1
|
Alsehli M, Sheikh Ali AA, Nafie MS, Bardaweel S, Aljuhani A, Darwish KM, Alraqa SY, Rezki N, Aouad MR. Discovery of novel tris-1,2,3-triazole-based hybrids as VEGFR2 inhibitors with potent anti-proliferative and cytotoxicity through apoptosis induction. Bioorg Chem 2025; 155:108131. [PMID: 39798451 DOI: 10.1016/j.bioorg.2025.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
The discovery of novel anti-cancer drugs motivated us to synthesize a new series of triple 1,2,3-triazole-based arm scaffolds featuring distinct un functionalized alkyl and/or aryl side chains with possible anti-cancer action using the click chemistry approach under both conventional and green microwave irradiation (MWI) methods. The Cu(I) catalyzed cycloaddition reaction of targeted tris-alkyne with un functionalized aliphatic and aromatic azides has been adopted as an efficient approach for synthesizing the desired click adducts. Microwave irradiation improved the synthetic processes, resulting in higher yields and faster reaction times. Spectroscopic techniques (FT-IR, 1H, 13C NMR andCHN analysis) were used for the elucidation of the resulting click structures. The newly synthesized tris-1,2,3-triazoles exhibited promising cytotoxicity, particularly compounds 26 and 28, with IC50 values of 22.18 µM and 20.3 µM against A549 and CaCo-2 cells, respectively. While they had IC50 values of 23.06 µM and 21.91 µM against T-47D and CaCo-2 cells, respectively. Both compounds exhibited promising anti-proliferative activity through the wound healing assay. Additionally, both compounds induced total apoptotic cell death by 68.3 % and 58.5 %, respectively, compared to untreated cells (7.7 %). Furthermore, they induced necrotic cell death by 1.4 % and 10.5 %, respectively, compared to 0.1 % in the untreated cells. For the molecular target, compounds 26 and 28 exhibited potent VEGFR2 inhibition with IC50 values of 35.5 nM and 27.8 nM, respectively, and this was highlighted through the molecular docking findings. Tris-1,2,3-triazoles (26 and 28) exhibited promising cytotoxicity and anti-proliferative against T-47D breast cancer cells through apoptosis and VEGFR2 inhibition using both enzyme kit and western blotting protein expression assays. Molecular docking study highlighted the binding affinity of tested compounds towards the VEGFR2 protein. Accordingly, tris-1,2,3-triazoles (26 and 28) can be further developed as more potent anti-cancer agents.
Collapse
Affiliation(s)
- Mosa Alsehli
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002 Saudi Arabia
| | - Adeeb Al Sheikh Ali
- Chemistry Department, Kuwait University, Sabah Al Salem University City, Kuwait.
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah (P.O. 27272) United Arab Emirates; Chemistry Department, Faculty of Science, Suez Canal University, Ismailia (P.O. 41522) Egypt.
| | - Sanaa Bardaweel
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman 11942 Jordan.
| | - Ateyatallah Aljuhani
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002 Saudi Arabia
| | - Khaled M Darwish
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713 Egypt.
| | - Shaya Yahya Alraqa
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002 Saudi Arabia
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002 Saudi Arabia.
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002 Saudi Arabia.
| |
Collapse
|
2
|
Raman APS, Aslam M, Awasthi A, Ansari A, Jain P, Lal K, Bahadur I, Singh P, Kumari K. An updated review on 1,2,3-/1,2,4-triazoles: synthesis and diverse range of biological potential. Mol Divers 2025; 29:899-964. [PMID: 39066993 DOI: 10.1007/s11030-024-10858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/22/2024] [Indexed: 07/30/2024]
Abstract
The synthesis of triazoles has attracted a lot of interest in the field of organic chemistry because of its versatile chemical characteristics and possible biological uses. This review offers an extensive overview of the different pathways used in the production of triazoles. A detailed analysis of recent research indicates that triazole compounds have a potential range of pharmacological activities, including the ability to inhibit enzymes, and have antibacterial, anticancer, and antifungal activities. The integration of computational and experimental methods provides a thorough understanding of the structure-activity connection, promoting sensible drug design and optimization. By including triazoles as essential components in drug discovery, researchers can further explore and innovate in the synthesis, biological assessment, and computational studies of triazoles as drugs, exploring the potential therapeutic significance of triazoles.
Collapse
Affiliation(s)
- Anirudh Pratap Singh Raman
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi, India
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Ghaziabad, Modinagar, India
| | - Mohd Aslam
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi, India
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Ghaziabad, Modinagar, India
| | - Amardeep Awasthi
- Department of Chemistry, North western University, Evanston, IL, USA
| | - Anas Ansari
- Department of Chemistry, North western University, Evanston, IL, USA
| | - Pallavi Jain
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Ghaziabad, Modinagar, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar of Science and Technology, Hisar, India
| | - Indra Bahadur
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Mmabatho, 2745, South Africa
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi, India.
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India.
| |
Collapse
|
3
|
El-Naggar M, Hasan K, Khanfar MA, Delmani FA, Shehadi IA, Al-Qawasmeh R, Elmehdi HM. Synthesis, crystal structure, Hirshfeld surface analysis, and DFT calculation of 4-(5-(((1-(3,4,5-trimethoxyphenyl)-1 H-1,2,3-triazol-4-yl)methyl)thio)-4-phenyl-4 H-1,2,4-triazol-3-yl)pyridine. Heliyon 2024; 10:e40318. [PMID: 39605836 PMCID: PMC11600039 DOI: 10.1016/j.heliyon.2024.e40318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Triazole is considered as a privileged scaffold in medicinal chemistry by virtue of it is diverse biological activity. several drugs currently in the market possess triazole moiety. In this study click chemistry was performed on the pyridine based 1,2,4-triazole-tethered propargyl moiety to afford 4-(5-(((1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-4-phenyl-4H-1,2,4-triazol-3-yl)pyridine. The new compound was fully characterized by 1H NMR, 13C NMR, HRMS and X-ray diffraction (XRD). XRD data indicated that, the structure shows: triclinic, space group P -1, a = 6.4427(3) A, ° b = 11.4352(4) A, ° c = 15.4510(5) A, ° α = 97.980(2)°, β = 96.043(2)°, γ = 92.772(2)°, V = 1118.75(7) Å 3, Z = 2, T = 152(2) K, μ(MoKα) = 0.094 mm-1, Dcalc = 1.364 g/cm3. Density functional theory (DFT) method along with Hirshfeld analysis of the optimized X-ray structure of the final product were used to confirm the molecular and the electronic structure of the reported compound.
Collapse
Affiliation(s)
- Mohamed El-Naggar
- Chemistry Department, Faculty of Sciences, Pure and Applied Chemistry Group, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Kamrul Hasan
- Chemistry Department, Faculty of Sciences, Pure and Applied Chemistry Group, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Monther A. Khanfar
- Chemistry Department, Faculty of Sciences, Pure and Applied Chemistry Group, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan
| | | | - Ihsan A. Shehadi
- Chemistry Department, Faculty of Sciences, Pure and Applied Chemistry Group, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Raed Al-Qawasmeh
- Chemistry Department, Faculty of Sciences, Pure and Applied Chemistry Group, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan
| | - Hussein M. Elmehdi
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
4
|
V S, N PA, Kachigere B H, D C VK, Gowda D, B S C, M Srinivasa S, Rangappa S, Rangappa KS. Novel quinoline-4-carboxamide derivatives potentiates apoptosis by targeting PDK1 to overcome chemo-resistance in colorectal cancer: Theoretical and experimental results. Heliyon 2024; 10:e38105. [PMID: 39386832 PMCID: PMC11462461 DOI: 10.1016/j.heliyon.2024.e38105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
A series of novel N,2-diphenyl-6-(aryl/heteroaryl)quinoline-4-carboxamide derivatives were designed and synthesized using the Suzuki coupling reaction and evaluated them for their anticancer activity. These compounds were screened for anti-colon cancer activity through in-silico studies by molecular docking and molecular dynamics studies. Furthermore, the density functional theory was used to determine the molecule's electrical properties. The molecular electrostatic potential map is used to evaluate the charge distribution on the molecule surface. Unveiling that the compound 7a (binding energy of -10.2 kcal/mol) has good inhibition activity compared to other synthesized compounds (7b-7j) as well as the standard drug Gefitinib. The stability of the compound 7a with the 1OKY protein was confirmed through molecular dynamics simulation studies, indicating potential anti-colon cancer activity against phosphoinositide dependent protein kinase-1 (PDK1). The in-silico ADMET pharmacokinetic properties indicate adherence to Lipinski's rule of five for favorable safety profiles and the compound falls within the optimal range for physicochemical and pharmacokinetic properties, which is comparable to that of the standard medication drug Gefitinib. The synthesized library of compounds was further evaluated for their in-vitro anticancer potency against colon, pancreatic and breast cancer cells. The results demonstrated that the compounds effectively suppressed the proliferative potential of the screened cells in a concentration-dependent manner, as revealed by MTT assay. The anticancer potential of these molecules was further evaluated by acridine orange/PI, and Hoechst/PI which demonstrates the potential of molecules to induce apoptosis in cancer cells. Further investigations and optimization of these derivatives could lead to the development of effective anticancer strategies.
Collapse
Affiliation(s)
- Shalini V
- Department of Studies in Chemistry, Manasagangotri, University of Mysore, Mysuru, 570 006, Karnataka, India
| | - Priyadarshini A N
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, BG Nagara, 571 448, Karnataka, India
| | - Harsha Kachigere B
- Department of Chemistry, Mysore University School of Engineering, Manasagangotri, University of Mysore, Mysuru, 570 006, Karnataka, India
| | - Vinay Kumar D C
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru, 570 006, Karnataka, India
- Department of Physics, GSSS Institute of Engineering and Technology for Women, Mysuru, 570 016, Karnataka, India
| | - Darshini Gowda
- Department of Studies in Chemistry, Manasagangotri, University of Mysore, Mysuru, 570 006, Karnataka, India
| | - Chethan B S
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru, 570 006, Karnataka, India
- Department of Basic Sciences, Amruta Institute of Engineering and Management Sciences, Bidadi, Bengaluru, 562 109, Karnataka, India
| | - Sudhanva M Srinivasa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, BG Nagara, 571 448, Karnataka, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, BG Nagara, 571 448, Karnataka, India
| | | |
Collapse
|
5
|
Chudasama DD, Patel MS, Parekh JN, Patel HC, Ram KR. Diversity-oriented synthesis of 1H-1,2,3-triazole tethered pyrazolo[5,1-b]quinazoline hybrids as antimicrobial agents. Mol Divers 2024; 28:2875-2896. [PMID: 37697023 DOI: 10.1007/s11030-023-10721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023]
Abstract
A straightforward and high yielding synthetic approach is employed to synthesize the novel 1H-1,2,3-triazole tethered pyrazolo[5,1-b]quinazoline hybrids 7(a-t) as new antimicrobial agents with two pharmacophore in the effective two step synthesis. The first step is the four component one-pot synthesis of highly functionalized pyrazolo[5,1-b]quinazolines 5(a-j) catalysed by TBAB, with the advantages of an environmentally benign reaction, high yielding, quick reaction time, and operational simplicity. In the subsequent stage, CuSO4/NaAsc system was employed to synthesize the 1H-1,2,3-triazole tethered pyrazolo[1,5-b]quinazoline hybrids as 1H-1,2,3-triazoles are the structures of great diversity and importance in diverse therapeutics containing numerous biological activities. The antimicrobial activity of all the synthesized hybrid compounds have been preliminary tested using the broth dilution technique against two gram-positive and two gram-negative bacterial strains as well as two fungal strains. In comparison to standard drugs, the majority of compounds exhibited good to moderate activity. Among the all the compounds, 7a (MIC 18.54 μM) against Pseudomonas aeruginosa, 7j (MIC 89.76 μM) against Bacillus subtilis as well as Rhizopus oryzae and 7t (MIC 84.88 μM) against Aspergillus parasiticus have remarkable antimicrobial potency as compared to standard drug.
Collapse
Affiliation(s)
- Dipakkumar D Chudasama
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat, 388120, India
| | - Manan S Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat, 388120, India
| | - Jaydeepkumar N Parekh
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat, 388120, India
| | - Harsh C Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat, 388120, India
| | - Kesur R Ram
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat, 388120, India.
| |
Collapse
|
6
|
Aljuhani A, Nafie MS, Albujuq NR, Hourani W, Albelwi FF, Darwish KM, Samir Ayed A, Reda Aouad M, Rezki N. Unveiling the anti-cancer potentiality of phthalimide-based Analogues targeting tubulin polymerization in MCF-7 cancerous Cells: Rational design, chemical Synthesis, and Biological-coupled Computational investigation. Bioorg Chem 2024; 153:107827. [PMID: 39321715 DOI: 10.1016/j.bioorg.2024.107827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
The present study deals with an anti-cancer investigation of an array of phthalimide-1,2,3-triazole molecular conjugates with various sulfonamide fragments against human breast MCF-7 and prostate PC3 cancer cell lines. The targeted 1,2,3-triazole derivatives 4a-l and 6a-c were synthesized from focused phthalimide-based alkyne precursors using a facile click synthesis approach and were thoroughly characterized using several spectroscopic techniques (IR, 1H, 13C NMR, and elemental analysis). The hybrid click adducts 4b, 4 h, and 6c displayed cytotoxic potency (IC50 values of 1.49, 1.07, and 0.56 μM, respectively) against MCF-7 cells. On the contrary, none of the synthesized compounds showed apparent cytotoxic efficacy for PC3 cells (IC50 ranging from 9.87- >100 μM). As a part of the mechanism analysis, compound 6c demonstrated a potent inhibitory effect (78.3 % inhibition) of tubulin polymerization in vitro with an IC50 value of 6.53 µM. In addition, biological assays showed that compound 6c could prompt apoptotic cell death and induce G2/M cell cycle arrest in MCF-7 cells. Accordingly, compound 6c can be further developed as an anti-breast cancer agent through apoptosis-induction.
Collapse
Affiliation(s)
- Ateyatallah Aljuhani
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia.
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah P.O. 27272, United Arab Emirates (UAE); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, P.O. 41522, Egypt.
| | - Nader R Albujuq
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan.
| | - Wafa Hourani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan.
| | - Fawzia F Albelwi
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia.
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt.
| | - Aya Samir Ayed
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, P.O. 41522, Egypt.
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia.
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia.
| |
Collapse
|
7
|
Aghaei Khouzani M, Noaparast Z, Asadi T, Saeidi S, Heidarnia A, Hamzeh Moghadam B, Mosavi kia H, Hashemi SM, Mahdavi M. Synthesis, cytotoxicity and 99mTc-MIBI tumor cell uptake evaluation of 2-phenylbenzothiazole tagged triazole derivatives. Future Med Chem 2024; 16:1999-2012. [PMID: 39229781 PMCID: PMC11485743 DOI: 10.1080/17568919.2024.2389771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
Aim: The extensive utilization of 2-phenylbenzothiazole due to their wide array of biological activities, particularly in cancer therapy, has caused great attention to explore more potent derivatives.Materials & methods: We report the synthesis of 2-phenylbenzothiazole tagged 1,2,3-triaozle (8) through Cu(I)-catalyzed cycloaddition of alkyne side chain with aryl-substituted azides.Results: The in vitro experiments, using MTT and 99mTc-MIBI cell uptake methods, demonstrated the remarkable anticancer activity of these compounds against A549, SKOV3 and MCF7 cell lines.Conclusion: Compounds 8b, 8f and 8i possessed high cytotoxic activity as compared with doxorubicin. Compound 8g has a similar inhibitory effect on the proliferation of breast cancer cells as doxorubicin. In silico study indicated that compound 8 would be a good lead for the development of new potent anticancer agents.
Collapse
Affiliation(s)
- Marzieh Aghaei Khouzani
- Endocrinology & Metabolism Research Center, Endocrinology & Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Noaparast
- Department of Radiopharmacy, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari
| | - Tina Asadi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sajad Saeidi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Heidarnia
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Behnoush Hamzeh Moghadam
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hanieh Mosavi kia
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedeh Mahdieh Hashemi
- Department of Medicinal Chemistry, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Mahdavi
- Endocrinology & Metabolism Research Center, Endocrinology & Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Govindaraj S, Ganesan K, Elumalai P, Jeevitha R, Subramani A, Amanullah M, Al-Samghan AS. 2-Chloro-3-cyano-4-nitrobenzyl pyridinium bromide as a potent anti-lung cancer molecule prepared using a single-step solvent-free method. RSC Adv 2024; 14:24898-24909. [PMID: 39119280 PMCID: PMC11309018 DOI: 10.1039/d4ra03538k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Mono-/dimeric-substituted pyridinium and pyrazolium bromides were prepared under conventional and solvent-free silica-supported domestic microwave conditions. The atom economy, environmental product mass intensity and product mass intensity for solvent-free reactions showed significant importance for the synthesis of target molecules. 4-Nitrobenzyl-substituted pyridinium bromide showed potent anticancer properties compared with mono-/dimeric-substituted pyridinium and pyrazolium bromides against a lung cancer cell line (A-549). Molecular simulation studies were carried out for mono-/dimeric-substituted pyridinium and pyrazolium bromide against protein human CDK1/cyclinB1/CKS2 using the AutoDock program.
Collapse
Affiliation(s)
- Sadaiyan Govindaraj
- PG& Research Department of Chemistry, Presidency College Chennai 600005 India
| | - Kilivelu Ganesan
- PG& Research Department of Chemistry, Presidency College Chennai 600005 India
| | - Perumal Elumalai
- Cancer Genomics lab, Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai 602105 India
| | - Rajanathadurai Jeevitha
- Cancer Genomics lab, Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai 602105 India
| | - Annadurai Subramani
- Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College Chennai 600106 India
| | - Mohammed Amanullah
- Department of Clinical Biochemistry, College of Medicine, King Khalid University Abha 61413 Kingdom of Saudi Arabia
| | - Awad Saeed Al-Samghan
- Department of Family Medicine and Community Medicine, College of Medicine, King Khalid University Abha Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Albelwi FF, Nafie MS, Albujuq NR, Hourani W, Aljuhani A, Darwish KM, Tawfik MM, Rezki N, Aouad MR. Design and synthesis of chromene-1,2,3-triazole benzene sulfonamide hybrids as potent carbonic anhydrase-IX inhibitors against prostate cancer. RSC Med Chem 2024; 15:2440-2461. [PMID: 39026656 PMCID: PMC11253856 DOI: 10.1039/d4md00302k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Considering the promising effects of molecular hybridization on drug discovery in recent years and the ongoing endeavors to develop bioactive scaffolds tethering the 1,2,3-triazole core, the present study sought to investigate whether the 1,2,3-triazole-linked chromene and benzene sulfonamide nucleus could exhibit activity against the human breast cancer cell line MCF-7 and prostate cancer cell line PC-3. To this end, three focused bioactive series of mono- and -bis-1,2,3-triazoles were effectively synthesized via copper-assisted cycloaddition of mono- and/or di-alkyne chromenone derivatives 2a and b and 9 with several sulfa drug azides 4a-d and 6. The resulting molecular derivatives were tested for cytotoxicity against prostate and breast cancer cells. Among the derivatives, 10a, 10c, and 10e exhibited potent cytotoxicity against PC-3 cells with IC50 values of 2.08, 7.57, and 5.52 μM compared to doxorubicin (IC50 = 2.31 μM) with potent inhibition of CA IX with IC50 values of 0.113, 0.134, and 0.214 μM. The most active compound, 10a, was tested for apoptosis-induction; it induced apoptosis by 31.9-fold cell cycle arrest at the G1-phase. Further, the molecular modeling approach highlighted the relevant binding affinity for the top-active compound 10a against CA IX as one of the most prominent PC-3 prostate cancer-associated biotargets.
Collapse
Affiliation(s)
- Fawzia F Albelwi
- Department of Chemistry, Faculty of Science, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah P.O. 27272 Sharjah United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University P.O. 41522 Ismailia Egypt
| | - Nader R Albujuq
- Department of Chemistry, School of Science, The University of Jordan Amman 11942 Jordan
| | - Wafa Hourani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University Amman 19392 Jordan
| | - Ateyatallah Aljuhani
- Department of Chemistry, Faculty of Science, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Mohamed M Tawfik
- Zoology Department, Faculty of Science, Port Said University Port Said 42526 Egypt
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| |
Collapse
|
10
|
Niazi S, Kavana CP, Aishwarya HK, Dharmashekar C, Jain A, Wani TA, Shivamallu C, Purohit MN, Kollur SP. Synthesis, characterization, and anti-cancer potential of novel p53-mediated Mdm2 and Pirh2 modulators: an integrated In silico and In vitro approach. Front Chem 2024; 12:1366370. [PMID: 39081544 PMCID: PMC11286573 DOI: 10.3389/fchem.2024.1366370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction: Leukemia is a global health concern that requires alternative treatments due to the limitations of the FDA-approved drugs. Our focus is on p53, a crucial tumor suppressor that regulates cell division. It appears possible to stabilize p53 without causing damage to DNA by investigating dual-acting inhibitors that target both ligases. The paper aims to identify small molecule modulators of Mdm2 and Pirh2 by using 3D structural models of p53 residues and to further carry out the synthesis and evaluation of hit candidates for anti-cancer potency by in vitro and in silico studies. Methods: We synthesized structural analogues of MMs02943764 and MMs03738126 using a 4,5-(substituted) 1,2,4-triazole-3-thiols with 2-chloro N-phenylacetamide in acetone with derivatives of PAA and PCA were followed. Cytotoxicity assays, including MTT, Trypan Blue Exclusion, and MTS assays, were performed on cancer cell lines. Anti-proliferation activity was evaluated using K562 cells. Cell cycle analysis and protein expression studies of p53, Mdm2, and Pirh2 were conducted using flow cytometry. Results: As for results obtained from our previous studies MMs02943764, and MMs03738126 were selected among the best-fit hit molecules whose structural analogues were further subjected to molecular docking and dynamic simulation. Synthesized compounds exhibited potent anti-proliferative effects, with PAC showing significant cytotoxicity against leukemia cells. PAC induced cell cycle arrest and modulated p53, Mdm2, and Pirh2 protein expressions in K562 cells. Molecular docking revealed strong binding affinity of PAC to p53 protein, further confirmed by molecular dynamics simulation. Discussion: The study presents novel anticancer compounds targeting the p53 ubiquitination pathway, exemplified by PAC. Future perspectives involve further optimization and preclinical studies to validate PAC's potential as an effective anticancer therapy.
Collapse
Affiliation(s)
- Sarfaraj Niazi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru, India
| | - C. P. Kavana
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, India
| | - H. K. Aishwarya
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, India
| | - Chandan Dharmashekar
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, India
| | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, India
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, India
| | - Madhusudan N. Purohit
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, India
| |
Collapse
|
11
|
Ajmal M, Mahato AK, Khan M, Rawat S, Husain A, Almalki EB, Alzahrani MA, Haque A, Hakme MJM, Albalawi AS, Rashid M. Significance of Triazole in Medicinal Chemistry: Advancement in Drug Design, Reward and Biological Activity. Chem Biodivers 2024; 21:e202400637. [PMID: 38740555 DOI: 10.1002/cbdv.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
One of the triazole tautomers, 1,2,4-triazole derivatives, has a wide range of biological activities that suggest its potential therapeutic utility in medicinal chemistry. These actions include anti-inflammatory, anti-cancer, anti-bacterial, anti-tuberculosis, and anti-diabetic effects. Using computational simulations and models, we investigate the structure-activity relationships of 1,2,4-triazoles, showing how various modifications to the triazole core yield a variety of clinical therapeutic benefits. The review highlights the anti-inflammatory effect of 1,2,4-triazoles in relation to their ability to disrupt significant inflammatory mediators and pathways. We present in-silico data that illuminate the triazoles' capacity to inhibit cell division, encourage apoptosis, and stop metastasis in a range of cancer models. This review looks at the bactericidal and bacteriostatic properties of 1,2,4-triazole derivatives, with a focus on their potential efficacy against multi-drug resistant bacterial infections and their usage in tuberculosis therapy. In order to better understand these substances' potential anti-diabetic benefits, this review also looks at how they affect glucose metabolism regulation and insulin responsiveness. Coordinated efforts are required to translate the efficacy of 1,2,4-triazole compounds in preclinical models into practical therapeutic benefits. Based on the information provided, it can be concluded that 1,2,4-triazole derivatives are a promising class of diverse therapeutic agents with potential utility in a range of disorders. Their development and improvement might herald a new era of medical care that will be immensely advantageous to both patients and the medical community as a whole. This comprehensive research, which is further reinforced by in-silico investigations, highlights the great medicinal potential of 1,2,4-triazoles. Additionally, this study encourages more research into these substances and their enhancement for use in pharmaceutical development.
Collapse
Affiliation(s)
- Mohammad Ajmal
- School of Pharmaceutical Sciences & Technology, Sardar Bhagwan Singh University, Dehradun, 248001, Uttarakhand, India
| | - Arun Kumar Mahato
- School of Pharmaceutical Sciences & Technology, Sardar Bhagwan Singh University, Dehradun, 248001, Uttarakhand, India
| | - Mausin Khan
- School of Pharmaceutical Sciences & Technology, Sardar Bhagwan Singh University, Dehradun, 248001, Uttarakhand, India
| | - Shivani Rawat
- School of Pharmaceutical Sciences & Technology, Sardar Bhagwan Singh University, Dehradun, 248001, Uttarakhand, India
| | - Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110064, India
| | | | | | - Anzarul Haque
- Central Laboratories Unit, Qatar University, Doha, 2713, Qatar
| | | | - Ahmed Suleman Albalawi
- Tabuk Health Cluster, Erada Mental Health Complex, Tabuk, 47717, Kingdom of Saudi Arabia
| | - Mohammad Rashid
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia
| |
Collapse
|
12
|
Shekhar, Alcaraz M, Anand A, Sharma RK, Kremer L, Kumar V. Cu-promoted synthesis of triclosan-Mannich and Glaser adducts: anti-mycobacterial evaluation with in silico validations. Future Med Chem 2024; 16:949-961. [PMID: 38910577 DOI: 10.4155/fmc-2023-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/26/2024] [Indexed: 06/25/2024] Open
Abstract
Aim: The WHO, Global tuberculosis report 2022 estimated number of tuberculosis (TB) cases reached 10.6 million in 2021, reflecting a 4.5% increase compared with the 10.1 million reported in 2020. The incidence rate of TB showed 3.6% rise from 2020 to 2021. Results/methodology: This manuscript discloses Cu-promoted single pot A3-coupling between triclosan (TCS)-based alkyne, formaldehyde and secondary amines to yield TCS-based Mannich adducts. Additionally, the coupling of TCS-alkynes in the presence of Cu(OAc)2 afforded the corresponding homodimers. Among tested compounds, the most potent one in the series 11 exhibited fourfold higher potency than rifabutin against drug-resistant Mycobacterium abscessus. The selectivity index was also substantially improved, being 26 (day 1) and 15 (day 3), which is four-times better than TCS.
Collapse
Affiliation(s)
- Shekhar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Matthéo Alcaraz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, Montpellier, 34293, France
| | - Amit Anand
- Department of Chemistry, Khalsa college, Amritsar, Punjab, 143005, India
| | - Rajni Kant Sharma
- Department of Chemistry, College of Basic Science & Humanities CCS, Haryana Agricultural University, Hisar, Haryana, India
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, Montpellier, 34293, France
- INSERM, IRIM, Montpellier, 34293, France
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
13
|
Zhou JS, Wen HL, Yu MJ. Mechanism Analysis of Antimicrobial Peptide NoPv1 Related to Potato Late Blight through a Computer-Aided Study. Int J Mol Sci 2024; 25:5312. [PMID: 38791351 PMCID: PMC11121460 DOI: 10.3390/ijms25105312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Phytophthora infestans (Mont.) de Bary, the oomycotic pathogen responsible for potato late blight, is the most devastating disease of potato production. The primary pesticides used to control oomycosis are phenyl amide fungicides, which cause environmental pollution and toxic residues harmful to both human and animal health. To address this, an antimicrobial peptide, NoPv1, has been screened to target Plasmopara viticola cellulose synthase 2 (PvCesA2) to inhibit the growth of Phytophthora infestans (P. infestans). In this study, we employed AlphaFold2 to predict the three-dimensional structure of PvCesA2 along with NoPv peptides. Subsequently, utilizing computational methods, we dissected the interaction mechanism between PvCesA2 and these peptides. Based on this analysis, we performed a saturation mutation of NoPv1 and successfully obtained the double mutants DP1 and DP2 with a higher affinity for PvCesA2. Meanwhile, dynamics simulations revealed that both DP1 and DP2 utilize a mechanism akin to the barrel-stave model for penetrating the cell membrane. Furthermore, the predicted results showed that the antimicrobial activity of DP1 was superior to that of NoPv1 without being toxic to human cells. These findings may offer insights for advancing the development of eco-friendly pesticides targeting various oomycete diseases, including late blight.
Collapse
Affiliation(s)
- Jiao-Shuai Zhou
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China;
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing 314019, China
| | - Hong-Liang Wen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China;
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing 314019, China
| | - Ming-Jia Yu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China;
| |
Collapse
|
14
|
Sucman N, Stingaci E, Lupascu L, Smetanscaia A, Valica V, Uncu L, Shova S, Petrou A, Glamočlija J, Soković M, Geronikaki A, Macaev F. New 1H-1,2,4-Triazolyl Derivatives as Antimicrobial Agents. Chem Biodivers 2024; 21:e202400316. [PMID: 38422224 DOI: 10.1002/cbdv.202400316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
New 1H-1,2,4-triazolyl derivatives were synthesized, and six of them were selected based on docking prediction for the investigation of their antimicrobial activity against five bacterial and eight fungal strains. All compounds demonstrated antibacterial activity with MIC lower than that of the ampicillin and chloramphenicol. In general, the most sensitive bacteria appeared to be P. fluorescens, while the plant pathogen X. campestris was the most resistant. The antifungal activity of the compounds was much better than the antibacterial activity. All compounds were more potent (6 to 45 times) than reference drugs ketoconazole and bifonazole with the best activity achieved by compound 4 a. A. versicolor, A. ochraceus, A.niger, and T.viride showed the highest sensitivity to compound 4 b, while, T. viride, P. funiculosum, and P.ochrochloron showed good sensitivity to compound 4 a. Molecular docking studies suggest that the probable mechanism of antibacterial activity involves the inhibition of the MurB enzyme of E. coli, while CYP51 of C. albicans appears to be involved in the mechanism of antifungal activity. It is worth mentioning that none of the tested compounds violated Lipinski's rule of five.
Collapse
Affiliation(s)
- Natalia Sucman
- Laboratory of Organic Synthesis, Moldova State University, 3 str. Academiei, Chisinau, MD-2028, Moldova
| | - Eugenia Stingaci
- Laboratory of Organic Synthesis, Moldova State University, 3 str. Academiei, Chisinau, MD-2028, Moldova
| | - Lucian Lupascu
- Laboratory of Organic Synthesis, Moldova State University, 3 str. Academiei, Chisinau, MD-2028, Moldova
| | - Anastasia Smetanscaia
- Scientific Center for Drug Research, "Nicolae Testemitanu" State University of Medicine and Pharmacy, 165 bd. Stefan Cel Mare si Sfant, Chisinau, MD-2004, Moldova
| | - Vladimir Valica
- Scientific Center for Drug Research, "Nicolae Testemitanu" State University of Medicine and Pharmacy, 165 bd. Stefan Cel Mare si Sfant, Chisinau, MD-2004, Moldova
| | - Livia Uncu
- Scientific Center for Drug Research, "Nicolae Testemitanu" State University of Medicine and Pharmacy, 165 bd. Stefan Cel Mare si Sfant, Chisinau, MD-2004, Moldova
| | - Sergiu Shova
- Department of Inorganic Polymers "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41 A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Anthi Petrou
- Department of Pharmacy School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Jasmina Glamočlija
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Beograd, 11060, Serbia
| | - Marina Soković
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Beograd, 11060, Serbia
| | - Athina Geronikaki
- Department of Pharmacy School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - FliurZ Macaev
- Laboratory of Organic Synthesis, Moldova State University, 3 str. Academiei, Chisinau, MD-2028, Moldova
| |
Collapse
|
15
|
Awaji AA, Zaloa WAZE, Seleem MA, Alswah M, Elsebaei MM, Bayoumi AH, El-Morsy AM, Alfaifi MY, Shati AA, Elbehairi SEI, Almaghrabi M, Aljohani AKB, Ahmed HEA. N- and s-substituted Pyrazolopyrimidines: A promising new class of potent c-Src kinase inhibitors with prominent antitumor activity. Bioorg Chem 2024; 145:107228. [PMID: 38422592 DOI: 10.1016/j.bioorg.2024.107228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024]
Abstract
In this work, readily achievable synthetic pathways were utilized for construction of a library of N/S analogues based on the pyrazolopyrimidine scaffold with terminal alkyl or aryl fragments. Subsequently, we evaluated the anticancer effects of these novel analogs against the proliferation of various cancer cell lines, including breast, colon, and liver lines. The results were striking, most of the tested molecules exhibited strong and selective cytotoxic activity against the MDA-MB-231 cancer cell line; IC50 1.13 µM. Structure-activity relationship (SAR) analysis revealed that N-substituted derivatives generally enhanced the cytotoxic effect, particularly with aliphatic side chains that facilitated favorable target interactions. We also investigated apoptosis, DNA fragmentation, invasion assay, and anti-migration effects, and discussed their underlying molecular mechanisms for the most active compound 7c. We demonstrated that 7c N-propyl analogue could inhibit MDA-MB-231 TNBC cell proliferation by inducing apoptosis through the regulation of vital proteins, namely c-Src, p53, and Bax. In addition, our results also revealed the potential of these compounds against tumor metastasis by downregulating the invasion and migration modes. Moreover, the in vitro inhibitory effect of active analogs against c-Src kinase was studied and proved that might be the main cause of their antiproliferative effect. Overall, these compelling results point towards the therapeutic potential of these derivatives, particularly those with N-substitution as promising candidates for the treatment of TNBC type of breast cancer.
Collapse
Affiliation(s)
- Aeshah A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Waheed Ali Zaki El Zaloa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed A Seleem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed Alswah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.
| | - Mohamed M Elsebaei
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M El-Morsy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt; Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University, Najaf 54001, Iraq
| | - Mohammad Y Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Ali A Shati
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Serag Eldin I Elbehairi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia; Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza, Egypt.
| | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| | - Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
16
|
Song J, Zhang S, Zhang B, Ma J. The anti-breast cancer therapeutic potential of 1,2,3-triazole-containing hybrids. Arch Pharm (Weinheim) 2024; 357:e2300641. [PMID: 38110853 DOI: 10.1002/ardp.202300641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023]
Abstract
Breast cancer, as one of the most common invasive malignancies and the leading cause of cancer-related deaths in women globally, poses a significant challenge in the world health system. Substantial advances in diagnosis and treatment have significantly improved the survival rate of breast cancer patients, but the number of incidences and deaths of breast cancer are projected to increase by 40% and 50%, respectively, by 2040. Chemotherapy is one of the principal treatments for breast cancer therapy, but multidrug resistance and severe side effects remain the major obstacles to the success of treatment. Hence, there is a vital need to develop novel chemotherapeutic agents to combat this deadly disease. 1,2,3-Triazole, which can be effectively constructed by click chemistry, not only can serve as a linker to connect different anti-breast cancer pharmacophores but also is a valuable pharmacophore with anti-breast cancer potential and favorable properties such as hydrogen bonding, moderate dipole moment, and enhanced water solubility. Particularly, 1,2,3-triazole-containing hybrids have demonstrated promising in vitro and in vivo anti-breast cancer potential against both drug-sensitive and drug-resistant forms and possessed excellent selectivity by targeting different biological pathways associated with breast cancer, representing privileged scaffolds for the discovery of novel anti-breast cancer candidates. This review concentrates on the latest advancements of 1,2,3-triazole-containing hybrids with anti-breast cancer potential, including work published between 2020 and the present. The structure-activity relationships (SARs) and mechanisms of action are also reviewed to shed light on the development of more effective and multitargeted candidates.
Collapse
Affiliation(s)
- Juntao Song
- Department of Oncology and Hematology, Zibo 148 Hospital, Zibo, China
| | - Shuai Zhang
- Department of General Surgery, People's Hospital of Zhoucun District, Zibo, China
| | - Bo Zhang
- Emergency Department, People's Hospital of Zhoucun District, Zibo, China
| | - Junwei Ma
- Department of General Surgery, Zibo 148 Hospital, Zibo, China
| |
Collapse
|
17
|
Chudasama DD, Rajput CV, Patel MS, Parekh JN, Patel HC, Chikhaliya NP, Puerta A, Padrón JM, Ram KR. Microwave-induced one-pot synthesis of 3-imidazolyl indole clubbed 1,2,3-triazole hybrids as antiproliferative agents and density functional theory study. Arch Pharm (Weinheim) 2024; 357:e2300632. [PMID: 38150663 DOI: 10.1002/ardp.202300632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
Herein, we outline a highly efficient PEG-4000-mediated one-pot three-component reaction for the synthesis of 3-imidazolyl indole clubbed 1,2,3-triazole derivatives (5a-r) at up to 96% yield as antiproliferative agents. This three-component protocol offers the advantages of an environmentally benign reaction, excellent yield, quick response time, and operational simplicity triggered by the copper catalyst under microwave irradiation. All the synthesized compounds were tested for antiproliferative activity against six human solid tumor cell lines, that is, A549 and SW1573 (nonsmall cell lung), HBL100 and T-47D (breast), HeLa (cervix), and WiDr (colon). Among them, six compounds, 5g-j, 5m, and 5p, demonstrated effective antiproliferative action with GI50 values under 10 μM. Furthermore, density functional theory (DFT) calculations were performed for all the synthesized molecules through geometry optimizations, frontier molecular orbital approach, and molecular electrostatic potential (MESP). The theoretical DFT calculation was performed using the DFT/B3LYP/6-31+G (d,p) basis set. Moreover, the biological reactivity of all the representative synthesized molecules was compared with the theoretically calculated quantum chemical descriptors and MESP 3D plots. We also investigated the drug-likeness characteristic and absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction. In general, our approach enables environmentally friendly access to 3-imidazolyl indole clubbed 1,2,3-triazole derivatives as prospective antiproliferative agents.
Collapse
Affiliation(s)
| | - Chetan V Rajput
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Manan S Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Jaydeepkumar N Parekh
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Harsh C Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Navin P Chikhaliya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - Kesur R Ram
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| |
Collapse
|
18
|
Dar PA, Bhat BA, Mir MA, Chaudhari SY, Shah WA. Synthesis, biological profile and computational insights of new derivatives of benzo [B][1,4] diazepines as prospective anticancer agents for inhibiting the CDK-2 protein. J Biomol Struct Dyn 2024:1-16. [PMID: 38344942 DOI: 10.1080/07391102.2024.2314270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/29/2024] [Indexed: 03/11/2025]
Abstract
In the current work, a new series of benzo[b][1, 4] diazepines (A-1 to C-4) was synthesized and screened against three different human cancer cell lines, HepG2 (hepatocellular carcinoma), HeLa (cervical cancer) and MCF-7 (breast cancer), by employing MTT (MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. The outcomes of in vitro screening revealed that all the compounds exhibited momentous anticancer activity, most notably against the MCF-7 cell line by B1-4 compounds. Further, network pharmacology, UALCAN analysis, molecular docking, molecular dynamics (MD) simulations and density functional theory calculations were conducted to explore expression analysis, pharmacokinetics, toxicity profiles and binding interactions of the B1-4 compounds. By UALCAN, we explored the expression analysis of CDK-2 in 19 cancers. Through UALCAN, Pan-cancer analysis revealed that the expression of CDK-2 in 19 cancers was statistically significant. Among the 19 cancers, the CDK-2 expression was significantly upregulated in breast cancer (BRCA), cervical cancer (CESC) and lung carcinoma (LUSC) than normal tissues. Enzyme-docking examination revealed that B1-4 compounds exhibited significant binding affinity against the CDK-2 (PDB ID: 5IEV) drug target protein. Furthermore, MD simulations supported the docking results, which confirmed that the ligand + protein complex was in a stable conformation throughout the simulation time of 100 nanoseconds. Therefore, the present study demonstrates the potential of these benzo [b][1,4] diazepines as promising drug candidates against cancer.
Collapse
Affiliation(s)
- Parvaiz A Dar
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kashmir, J&K, India
| | - Basharat A Bhat
- Department of Bio-Resources, Amar Singh College Campus, Cluster University, Srinagar, India
| | - Mushtaq A Mir
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, KSA
| | - Somdatta Y Chaudhari
- Department of Pharmaceutical Chemistry, Progressive Education Society's Modern College of Pharmacy, Pune, India
| | - Wajaht A Shah
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kashmir, J&K, India
| |
Collapse
|
19
|
Majumder R, Karmakar S, Mishra S, Mallick AB, Das Mukhopadhyay C. Functionalized Carbon Nano-Onions as a Smart Drug Delivery System for the Poorly Soluble Drug Carmustine for the Management of Glioblastoma. ACS APPLIED BIO MATERIALS 2024; 7:154-167. [PMID: 38088856 DOI: 10.1021/acsabm.3c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The drug delivery system for transporting anticancer agents to targeted tissues in the body is a challenging issue. In search of a suitable biocompatible carrier having controlled and sustained drug release properties of poorly soluble drugs, carbon nano-onions (CNOs) were loaded with an anticancer drug, bis-chloroethyl nitrosourea (BCNU/carmustine). CNOs being autofluorescent, drug-loaded functionalized CNOs (f-CNO-BCNU) can be detected in vivo. Transmission electron microscopy (TEM) and differential light scattering (DLS) techniques were used to analyze the sizes of these f-CNOs. The molecular study revealed that the f-CNO-BCNU readily and noncovalently binds with the folate receptors present on the cancer cell surface in excess. Computer modeling and molecular dynamics simulation followed by binding free energy calculation shows f-CNOs have -29.9 kcal/mol binding free energy, and it noncovalently binds the receptor FRα using loop dynamics of three essential loops present in the protein along with polar stabilization interactions provided by Asp55 and Glu86 residues present in the active site. The f-CNO effectively decreased cancer cell viability with a low IC50 value (the concentration that led to 50% killing of the cells). The cell-based Franz diffusion assay was performed to study the drug release profile. The f-CNO-BCNUs also decreased the mitochondrial membrane potential of U87 cells, increased reactive oxygen species release, and caused a loss of mitochondrial membrane integrity. The f-CNOs also increased the percentage of apoptotic cells observed by the Annexin V assay. Based on observed results, it can be concluded that the f-CNO-BCNU efficiently targets the cancer cells, enhances the bioavailability of carmustine, and can be used as a smart chemotherapeutic agent. This strategy offers better patient compliance and greater bioavailability of the drug.
Collapse
Affiliation(s)
- Rabindranath Majumder
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| | - Soumyajit Karmakar
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Amitava Basu Mallick
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| | - Chitrangada Das Mukhopadhyay
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| |
Collapse
|
20
|
Azzouzi M, Azougagh O, Ouchaoui AA, El hadad SE, Mazières S, Barkany SE, Abboud M, Oussaid A. Synthesis, Characterizations, and Quantum Chemical Investigations on Imidazo[1,2- a]pyrimidine-Schiff Base Derivative: ( E)-2-Phenyl- N-(thiophen-2-ylmethylene)imidazo[1,2- a]pyrimidin-3-amine. ACS OMEGA 2024; 9:837-857. [PMID: 38222514 PMCID: PMC10785637 DOI: 10.1021/acsomega.3c06841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 11/17/2023] [Indexed: 01/16/2024]
Abstract
In this study, (E)-2-phenyl-N-(thiophen-2-ylmethylene)imidazo[1,2-a]pyrimidin-3-amine (3) is synthesized, and detailed spectral characterizations using 1H NMR, 13C NMR, mass, and Fourier transform infrared (FT-IR) spectroscopy were performed. The optimized geometry was computed using the density functional theory method at the B3LYP/6-311++G(d,p) basis set. The theoretical FT-IR and NMR (1H and 13C) analysis are agreed to validate the structural assignment made for (3). Frontier molecular orbitals, molecular electrostatic potential, Mulliken atomic charge, electron localization function, localized orbital locator, natural bond orbital, nonlinear optical, Fukui functions, and quantum theory of atoms in molecules analyses are undertaken and meticulously interpreted, providing profound insights into the molecular nature and behaviors. In addition, ADMET and drug-likeness studies were carried out and investigated. Furthermore, molecular docking and molecular dynamics simulations have been studied, indicating that this is an ideal molecule to develop as a potential vascular endothelial growth factor receptor-2 inhibitor.
Collapse
Affiliation(s)
- Mohamed Azzouzi
- Laboratory
of Molecular Chemistry, Materials and Environment (LCM2E), Department
of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Omar Azougagh
- Laboratory
of Molecular Chemistry, Materials and Environment (LCM2E), Department
of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Abderrahim Ait Ouchaoui
- Laboratory
of Medical Biotechnology (MedBiotech), Bionova Research Center, Medical
and Pharmacy School, Mohammed V University, Agdal, Rabat B.P 8007, Morocco
| | - Salah eddine El hadad
- Laboratory
of Medical Biotechnology (MedBiotech), Bionova Research Center, Medical
and Pharmacy School, Mohammed V University, Agdal, Rabat B.P 8007, Morocco
| | - Stéphane Mazières
- Laboratory
of IMRCP, University Paul Sabatier, CNRS
UMR 5623, 118 route de Narbonne, Toulouse 31062, France
| | - Soufian El Barkany
- Laboratory
of Molecular Chemistry, Materials and Environment (LCM2E), Department
of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Mohamed Abboud
- Catalysis
Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Adyl Oussaid
- Laboratory
of Molecular Chemistry, Materials and Environment (LCM2E), Department
of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| |
Collapse
|
21
|
Balewski Ł, Plech T, Korona-Głowniak I, Hering A, Szczesio M, Olczak A, Bednarski PJ, Kokoszka J, Kornicka A. Copper(II) Complexes with 1-(Isoquinolin-3-yl)heteroalkyl-2-ones: Synthesis, Structure and Evaluation of Anticancer, Antimicrobial and Antioxidant Potential. Int J Mol Sci 2023; 25:8. [PMID: 38203181 PMCID: PMC10779222 DOI: 10.3390/ijms25010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Four copper(II) complexes, C1-4, derived from 1-(isoquinolin-3-yl)heteroalkyl-2-one ligands L1-4 were synthesized and characterized using an elemental analysis, IR spectroscopic data as well as single crystal X-ray diffraction data for complex C1. The stability of complexes C1-4 under conditions mimicking the physiological environment was estimated using UV-Vis spectrophotometry. The antiproliferative activity of both ligands L1-4 and copper(II) compounds C1-4 were evaluated using an MTT assay on four human cancer cell lines, A375 (melanoma), HepG2 (hepatoma), LS-180 (colon cancer) and T98G (glioblastoma), and a non-cancerous cell line, CCD-1059Sk (human normal skin fibroblasts). Complexes C1-4 showed greater potency against HepG2, LS180 and T98G cancer cell lines than etoposide (IC50 = 5.04-14.89 μg/mL vs. IC50 = 43.21->100 μg/mL), while free ligands L1-4 remained inactive in all cell lines. The prominent copper(II) compound C2 appeared to be more selective towards cancer cells compared with normal cells than compounds C1, C3 and C4. The treatment of HepG2 and T98G cells with complex C2 resulted in sub-G1 and G2/M cell cycle arrest, respectively, which was accompanied by DNA degradation. Moreover, the non-cytotoxic doses of C2 synergistically enhanced the cytotoxic effects of chemotherapeutic drugs, including etoposide, 5-fluorouracil and temozolomide, in HepG2 and T98G cells. The antimicrobial activities of ligands L2-4 and their copper(II) complexes C2-4 were evaluated using different types of Gram-positive bacteria, Gram-negative bacteria and yeast species. No correlation was found between the results of the antiproliferative and antimicrobial experiments. The antioxidant activities of all compounds were determined using the DPPH and ABTS radical scavenging methods. Antiradical tests revealed that among the investigated compounds, copper(II) complex C4 possessed the strongest antioxidant properties. Finally, the ADME technique was used to determine the physicochemical and drug-likeness properties of the obtained complexes.
Collapse
Affiliation(s)
- Łukasz Balewski
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (Ł.B.); (J.K.)
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Anna Hering
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| | - Małgorzata Szczesio
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland; (M.S.); (A.O.)
| | - Andrzej Olczak
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland; (M.S.); (A.O.)
| | - Patrick J. Bednarski
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, F.-L. Jahn Strasse 17, D-17489 Greifswald, Germany;
| | - Jakub Kokoszka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (Ł.B.); (J.K.)
| | - Anita Kornicka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (Ł.B.); (J.K.)
| |
Collapse
|
22
|
Al-Taweel S, Al-Saraireh Y, Al-Trawneh S, Alshahateet S, Al- Tarawneh R, Ayed N, Alkhojah M, AL-Khaboori W, Zereini W, Al-Qaralleh O. Synthesis and biological evaluation of ciprofloxacin - 1,2,3-triazole hybrids as antitumor, antibacterial, and antioxidant agents. Heliyon 2023; 9:e22592. [PMID: 38125538 PMCID: PMC10731006 DOI: 10.1016/j.heliyon.2023.e22592] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Six novel ciprofloxacin-1,2,3-triazole hybrids (6a-f) were synthesized via click reaction, by reacting of methyl 1-cyclopropyl-6-fluoro-4-oxo-7-(4-(3-oxobutanoyl)piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate (5) with various aryl azides (9a-f). The new compounds were characterized using High-Resolution Mass Spectrometry (HRMS), 1H NMR, 13C NMR, and elemental analysis. Compounds (6a-f) screened for their in vitro anticancer activity against three cell lines, namely, non-small cell lung cancer (A549), glioblastoma (U-87 MG), and breast cancer (MCF7). Hybrids 6a and 6b exhibited remarkable anti-proliferative activity against all three cell-lines. IC50 values of 6b for all cancer cell lines were significantly lower comparing to the standard reference compound IC50. The IC50 of 6b for the normal cell (HDF) line was significantly higher than the reported for cisplatin [IC50 = 170.7 ± 8.1 μM/ml (HDF), (p ≤ 0.001)], indicating less toxicity towards normal cells and thereby has a better therapeutic index, with a selectivity index of 142.3 for U87 cell line. Compounds 6e, 6d, and 6f displayed significant cytotoxic activity against only U-87 and MCF-7 cancer cell lines, compared to normal cells (HDF). Compound 6f [IC50 = 7.9 ± 2.3 μM/ml (U-87) and 10.6 ± 3 μM/ml (MCF-7)] was more potent than cisplatin [IC50 = 28.3 ± 5.3 μM/ml (U-87) and 26.9 ± 4.7 μM/ml (MCF-7)] in displaying anti-proliferative effect against U-87 and MCF-7 cells, with less cytotoxic to normal cells [IC50 = 141.7 ± 4.1] than cisplatin [IC50 = 40.9 ± 5.4]. Moreover, they were tested for their antioxidant activity in DPPH and ABTS assays and antibacterial activity.
Collapse
Affiliation(s)
- Samir Al-Taweel
- Department of Chemistry, Faculty of Science, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - Yousef Al-Saraireh
- Department of Pharmacology, Faculty of Medicine, Mut'ah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - Salah Al-Trawneh
- Department of Chemistry, Faculty of Science, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - Solhe Alshahateet
- Department of Chemistry, Faculty of Science, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - Rakan Al- Tarawneh
- Department of Chemistry, Faculty of Science, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - Nadaa Ayed
- Department of Chemistry, Faculty of Science, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - Mohammad Alkhojah
- Al-Karak Governmental Hospital, Ministry of Health, Al-Karak, 11118, Jordan
| | - Wisam AL-Khaboori
- Department of Pharmacology, Faculty of Medicine, Mut'ah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - Wael Zereini
- Department of Biology, Faculty of Science, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - Omar Al-Qaralleh
- Department of Biology, Faculty of Science, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| |
Collapse
|
23
|
Li B, Zhang T, Cao H, Ferro V, Li J, Yu M. Identification of a Pentasaccharide Lead Compound with High Affinity to the SARS-CoV-2 Spike Protein via In Silico Screening. Int J Mol Sci 2023; 24:16115. [PMID: 38003304 PMCID: PMC10671481 DOI: 10.3390/ijms242216115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The spike (S) protein on the surface of the SARS-CoV-2 virus is critical to mediate fusion with the host cell membrane through interaction with angiotensin-converting enzyme 2 (ACE2). Additionally, heparan sulfate (HS) on the host cell surface acts as an attachment factor to facilitate the binding of the S receptor binding domain (RBD) to the ACE2 receptor. Aiming at interfering with the HS-RBD interaction to protect against SARS-CoV-2 infection, we have established a pentasaccharide library composed of 14,112 compounds covering the possible sulfate substitutions on the three sugar units (GlcA, IdoA, and GlcN) of HS. The library was used for virtual screening against RBD domains of SARS-CoV-2. Molecular modeling was carried out to evaluate the potential antiviral properties of the top-hit pentasaccharide focusing on the interactive regions around the interface of RBD-HS-ACE2. The lead pentasaccharide with the highest affinity for RBD was analyzed via drug-likeness calculations, showing better predicted druggable profiles than those currently reported for RBD-binding HS mimetics. The results provide significant information for the development of HS-mimetics as anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Binjie Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing 100029, China;
| | - Hui Cao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Vito Ferro
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia;
| | - Jinping Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
- Department of Medical Biochemistry and Microbiology, Uppsala University, 752 36 Uppsala, Sweden
| | - Mingjia Yu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
24
|
Shekhar, Alcaraz M, Seboletswe P, Manhas N, Kremer L, Singh P, Kumar V. Tailoring selective triclosan azo-adducts: Design, synthesis, and anti-mycobacterial evaluation. Heliyon 2023; 9:e22182. [PMID: 38034623 PMCID: PMC10685269 DOI: 10.1016/j.heliyon.2023.e22182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
A series of triclosan azo-adducts were synthesized to investigate their structure-activity relationship against Mycobacterium tuberculosis and non-tuberculous mycobacteria. The series' most potent compound was four and sixteen times more active than triclosan and rifabutin against drug-resistant Mycobacterium abscessus, respectively, while being less cytotoxic to human macrophages than triclosan on day one. Additionally, one of the azo-adducts was twice as efficient against M. tuberculosis as triclosan and twice as effective against Mycobacterium marinum as isoniazid. Furthermore, the synthesized azo-adducts were equally effective against M. abscessus strains overexpressing InhA, suggesting that these compounds work through a distinct mechanism.
Collapse
Affiliation(s)
- Shekhar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Matthéo Alcaraz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
| | - Pule Seboletswe
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Neha Manhas
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
25
|
Ilovaisky AI, Scherbakov AM, Chernoburova EI, Povarov AA, Shchetinina MA, Merkulova VM, Salnikova DI, Sorokin DV, Bozhenko EI, Zavarzin IV, Terent'ev AO. Secosteroid thiosemicarbazides and secosteroid-1,2,4-triazoles as antiproliferative agents targeting breast cancer cells: Synthesis and biological evaluation. J Steroid Biochem Mol Biol 2023; 234:106386. [PMID: 37666392 DOI: 10.1016/j.jsbmb.2023.106386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
A convenient and selective approach to 13,17-secoestra-1,3,5(10)-trien-17-oic acid [N'-arylcarbothioamido]hydrazides and hybrid molecules containing secosteroid and 1,2,4-triazole fragments was disclosed and these novel types of secosteroids were screened for cytotoxicity against hormone-dependent human breast cancer cell line MCF-7. Most of secosteroid-1,2,4-triazole hybrids showed significant cytotoxic effect comparable or superior to that of the reference drug cisplatin. Hit secosteroid-1,2,4-triazole hybrids 4b and 4h were characterized by high cytotoxicity and good selectivity towards MCF-7 breast cancer cells. PARP cleavage (marker of apoptosis) and ERα and cyclin D1 downregulation were discovered in MCF-7 cells treated with lead secosteroid-1,2,4-triazole hybrid 4b. The synthesized secosteroids may be considered as new promising anticancer agents.
Collapse
Affiliation(s)
- Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander M Scherbakov
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Elena I Chernoburova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Andrey A Povarov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Marina A Shchetinina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Valentina M Merkulova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Diana I Salnikova
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Danila V Sorokin
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Eugene I Bozhenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Igor V Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia.
| |
Collapse
|
26
|
Manap S, Medetalibeyoğlu H, Kılıç A, Karataş OF, Tüzün B, Alkan M, Ortaakarsu AB, Atalay A, Beytur M, Yüksek H. Synthesis, molecular modeling investigation, molecular dynamic and ADME prediction of some novel Mannich bases derived from 1,2,4-triazole, and assessment of their anticancer activity. J Biomol Struct Dyn 2023; 42:11916-11930. [PMID: 37840297 DOI: 10.1080/07391102.2023.2265501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023]
Abstract
A series of biologically active novel Mannich bases containing with a 1H-1,2,4-triazole-5-one ring were developed to evaluate the cytotoxic activity. For this purpose, the synthesized Schiff Bases (S1-5) were reacted with formaldehyde and morpholine, which is a secondary amine to yield novel N-Mannich bases (M1-5) via the Mannich reaction. The structures of the compounds (M1-5) were determined structurally employing 1H/13C-NMR, IR and elemental analysis. In this study, we evaluated the cytotoxic potential of the compounds (M1-5) on the human hypopharyngeal carcinoma FaDu cells. We found that the compound (M3) possesses a significant anticancer feature against FaDu cells that might be evaluated with further in vitro and in vivo studies to understand its anticancer potential better. Lastly, comparisons were made using molecular docking calculations to find the theoretical activities of the compounds (M1-5). The docking score parameter of the compound (M3) against the 2DO4 protein is -5.67, the docking score parameter against the 5JPZ protein is -5.72, and finally, the docking score parameter against the 2H80 protein is -5.50. Molecular dynamic calculations are made for 0-100 ns. The ADME/T calculations were performed to find the drug potential of the compounds (M1-5). The results suggest that our drug candidate compound exhibits strong potential for co-administration with the antigen structures, owing to the low rate of interactions that decreased over time.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sevda Manap
- Department of Chemistry, Kafkas University, Kars, Turkey
| | | | - Ahsen Kılıç
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Omer Faruk Karataş
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Burak Tüzün
- Plant and Animal Production Department, Sivas Technical Sciences Vocational School, Sivas Cumhuriyet University, Turkey
| | | | | | - Abdurrahman Atalay
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Murat Beytur
- Department of Chemistry, Kafkas University, Kars, Turkey
| | - Haydar Yüksek
- Department of Chemistry, Kafkas University, Kars, Turkey
| |
Collapse
|
27
|
Göktürk T, Sakallı Çetin E, Hökelek T, Pekel H, Şensoy Ö, Aksu EN, Güp R. Synthesis, Structural Investigations, DNA/BSA Interactions, Molecular Docking Studies, and Anticancer Activity of a New 1,4-Disubstituted 1,2,3-Triazole Derivative. ACS OMEGA 2023; 8:31839-31856. [PMID: 37692230 PMCID: PMC10483525 DOI: 10.1021/acsomega.3c03355] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
We report herein a new 1,2,3-triazole derivative, namely, 4-((1-(3,4-dichlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)-2-hydroxybenzaldehyde, which was synthesized by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The structure of the compound was analyzed using Fourier transform infrared spectroscopy (FTIR), 1H NMR, 13C NMR, UV-vis, and elemental analyses. Moreover, X-ray crystallography studies demonstrated that the compound adapted a monoclinic crystal system with the P21/c space group. The dominant interactions formed in the crystal packing were found to be hydrogen bonding and van der Waals interactions according to Hirshfeld surface (HS) analysis. The volume of the crystal voids and the percentage of free spaces in the unit cell were calculated as 152.10 Å3 and 9.80%, respectively. The evaluation of energy frameworks showed that stabilization of the compound was dominated by dispersion energy contributions. Both in vitro and in silico investigations on the DNA/bovine serum albumin (BSA) binding activity of the compound showed that the CT-DNA binding activity of the compound was mediated via intercalation and BSA binding activity was mediated via both polar and hydrophobic interactions. The anticancer activity of the compound was also tested by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using human cell lines including MDA-MB-231, LNCaP, Caco-2, and HEK-293. The compound exhibited more cytotoxic activity than cisplatin and etoposide on Caco-2 cancer cell lines with an IC50 value of 16.63 ± 0.27 μM after 48 h. Annexin V suggests the induction of cell death by apoptosis. Compound 3 significantly increased the loss of mitochondrial membrane potential (MMP) levels in Caco-2 cells, and the reactive oxygen species (ROS) assay proved that compound 3 could induce apoptosis by ROS generation.
Collapse
Affiliation(s)
- Tolga Göktürk
- Department
of Chemistry, Muğla Sıtkı
Koçman University, 48000 Muğla, Türkiye
| | - Esin Sakallı Çetin
- Department
of Medical Biology, Muğla Sıtkı
Koçman University, 48000 Muğla, Türkiye
| | - Tuncer Hökelek
- Department
of Physics, Hacettepe University, 06800 Ankara, Türkiye
| | - Hanife Pekel
- Department
of Pharmacy Services, Vocational School of Health Services, Istanbul Medipol University, 34810 Istanbul, Türkiye
| | - Özge Şensoy
- Department
of Computer Engineering, Istanbul Medipol
University, 34000 Istanbul, Türkiye
| | - Ebru Nur Aksu
- Department
of Medical Biology, Muğla Sıtkı
Koçman University, 48000 Muğla, Türkiye
| | - Ramazan Güp
- Department
of Chemistry, Muğla Sıtkı
Koçman University, 48000 Muğla, Türkiye
| |
Collapse
|
28
|
Sundaramoorthy R, Vadivelu M, Thirumoorthy K, Karthikeyan K, Praveen C. Step-Economical Mechanosynthesis of Hybrid Azoles: Deciphering Their π-Orbital and Pharmacological Characteristics. ChemMedChem 2023; 18:e202300008. [PMID: 37055351 DOI: 10.1002/cmdc.202300008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/15/2023]
Abstract
A hybrid pharmacophore strategy for unifying 1,2,3-triazole with 1,2,4-triazole cores to prepare mixed triazoles was accomplished by a ball-milling approach. The developed chemistry works under the catalysis of cupric oxide nanoparticles with salient features like one-jar operation, lower number of synthetic steps, catalyst recyclability, time-dependent product control, and good overall yields. π-Orbital properties based on theoretical calculations supported the suitability of these molecules for pharmacological screening. Therefore, the biological potency of the synthesized molecules was evaluated for antioxidant, anti-inflammatory, and anti-diabetic activities. By virtue of their proton-donating tendency, all compounds showed promising radical-scavenging activity with the inhibition level reaching up to 90 %. These molecular hybrids also exhibited anti-inflammatory and anti-diabetic potencies similar to those of standard compounds, owing to their electron-rich nature. Finally, α-amylase inhibitory potential was demonstrated in silico; significant regions necessary for enzyme inhibition were identified by hydrogen bonding interactions.
Collapse
Affiliation(s)
- Ramachandran Sundaramoorthy
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, Tamil Nadu, India
| | - Murugan Vadivelu
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, Tamil Nadu, India
| | - Kulandaivel Thirumoorthy
- Department of Chemistry, Saveetha School of Engineering, SIMATS, Chennai, 632014, Tamil Nadu, India
| | - Kesavan Karthikeyan
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, Tamil Nadu, India
| | - Chandrasekar Praveen
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamil Nadu, India
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383, Wrocław, Poland
| |
Collapse
|
29
|
Hosny S, Ragab MS, Abd El-Baki RF. Synthesis of a new sulfadimidine Schiff base and their nano complexes as potential anti-COVID-19 and anti-cancer activity. Sci Rep 2023; 13:1502. [PMID: 36707628 PMCID: PMC9880939 DOI: 10.1038/s41598-023-28402-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023] Open
Abstract
The primary objective of this study was to describe the cytotoxicity on HEPG-2 cells and to study the COVID‑19 activities of the novel H2L ligand and its Cr and Cu nano-complexes. As well as exploring the chemistry of the prepared nano-complexes. In this paper novel Schiff base, N-(4, 6-dimethyl pyrimidin-2-yl)-4-(((2-hydroxyl naphthalene-1-y l) methylene) amino) benzene-sulfonamidesulfonyl) amide has been synthesized. The novel Schiff base H2L is used to synthesize novel nano and micro-complexes with CrCl2.6H2O and CuCl2.2H2O. The prepared ligand and micro complexes were interpreted by different spectroscopic techniques. The nano-sized Cr and Cu complexes were synthesized in an environmentally friendly manner using Coriandrum sativum (CS) media extract in ethanol. The structure, morphologies and particle size of the nano-sized complexes were determined using FT-IR, TEM, and PXRD. The results showed that the nano-domain complexes are on the Sub-nano scale. Furthermore, using TGA, we studied the effect of heat on the size of newly prepared nano-complexes. Experimental data were supported by DFT calculations. The findings revealed that the metal complexes investigated are more stable than the free ligand H2L. The antitumor activity was examined before and after heating the nano-complexes at 200 °C. The results reveal the Cr nano complex, after heating, exhibited strong antitumor activity with IC50 value (3.349 μg/ml). The tested Cu nano-complex shows good DNA cleavage. The liver cancer and COVID19 proteins were examined using molecular docking to identify the potential binding energy of inhibitors.
Collapse
Affiliation(s)
- Shimaa Hosny
- Department of Chemistry, Faculty of Science, New Valley University, Alkharga, 72511, Egypt.
| | - Mona S Ragab
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Randa F Abd El-Baki
- Department of Chemistry, Faculty of Science, New Valley University, Alkharga, 72511, Egypt
| |
Collapse
|
30
|
Bondock S, Albarqi T, Shaaban IA, Abdou MM. Novel asymmetrical azines appending 1,3,4-thiadiazole sulfonamide: synthesis, molecular structure analyses, in silico ADME, and cytotoxic effect †. RSC Adv 2023; 13:10353-10366. [PMID: 37020890 PMCID: PMC10068595 DOI: 10.1039/d3ra00123g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Toward finding potential and novel anticancer agents, we designed and prepared novel differently substituted unsymmetrical azine-modified thiadiazole sulfonamide derivatives using the “combi-targeting approach”. An efficient procedure for synthesizing the designed compounds starts with 5-acetyl-3-N-(4-sulfamoylphenyl)-2-imino-1,3,4-thiadi-azoline 4. The E/Z configuration for compound 5 was investigated based on spectral analysis combined with quantum mechanical calculation applying the DFT-B3LYP method and 6-31G(d) basis set. The computational results found that the E isomer was energetically more favorable than the Z isomer by 2.21 kcal mol−1. Moreover, 1H and 13C chemical shifts for the E and Z isomers in DMSO were predicted using the GIAO-B3LYP/6-31G(d) computations and IEF-PCM solvation model. The computed chemical shifts for both isomers are consistent with those observed experimentally, indicating that they exist in the solution phase. Moreover, the E/Z configuration for the synthesized azines 7a–c, 9, 11, 13, 15a and 15b was also studied theoretically using the DFT-B3LYP/6-31G(d) calculations. In silico prediction for the biological activities was reported regarding the HOMO–LUMO energy gaps and molecular reactivity descriptors besides the ADMT/drug-likeness properties. The cytotoxic effect of the synthesized compounds has been assayed via the determination of their IC50. Toward finding potential and novel anticancer agents, we designed and prepared novel differently substituted unsymmetrical azine-modified thiadiazole sulfonamide derivatives using the “combi-targeting approach”.![]()
Collapse
Affiliation(s)
- Samir Bondock
- Chemistry Department, Faculty of Science, King Khalid University9004 AbhaSaudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University35516 MansouraEgypt
| | - Tallah Albarqi
- Chemistry Department, Faculty of Science, King Khalid University9004 AbhaSaudi Arabia
| | - Ibrahim A. Shaaban
- Chemistry Department, Faculty of Science, King Khalid University9004 AbhaSaudi Arabia
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar UniversityNasr City 11884CairoEgypt
| | - Moaz M. Abdou
- Egyptian Petroleum Research InstituteNasr City11727CairoEgypt
| |
Collapse
|
31
|
Suárez-García J, Cano-Herrera MA, María-Gaviria A, Osorio-Echeverri VM, Mendieta-Zerón H, Arias-Olivares D, Benavides-Melo J, García-Sánchez LC, García-Ortíz J, Becerra-Buitrago A, Valero-Rojas J, Rodríguez-González M, García-Eleno MA, Cuevas-Yañez E. Synthesis, characterization, in-vitro biological evaluation and theoretical studies of 1,2,3-triazoles derived from triclosan as Difenoconazole analogues. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
32
|
Abd El-Wahab AHF, Mohamed HM. Synthesis and DFT Study of 7-Bromophenylnaphthopyran Moieties. ASIAN JOURNAL OF CHEMISTRY 2023; 35:1819-1826. [DOI: 10.14233/ajchem.2023.28032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
A one-pot, three-component reaction of 6-bromo-2-naphthol (1), p-chlorobenzaldehyde (2) and
malononitrile or ethyl cyanoacetate (3) in ethanol/piperidine under reflux was performed to afford
4H-naphtho[2,1-b]pyrano-3-carbonitrile (4a) and ethyl 4H-naphtho[2,1-b]pyrano-3-carboxylate (4b)
derivatives, respectively. The structure of these compounds was determined using IR, 1H NMR, 13C
NMR, mass spectroscopy and UV-Vis spectra. The molecular geometry of compounds 4a and 4b was
determined at the B3LYP/631+G(d) level. The geometric optimization was performed on two tautomers
and two conformers. Tautomers were separated by about 7.942 kcal/mol, while rotational conformers
were separated by just 0.511 kcal/mol. The global electrophilicity, hardness, softness and local
condensed Fukui functions were calculated and considered as molecular reactivity descriptors, moreover
the frontier molecular orbitals (HOMO and LUMO) were also calculated.
Collapse
Affiliation(s)
| | - Hany Mostafa Mohamed
- Chemistry Department, Faculty of Science, Jazan University, 2097, Jazan, Saudi Arabia
| |
Collapse
|
33
|
Ashram M, Habashneh AY, Bardaweel S, Taha MO. A Click Synthesis, Molecular Docking and Biological Evaluation of 1,2,3-triazoles-benzoxazepine hybrid as potential anticancer agents. Med Chem Res 2022. [DOI: 10.1007/s00044-022-03001-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Kumar V, Lal K, Kumar A, Tittal RK, Singh MB, Singh P. Efficient synthesis, antimicrobial and molecular modelling studies of 3-sulfenylated oxindole linked 1,2,3-triazole hybrids. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Li B, Zhang T, Li J, Yu M. Antiviral Disaccharide Lead Compounds against SARS-CoV-2 through Computer-Aided High-Throughput Screen. Chembiochem 2022; 23:e202200461. [PMID: 36265004 PMCID: PMC9874536 DOI: 10.1002/cbic.202200461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/20/2022] [Indexed: 01/27/2023]
Abstract
SARS-CoV-2 infects human epithelial cells through specific interaction with angiotensin-converting enzyme 2 (ACE2). In addition, heparan sulfate proteoglycans act as the attachment factor to promote the binding of viral spike protein receptor binding domain (RBD) to ACE2 on host cells. Though the rapid development of vaccines has contributed significantly to preventing severe disease, mutated SARS-CoV-2 strains, especially the SARS-CoV-2 Omicron variant, show increased affinity of RBD binding to ACE2, leading to immune escape. Thus, there is still an unmet need for new antiviral drugs. In this study, we constructed pharmacophore models based on the spike RBD of SARS-CoV-2 and SARS-CoV-2 Omicron variant and performed virtual screen for best-hit compounds from our disaccharide library. Screening of 96 disaccharide structures identified two disaccharides that displayed higher binding affinity to RBD in comparison to reported small molecule antiviral drugs. Further, screening PharmMapper demonstrated interactions of the disaccharides with a number of inflammatory cytokines, suggesting a potential for disaccharides with multiple-protein targets.
Collapse
Affiliation(s)
- Binjie Li
- Beijing Advanced Innovation Center forSoft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Tianji Zhang
- Division of Chemistry and Analytical ScienceNational Institute of MetrologyBeijing100029P. R. China
| | - Jin‐ping Li
- Beijing Advanced Innovation Center forSoft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsala75123Sweden
| | - Ming‐jia Yu
- School of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
36
|
Youssef M, Nafie MS, Salama EE, Boraei AT, Gad EM. Synthesis of New Bioactive Indolyl-1,2,4-Triazole Hybrids As Dual Inhibitors for EGFR/PARP-1 Targeting Breast and Liver Cancer Cells. ACS OMEGA 2022; 7:45665-45677. [PMID: 36530255 PMCID: PMC9753112 DOI: 10.1021/acsomega.2c06531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Cancer is the most severe disease worldwide. Every year, tens of millions of people are diagnosed with cancer, and over half of those people will ultimately die from the disease. Hence, the discovery of new inhibitors for fighting cancer is necessary. As a result, new indolyl-triazole hybrids were synthesized to target breast and liver cancer cells. The synthetic strategy involves glycosylation of the 4-aryltriazolethiones 3a-b with acetyl-protected α-halosugars in the presence of K2CO3 in acetone to give a mixture of β-S-glycosides 6a-b, 7a-b, and β-N-glycosides 8a-b, 9a-b. Chemo-selective S-glycosylation was achieved using NaHCO3 in ethanol. The migration of glycosyl moiety from sulfur to nitrogen (S → N glycosylmigration) was achieved thermally without any catalyst. Alkylation of the triazole-thiones with 2-bromoethanol and 1-bromopropan-2-ol in the presence of K2CO3 yielded the corresponding S-alkylated products. The synthesized compounds were tested for their cytotoxicity using an MTT assay and for apoptosis induction targeting PARP-1 and EGFR. Compounds 12b, 13a, and 13b exhibited cytotoxic activities with promising IC50 values of 2.67, 6.21, 1.07 μM against MCF-7 cells and 3.21, 8.91, 0.32 μM against HepG2 cells compared to Erlotinib (IC50 = 2.51, 2.91 μM, respectively) as reference drug. Interestingly, compounds 13b induced apoptosis in MCf-7 and HepG2 cells, arresting the cell cycle at the G2/M and S phases, respectively. Additionally, the dual enzyme inhibition seen in compound 13b against EGFR and PARP-1 is encouraging, with IC50 values of 62.4 nM compared to Erlotinib (80 nM) and 1.24 nM compared to Olaparib (1.49 nM), respectively. The anticancer activity was finally validated using an in vivo SEC-cancer model; compound 13b improved both hematological and biochemical analyses inhibiting tumor proliferation by 66.7% compared to Erlotinib's 65.7%. So, compound 13b may serve as a promising anticancer activity through dual PARP-1/EGFR target inhibition.
Collapse
|
37
|
Abdel‐Basset TA, Rezki N, Al‐Sodies SA, Aouad MR, Bashal AH, Sharfalddin AA, Jaremko M, Emwas A, Hagar M. Dielectric response and density functional theory assessment of fluorinated dicationic pyridinium ionic liquids. NANO SELECT 2022. [DOI: 10.1002/nano.202200016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Trob A. Abdel‐Basset
- Department of Physics Faculty of Science Taibah University Yanbu Saudi Arabia
- Department of Physics Faculty of Science Fayoum University Fayoum Egypt
| | - Nadjet Rezki
- Department of Chemistry College of Science Taibah University Al‐Madinah Al‐Munawarah Saudi Arabia
| | - Salsabeel A. Al‐Sodies
- Department of Chemistry College of Science Taibah University Al‐Madinah Al‐Munawarah Saudi Arabia
| | - Mohamed Reda Aouad
- Department of Chemistry College of Science Taibah University Al‐Madinah Al‐Munawarah Saudi Arabia
| | - Ali H Bashal
- Department of Chemistry College of Science Taibah University Al‐Madinah Al‐Munawarah Saudi Arabia
| | - Abeer A. Sharfalddin
- Department of Chemistry Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE) King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| | - Abdul‐Hamid Emwas
- Core Labs King Abdullah University of Science and Technology Thuwal Saudi Arabia
| | - Mohamed Hagar
- Chemistry Department Faculty of Science Alexandria University Alexandria Egypt
| |
Collapse
|
38
|
Mostafa MA. Synthesis, anticancer evaluation and molecular docking study of novel 4‐hydroxybenzo[
h
][1,6]naphthyridine‐2,5‐dione derivatives. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mai A. Mostafa
- Department of Chemistry, Faculty of Education Ain Shams University Roxy 11711 Cairo Egypt
| |
Collapse
|
39
|
Nariya P, Kumar S, Seshadri S, Patel M, Thakore S. Novel Substituted Isoindolinones Derived from Lawsone: Synthesis, Characterization, Theoretical, Biological Activity and Docking Studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Targeting the interplay between MMP-2, CA II and VEGFR-2 via new sulfonamide-tethered isomeric triazole hybrids; Microwave-assisted synthesis, computational studies and evaluation. Bioorg Chem 2022; 124:105816. [DOI: 10.1016/j.bioorg.2022.105816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/20/2022]
|
41
|
Bhagat DS, Bumbrah GS, Chawla PA, Gurnule WB, Shejul SK. Recent advances in synthesis and anticancer potential of triazole containing scaffolds. Anticancer Agents Med Chem 2022; 22:2852-2875. [PMID: 35176982 DOI: 10.2174/1871520622666220217161346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
Cancer is the most lethal disease that may be found anywhere on the globe. Approximately 10% of individuals die as a result of cancer of various types, with 19.3 million new cancer cases and 10 million deaths expected in 2020. More than 100 medications are commercially available for the treatment of cancer, but only a few candidates have high specificity, resulting in several side effects. The scientific community has spent the past decades focusing on drug discovery. Natural resources are used to isolate pharmaceutically active candidates, which are then synthesized in laboratories. More than 60% of all prescribed drugs are made from natural ingredients. Unique five-membered heteroaromatic center motifs with sulfur, oxygen and nitrogen atoms are found in heterocyclic compounds such as indazole, thiazole, triazole, triazole, and oxazole, and are used as a core scaffold in many medicinally important therapies. Triazole possesses a wide range of pharmacological activities including anticancer, antibacterial, antifungal, antibiotic antiviral, analgesic, anti-inflammatory, anti-HIV, antidiabetic, and antiprotozoal activities. Novel Triazole motifs with a variety of biological characteristics have been successfully synthesized using versatile synthetic methods. We intend here to facilitate the rational design and development of innovative triazole-based anti-cancer medicines with increased selectivity for various cancer cell lines by providing insight into various ligand-receptor interactions.
Collapse
Affiliation(s)
- Devidas S Bhagat
- Department of Forensic Chemistry and Toxicology, Government Institute of Forensic Science, Aurangabad 431 004, (MS), India
| | - Gurvinder S Bumbrah
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University, 122413, Haryana, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Wasudeo B Gurnule
- Department of Chemistry, Kamla Nehru Mahavidyalaya, Nagpur-440024, (MS) India
| | - Sampada K Shejul
- Department of Life Science, Vivekanand Arts, Sardar Dalipsingh Commerce and Science College, Aurangabad 431 001, (MS), India
| |
Collapse
|
42
|
Devasia J, Chinnam S, Khatana K, Shakya S, Joy F, Rudrapal M, Nizam A. Synthesis, DFT and In Silico Anti-COVID Evaluation of Novel Tetrazole Analogues. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2036778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jyothis Devasia
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru, Karnataka, India
| | - Sampath Chinnam
- Department of Chemistry, M. S. Ramaiah Institute of Technology (Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, India
| | - Kavita Khatana
- Department of Applied Sciences (Chemistry), IIMT College of Polytechnic, Greater Noida, Uttar Pradesh, India
| | - Sonam Shakya
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Francis Joy
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru, Karnataka, India
| | - Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune, Maharashtra, India
| | - Aatika Nizam
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru, Karnataka, India
| |
Collapse
|
43
|
Demir EA, Colak A, Uzuner SC, Yasar A, Bekircan O, Kabahasanoglu A. In vitro, in silico and Pharmaco-toxicological Efficiencies of some Triazole Derivatives on Inhibition of Digestive Enzyme Alpha-amylase. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY 2022; 65. [DOI: 10.1590/1678-4324-2022210368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
44
|
Pingaew R, Choomuenwai V, Leechaisit R, Prachayasittikul V, Prachayasittikul S, Prachayasittikul V. 1,2,3-Triazole Scaffold in Recent Medicinal Applications: Synthesis and Anticancer Potentials. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Hassan MZ, Alsayari A, Asiri YI, Bin Muhsinah A. 1,2,4-Triazole-3-Thiones: Greener, One-Pot, Ionic Liquid Mediated Synthesis and Antifungal Activity. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2009887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohd. Zaheen Hassan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Yahya I. Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
46
|
Medetalibeyoglu H. Synthesis, Antioxidant Activity, Spectroscopic, Electronic, Nonlinear Optical (NLO) and Thermodynamic Properties of 2-Ethoxy-4-[(5-oxo-3-phenyl-1,5-dihydro-1,2,4-triazol-4-ylimino)-methyl]-phenyl-4-methoxybenzoate: A Theoretical and Experimental Study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02401-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Alam MM. 1,2,3-Triazole hybrids as anticancer agents: A review. Arch Pharm (Weinheim) 2021; 355:e2100158. [PMID: 34559414 DOI: 10.1002/ardp.202100158] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/03/2021] [Accepted: 09/04/2021] [Indexed: 12/25/2022]
Abstract
Despite the advancements in the development of anticancer agents, more effective and safer anticancer drugs still need to be developed as the current agents cause unwanted side effects and many patients have become drug resistant. 1,2,3-Triazoles, due to their remarkable biological potential, have received considerable attention in drug discovery for the development of anticancer agents. The present review article presents an overview of the recent advances in 1,2,3-triazole hybrids with anticancer potential over the last 2 years, their chemical structures, structure-activity relationships, and mechanisms of action, as well as insights into the docking studies.
Collapse
Affiliation(s)
- Mohammad Mahboob Alam
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Kingdom of Saudi Arabia
| |
Collapse
|
48
|
Theoretical Study of 2-(Trifluoromethyl)phenothiazine Derivatives with Two Hydroxyl Groups in the Side Chain-DFT and QTAIM Computations. Molecules 2021; 26:molecules26175242. [PMID: 34500676 PMCID: PMC8434459 DOI: 10.3390/molecules26175242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022] Open
Abstract
Phenothiazines are known as synthetic antipsychotic drugs that exhibit a wide range of biological effects. Their properties result from the structure and variability of substituents in the heterocyclic system. It is known that different quantum chemical properties have a significant impact on drug behavior in the biological systems. Thus, due to the diversity in the chemical structure of phenothiazines as well as other drugs containing heterocyclic systems, quantum chemical calculations provide valuable methods in predicting their activity. In our study, DFT computations were applied to show some thermochemical parameters (bond dissociation enthalpy—BDE, ionization potential—IP, proton dissociation enthalpy—PDE, proton affinity—PA, and electrontransfer enthalpy—ETE) describing the process of releasing the hydrogen/proton from the hydroxyl group in the side chain of four 2-(trifluoromethyl)phenothiazine (TFMP) derivatives and fluphenazine (FLU). Additional theoretical analysis was carried out based on QTAIM theory. The results allowed theoretical determination of the ability of compounds to scavenge free radicals. In addition, the intramolecular hydrogen bond (H-bond) between the H-atom of the hydroxyl group and the N-atom located in the side chain of the investigated compounds has been identified and characterized.
Collapse
|
49
|
Maddali NK, Ivaturi VKV, Murthy Yellajyosula LN, Malkhed V, Brahman PK, Pindiprolu SKSS, Kondaparthi V, Nethinti SR. New 1,2,4‐Triazole Scaffolds as Anticancer Agents: Synthesis, Biological Evaluation and Docking Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202101387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Narendra Kumar Maddali
- Department of Chemistry Koneru Lakshmaiah Education Foundation (KLEF), Green Fields Guntur Andhra Pradesh 522502 India
| | | | | | - Vasavi Malkhed
- Department of Chemistry University College of Science, Saifabad Osmania University Hyderabad Telangana 500004 India
- Molecular Modelling Research Laboratory Department of Chemistry Osmania University Hyderabad Telangana 500007 India
| | - Pradeep Kumar Brahman
- Department of Chemistry Koneru Lakshmaiah Education Foundation (KLEF), Green Fields Guntur Andhra Pradesh 522502 India
| | - Sai Kiran S. S. Pindiprolu
- Department of Pharmacology Aditya Pharmacy College Surampalem, East Godavari District Andhra Pradesh 533437 India
| | - Vani Kondaparthi
- Molecular Modelling Research Laboratory Department of Chemistry Osmania University Hyderabad Telangana 500007 India
| | - Sundara Rao Nethinti
- Department of Organic Chemistry Andhra University Visakhapatnam Andhra Pradesh 530003 India
| |
Collapse
|
50
|
Mohammady SZ, Aldhayan DM, Hagar M. Preparation and DFT Study for New Three-Ring Supramolecular H-Bonded Induced Liquid Crystal Complexes. Front Chem 2021; 9:679528. [PMID: 34150717 PMCID: PMC8213091 DOI: 10.3389/fchem.2021.679528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/12/2021] [Indexed: 11/27/2022] Open
Abstract
Supramolecular three-ring Schiff base novel liquid crystal complexes have been prepared and investigated. Schiff bases of para-substituted aniline derivatives and para-pyridine carbaldehyde have been prepared and then mixed in equimolar quantities with para-alkoxy benzoic acids. On one side, the alkoxy chain length varies from 8 to 16 carbon atoms. On the other side, terminal small compact groups substituting aniline with various polarities are used. Hydrogen-bonding interaction was elucidated by FTIR spectroscopy. The mesomorphic thermal and optical characteristics of the samples were obtained by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). All samples exhibit enantiotropic mesophases. Experimental results obtained for the induced mesophases were correlated with density functional theory (DFT) theoretical calculations. The results revealed that both the polar compact groups' polarity and the alkoxy chain lengths contribute strongly to mesomorphic characteristics and thermal stabilities of the mesophases. Surprisingly, the observed values of enthalpy changes associated with the crystalline mesomorphic transitions lie in the range of 2.2-12.5 kJ/mol. However, the enthalpy changes corresponding to the mesomorphic-isotropic transitions vary from 0.9 to 13.9 kJ/mol, depending on the polarity of para-attached groups to the aniline moiety.
Collapse
Affiliation(s)
- Sayed Z. Mohammady
- Chemistry Department, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Daifallah M. Aldhayan
- Chemistry Department, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Hagar
- Chemistry Department, College of Sciences, Taibah University, Yanbu, Saudi Arabia
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|