar E, Paniagua-Pérez R, Rendón-Barrón MJ, Morales-González JA, Madrigal-Santillán EO, Álvarez-González I. Investigation of the DNA Damage and Oxidative Effect Induced by Venlafaxine in Mouse Brain and Liver Cells. TOXICS 2022; 10:737. [PMID: 36548570 PMCID: PMC9783611 DOI: 10.3390/toxics10120737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Venlafaxine is an antidepressant used worldwide. Therefore, studies to confirm its safe use are mandatory. This report evaluated the drug DNA damage capacity in the brain and liver of ICR mice, and its oxidative effect on DNA, lipids, and proteins, as well as the amount of nitrites, also in the brain and liver. Determinations were made at 2, 6, 12, and 24 h post-treatment, excluding DNA oxidation that was observed at 2 h. The tested doses of venlafaxine were 5, 50, and 250 mg/kg. The results showed DNA damage in the brain with the two more elevated doses of venlafaxine at 2 and 6 h post-treatment and also at 12 h in the liver. The comet assay plus the FPG enzyme showed DNA damage in both organs with all doses. The two high doses increased lipoperoxidation in the two tissues from 6 to 12 h post-administration. Protein oxidation increased with the three doses, mainly from 2 to 12 h, and nitrite content was elevated only with the high dose in the liver. The drug was found to affect both tissues, although it was more pronounced in the liver. Interestingly, DNA oxidative damage was observed even with a dose that corresponds to the therapeutic range. The clinical relevance of these findings awaits further investigations.
Collapse
Affiliation(s)
- Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - Rogelio Paniagua-Pérez
- Instituto Nacional de Rehabilitación, Servicio de Bioquímica. Av., México-Xochimilco 289, Ciudad de México 14389, Mexico
| | - Michael Joshue Rendón-Barrón
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - José Antonio Morales-González
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Eduardo O. Madrigal-Santillán
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Gustavo A. Madero, Ciudad de México 07738, Mexico
| |
Collapse
|
7
|
Qin Y, Li G, Chen J, Qin S, Wang S, Chen S. Effects of Valsartan on LN, FN, MDA, Renal Tissue Fibrosis, and Inflammatory Infiltration in DN Rats. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6473393. [PMID: 36017014 PMCID: PMC9371816 DOI: 10.1155/2022/6473393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/09/2022] [Indexed: 12/01/2022]
Abstract
The effects of valsartan on laminin (LN), fibronectin (FN), malondialdehyde (MDA), renal tissue fibrosis, and inflammatory infiltration in diabetic nephropathy (DN) rats are explored. A total of 42 SPF male Sprague D (SD) rats are selected and randomly divided into normal set, model set, valsartan low-dose and high-dose sets, and metformin set with 7 rats in each set. The kidney tissue of all rats is collected after administration. The standard of protein mRNA in kidney tissues is detected by real-time fluorescence quantitative polymerase chain reaction (PCR) method, and the protein standard in kidney tissues is detected by western blot. The experimental results show that the application of valsartan to DN rats can effectively relieve the morphology of the rat kidney tissue, enhance the protein expression in the kidney tissue of the DN rats, and reduce the fibrosis and inflammatory infiltration of the kidney tissue.
Collapse
Affiliation(s)
- Yongting Qin
- Department of Basic Medica, Jiangsu College of Nursing, Huaian 223005, China
| | - Gugangzhi Li
- Department of Basic Medica, Jiangsu College of Nursing, Huaian 223005, China
| | - Juan Chen
- Department of Endocrinology, Huai'an First People's Hospital, Huaian 223300, China
| | - Shuangli Qin
- Department of Basic Medica, Jiangsu College of Nursing, Huaian 223005, China
| | - Shizhen Wang
- Department of Basic Medica, Jiangsu College of Nursing, Huaian 223005, China
| | - Shanshan Chen
- Department of Basic Medica, Jiangsu College of Nursing, Huaian 223005, China
| |
Collapse
|
8
|
Anwar F, Saleem U, rehman AU, Ahmad B, Ismail T, Mirza MU, Ahmad S. Acute Oral, Subacute, and Developmental Toxicity Profiling of Naphthalene 2-Yl, 2-Chloro, 5-Nitrobenzoate: Assessment Based on Stress Response, Toxicity, and Adverse Outcome Pathways. Front Pharmacol 2022; 12:810704. [PMID: 35126145 PMCID: PMC8811508 DOI: 10.3389/fphar.2021.810704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
The U.S. National Research Council (NRC) introduced new approaches to report toxicity studies. The NRC vision is to explore the toxicity pathways leading to the adverse effects in intact organisms by the exposure of the chemicals. This study examines the toxicity profiling of the naphthalene-2-yl 2-chloro-5-dinitrobenzoate (SF5) by adopting the vision of NRC that moves from traditional animal studies to the cellular pathways. Acute, subacute, and developmental toxicity studies were assayed according to the Organization for Economic Cooperation and Development (OECD) guidelines. The stress response pathway, toxicity pathway, and adverse effects outcome parameters were analyzed by using their standard protocols. The results showed that the acute toxicity study increases the liver enzyme levels. In a subacute toxicity study, alkaline phosphatase (ALP) levels were raised in both male and female animals. SF5 significantly increases the normal sperm count in the male animals corresponding to a decrease in the abnormality count. Developmental toxicity showed the normal skeletal and morphological parameters, except little hydrocephalus was observed in developmental toxicity. Doses of 20 mg/kg in males and 4 mg/kg in females showed decreased glutathione (GSH) levels in the kidney and liver. MDA levels were also increased in the kidney and liver. However, histopathological studies did not show any cellular change in these organs. No statistical difference was observed in histamine levels, testosterone, nuclear factor erythroid two-related factor-2 (Nrf2), and nuclear factor-kappa B (NF-κB), which showed no initiation of the stress response, toxicity, and adverse effect pathways. Immunomodulation was observed at low doses in subacute toxicity studies. It was concluded that SF5 did not produce abrupt and high-toxicity levels in organs and biochemical parameters. So, it is safe for further studies.
Collapse
Affiliation(s)
- Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
- Riphah Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Govt. College University, Faisalabad, Pakistan
| | - Atta ur rehman
- Department of Pharmacy, Forman Christian College, Lahore, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
- Riphah Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Tariq Ismail
- Department of Pharmacy, COMSATS Institute of Information Technology—Abbottabad Campus, Abottabad, Pakistan
| | - Muhammad Usman Mirza
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Sarfraz Ahmad
- Drug Design and Development Research Group (DDDRG), Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Anwar F, Saleem U, Rehman AU, Ahmad B, Ismail T, Mirza MU, Kee LY, Abdullah I, Ahmad S. Toxicological Screening of 4-Phenyl-3,4-dihydrobenzo[ h]quinolin-2(1 H)-one: A New Potential Candidate for Alzheimer's Treatment. ACS OMEGA 2021; 6:10897-10909. [PMID: 34056243 PMCID: PMC8153932 DOI: 10.1021/acsomega.1c00654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/07/2021] [Indexed: 05/04/2023]
Abstract
Toxicity studies are necessary for the development of a new drug. Naphthalene is a bicyclic molecule and is easy to derivatize. In our previous study, a derivative of naphthalene (4-phenyl,3,4-dihydrobenzoquinoline-2(H)one) was synthesized and reported its in vitro activity on different enzymes. This study was a probe to investigate the toxicity potential of that compound (SF3). Acute oral (425), subacute (407), and teratogenicity (414) studies were planned according to their respective guidelines given by organization of economic cooperation and development (OECD). Acute oral, subacute, and teratogenicity studies were carried out on 2000, 5-40, and 40 mg/kg doses. Blood samples were collected for hematological and biochemical analyses. Vital organs were excised for oxidative stress (superoxide dismutase, catalase, glutathione, and malondialdehyde) and histopathological analysis. LD 50 of SF3 was higher than 2000 mg/kg. In acute and subacute studies, levels of alkaline phosphates and aspartate transaminase were increased. Teratogenicity showed no resorptions, no skeletal or soft tissue abnormalities, and no cleft pallet. Oxidative stress biomarkers were close to the normal, and no increase in the malondialdehyde level was seen. Histopathological studies revealed normal tissue architecture of the selected organs, except kidney, in acute oral and subacute toxicity studies at 40 mg/kg. The study concluded that SF3 is safer if used as a drug.
Collapse
Affiliation(s)
- Fareeha Anwar
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore 54000 Pakistan
- Riphah
Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Uzma Saleem
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Govt. College University, Faisalabad 38040, Pakistan
| | - Atta ur Rehman
- Department
of Pharmacy, Forman Christian College, Lahore 54600, Pakistan
| | - Bashir Ahmad
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore 54000 Pakistan
- Riphah
Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Tariq Ismail
- Department
of Pharmacy, COMSATS Institute of Information
Technology, Abbottabad Campus, Abottabad 22060, Pakistan
| | - Muhammad Usman Mirza
- Department
of Pharmaceutical and Pharmacological Sciences, Rega Institute for
Medical Research, Medicinal Chemistry, University
of Leuven, Leuven B-3000, Belgium
- Department
of Chemistry and Biochemistry, University
of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Lee Yean Kee
- Drug
Design and Development Research Group (DDDRG), Department of Chemistry,
Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Iskandar Abdullah
- Drug
Design and Development Research Group (DDDRG), Department of Chemistry,
Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sarfraz Ahmad
- Drug
Design and Development Research Group (DDDRG), Department of Chemistry,
Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|