1
|
You SM, Choi JH, Ryu SY, Byeon JW, Kim H, Cha HG. Investigation of lignin substructures participating in self-assembly for the synthesis of monodisperse lignin spherical particles. Int J Biol Macromol 2024; 259:129214. [PMID: 38185300 DOI: 10.1016/j.ijbiomac.2024.129214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The intricate structure of lignin, characterized by a mix of hydrophilic components and hydrophobic structures from its aliphatic and aromatic constituents, poses challenges in creating monodisperse particles. This is due to the need for precise modulation of self-assembly kinetics. Herein, we explore a correlation between the substructure of lignin and its capacity for self-assembly. We have conducted an in-depth investigation into the interactions between hydrophilic groups, such as phenolic and aromatic-OH, and monolignols with interunit linkages that are involved in the formation of lignin particles (LPs). A high degree of hydrophilicity with a condensed structure is crucial for high supersaturation levels, which in turn determines the growth phase and leads to small LPs. An approach based on tailoring the supersaturation level which is contingent on the structural characteristics of extracted organosolv lignin was used to obtain remarkably uniform LPs with mean diameters of approximately 230 and 480 nm. The results of this study have the potential to serve as a foundation for the preparation of monodisperse LPs derived from various lignin sources as well as for the development of methods to extract lignin containing a specific chemical substructure.
Collapse
Affiliation(s)
- Sang-Mook You
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - June-Ho Choi
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - So Yeon Ryu
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Je Wook Byeon
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Hoyong Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea.
| | - Hyun Gil Cha
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea.
| |
Collapse
|
2
|
Park S, Kim J, Choi JH, Kim JC, Kim J, Cho Y, Jung S, Kwak HW, Choi IG. Biodegradation behavior of acetylated lignin added polylactic acid under thermophilic composting conditions. Int J Biol Macromol 2023; 253:127472. [PMID: 37858649 DOI: 10.1016/j.ijbiomac.2023.127472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Acetylated lignin (AL) can improve compatibility with commercial plastic polymers compared to existing lignin and can be used as an effective additive for eco-friendly biocomposites. For this reason, AL can be effectively incorporated into polylactic acid (PLA)-based biocomposites, but its biodegradation properties have not been investigated. In this study, biodegradation experiments were performed under mesophilic and thermophilic conditions to determine the effect of AL addition on the biodegradation characteristics of PLA-based biocomposites. As a result, the PLA-based biocomposite showed a faster biodegradation rate in a thermophilic composting environment, which is higher than the glass transition temperature of PLA, compared to a mesophilic environment. 16S rDNA sequencing results showed that differences in microbial communities depending on mesophilic and thermophilic environments strongly affected the biodegradation rate of lignin/PLA biocomposites. Importantly, the addition of AL can effectively delay the thermophilic biodegradation of PLA biocomposites. As a result of tracking the changes in physicochemical properties according to the biodegradation period in a thermophilic composting environment, the main biodegradation mechanism of AL/PLA biocomposite hydrolysis. It proceeded with cleavage of the PLA molecular chain, preferential biodegradation of the amorphous region, and additional biodegradation of the crystalline region. Above all, adding AL can be proposed as an effective additive because it can minimize the decline in the mechanical properties of PLA and delay the biodegradation rate more effectively compared to existing kraft lignin (KL).
Collapse
Affiliation(s)
- Sangwoo Park
- Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jungkyu Kim
- Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - June-Ho Choi
- Advanced Convergent Chemical Division, Center for Biobased Chemistry, Korea Research Institute of Chemical Technology, Ulsan 44429, Republic of Korea
| | - Jong-Chan Kim
- Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jonghwa Kim
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Youngmin Cho
- Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungoh Jung
- Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo Won Kwak
- Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - In-Gyu Choi
- Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Bang J, Kim JH, Park SW, Kim J, Jung M, Jung S, Kim JC, Choi IG, Kwak HW. Effect of chemically modified lignin addition on the physicochemical properties of PCL nanofibers. Int J Biol Macromol 2023; 240:124330. [PMID: 37023881 DOI: 10.1016/j.ijbiomac.2023.124330] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
In this study, a chemically modified lignin additive was successfully prepared to improve the physicochemical properties of biodegradable polycaprolactone (PCL)-based nanofibers. The molecular weight and surface functional group characteristics of lignin were effectively controlled through a solvent fractionation process using ethanol. Then, PCL-g-lignin was successfully synthesized by using ethanol-fractionated lignin as a platform for the PCL grafting process. Finally, PCL/PCL-g-lignin composite nanofibers were simply prepared by adding PCL-g-lignin to the PCL doping solution and performing a solution blow spinning process. The addition of PCL-g-lignin could dramatically improve the physical and chemical properties of PCL nanofibers, and in particular, the tensile strength (0.28 MPa) increased by approximately 280 % compared to the conventional PCL. In addition, the lignin moiety present in PCL-g-lignin was able to impart UV blocking properties to PCL nanofibers, and as a result, it was possible to effectively suppress the photolysis phenomenon that occurred rapidly in existing PCL nanofibers. Therefore, PCL-g-lignin may be widely used not only as a reinforcing agent of existing biodegradable nanofibers but also as a functional additive for UV protection.
Collapse
Affiliation(s)
- Junsik Bang
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jong-Hwa Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Sang-Woo Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jungkyu Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Minjung Jung
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Seungoh Jung
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jong Chan Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - In-Gyu Choi
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hyo Won Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
4
|
Thoresen PP, Lange H, Rova U, Christakopoulos P, Matsakas L. Covalently bound humin-lignin hybrids as important novel substructures in organosolv spruce lignins. Int J Biol Macromol 2023; 233:123471. [PMID: 36736515 DOI: 10.1016/j.ijbiomac.2023.123471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Organosolv lignins (OSLs) are important byproducts of the cellulose-centred biorefinery that need to be converted in high value-added products for economic viability. Yet, OSLs occasionally display characteristics that are unexpected looking at the lignin motifs present. Applying advanced NMR, GPC, and thermal analyses, isolated spruce lignins were analysed to correlate organosolv process severity to the structural details for delineating potential valorisations. Very mild conditions were found to not fractionate the biomass, causing a mix of sugars, lignin-carbohydrate complexes (LCCs), and corresponding dehydration/degradation products and including pseudo-lignins. Employing only slightly harsher conditions promote fractionation, but also formation of sugar degradation structures that covalently incorporate into the oligomeric and polymeric lignin structures, causing the isolated organosolv lignins to contain lignin-humin hybrid (HLH) structures not yet evidenced as such in organosolv lignins. These structures effortlessly explain observed unexpected solubility issues and unusual thermal responses, and their presence might have to be acknowledged in downstream lignin valorisation.
Collapse
Affiliation(s)
- Petter Paulsen Thoresen
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87, Sweden
| | - Heiko Lange
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87, Sweden; Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy; NBFC - National Biodiversity Future Center, 90133 Palermo, Italy.
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87, Sweden.
| |
Collapse
|
5
|
Chen WH, Lee KT, Ho KY, Culaba AB, Ashokkumar V, Juan CJ. Multi-objective operation optimization of spent coffee ground torrefaction for carbon-neutral biochar production. BIORESOURCE TECHNOLOGY 2023; 370:128584. [PMID: 36610482 DOI: 10.1016/j.biortech.2023.128584] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Many energy-intensive processes are employed to enhance biomass fuel properties to overcome the difficulties in utilizing biomass as fuel. Therefore, energy conservation during these processes is crucial for realizing a circular bioeconomy. This study develops a newly devised method to evaluate SCG biochars' higher heating value (HHV) and predict moisture content from power consumption. It is found that the increasing rates of HHV immediately follow decreases in power consumption, which could be used to determine the pretreatment time for energy conservation. The non-dominated sorting genetic algorithm II (NSGA-II) maximizes SCG biochar's HHV while minimizing energy consumption. The results show that producing SCG biochar with 23.98 MJ∙kg-1 HHV requires 20.042 MJ∙kg-1, using a torrefaction temperature of 244 °C and torrefaction time of 27 min and 43 sec. Every kilogram of biochar with an energy yield of 85.93 % is estimated to cost NT$ 12.21.
Collapse
Affiliation(s)
- Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| | - Kuan-Ting Lee
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan
| | - Kuan-Yu Ho
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan
| | - Alvin B Culaba
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Veeramuthu Ashokkumar
- Biorefineries for Biofuels & Bioproducts Laboratory (BBBL), Center for Trandisciplinary Research, Department of Pharmacology, SDC, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Ching Joon Juan
- Nanotechnology & Catalysis Research Centre (NanoCat), Institute of Postgraduate Studies, University Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Cho YM, Kim JH, Choi JH, Kim JC, Cho SM, Park SW, Kwak HW, Choi IG. Physicochemical characteristics of lignin-g-PMMA/PLA blend via atom transfer radical polymerization depending on the structural difference of organosolv lignin. Int J Biol Macromol 2023; 226:279-290. [PMID: 36495995 DOI: 10.1016/j.ijbiomac.2022.11.316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Lignin has different structural characteristics depending on the extraction conditions. In this study, three types of ethanol organosolv lignin (EOL) were produced under different extraction conditions involving the reaction temperature (140, 160, 180 °C), sulfuric acid concentration (0.5, 1, 1.5 %), and ethanol concentration (40, 60, 80 %) to compare the difference in properties when mixed with polylactic acid (PLA) matrix after atom transfer radical polymerization (ATRP). ATRP of EOL was conducted to improve its compatibility with PLA using methyl methacrylate (MMA) as a monomer. The molecular weight of each EOL increased significantly, and the glass transition temperature (Tg) decreased from approximately 150 to 110 °C. The EOL-g-PMMA copolymer exhibited a melting point (Tm), whereas EOL did not, implying that the thermoplasticity increased. The EOL-g-PMMA/PLA blend and film were prepared with 10 % of the copolymer in the PLA matrix. The tensile strength and strain of the blend were higher than those of unmodified organosolv lignin as the compatibility increased, and the UV transmittance was lower than that of neat PLA because of the UV protecting properties of EOL moiety.
Collapse
Affiliation(s)
- Young-Min Cho
- Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-Hwa Kim
- Department of Forest sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - June-Ho Choi
- Advanced Convergent Chemical Division, Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology, Ulsan 44429, Republic of Korea
| | - Jong-Chan Kim
- Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seong-Min Cho
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Sang-Woo Park
- Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo Won Kwak
- Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - In-Gyu Choi
- Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Ovejero-Pérez A, Rigual V, Domínguez JC, Alonso MV, Oliet M, Rodriguez F. Effect of autohydrolysis and ionosolv treatments on eucalyptus fractionation and recovered lignin properties †. RSC Adv 2023; 13:10338-10348. [PMID: 37020891 PMCID: PMC10068429 DOI: 10.1039/d2ra08013c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Wood fractionation is key for the integral valorization of its three main components. In this sense, recovering the hemicellulosic fraction after the ionosolv treatment of lignocellulosic materials is one of the main drawbacks of this process. Thus, the incorporation of a previous autohydrolyisis step to recover the hemicellulosic sugars before the ionosolv treatment is an interesting approach. The influence of both treatments, autohydrolysis and ionosolv, on the biomass fractions recovery yields was studied by a central composite design of experiments, varying the autohydrolysis temperature in a 175–195 °C range and ionosolv time between 1–5 h. Lignin recovery and cellulose purity were maximized at 184 °C and 3.5 h of autohydrolysis temperature and ionosolv time, respectively. In addition, lignin properties were incorporated to the statistical model, revealing lignin recondensation at severe conditions and a higher influence of the ionosolv treatment on lignin characteristics. These results remarked the importance of studying the effect of both treatments in the whole fractionation process and not each process separately and enhanced the understanding of the treatments combination in a complete fractionation biorefinery approach. This work enhances the understanding of the effect of autohydrolysis and ionosolv treatments combination on fractionation yields and lignin properties.![]()
Collapse
Affiliation(s)
- Antonio Ovejero-Pérez
- Department of Chemical Engineering and Materials, Complutense University of Madrid28040 MadridSpain
| | - Victoria Rigual
- Department of Chemical Engineering and Materials, Complutense University of Madrid28040 MadridSpain
| | - Juan C. Domínguez
- Department of Chemical Engineering and Materials, Complutense University of Madrid28040 MadridSpain
| | - M. Virginia Alonso
- Department of Chemical Engineering and Materials, Complutense University of Madrid28040 MadridSpain
| | - Mercedes Oliet
- Department of Chemical Engineering and Materials, Complutense University of Madrid28040 MadridSpain
| | - Francisco Rodriguez
- Department of Chemical Engineering and Materials, Complutense University of Madrid28040 MadridSpain
| |
Collapse
|
8
|
Pongchaiphol S, Suriyachai N, Hararak B, Raita M, Laosiripojana N, Champreda V. Physicochemical characteristics of organosolv lignins from different lignocellulosic agricultural wastes. Int J Biol Macromol 2022; 216:710-727. [PMID: 35803411 DOI: 10.1016/j.ijbiomac.2022.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
Abstract
Lignin is a promising alternative to petrochemical precursors for conversion to industrial-needed products. Organosolv lignins were extracted from different agricultural wastes including sugarcane bagasse (BG) and trash (ST), corncob (CC), eucalyptus wood (EW), pararubber woodchip (PRW), and palm wastes (palm kernel cake (PKC), palm fiber (PF), and palm kernel shell (PKS), representing different groups of lignin origins. Physicochemical characteristics of lignins were analyzed by several principal techniques. Most recovered lignin showed high purity of >90 % with trace sugar contamination, while lower purities were found for lignin from palm wastes. Hardwood lignins (EW and PRW) mainly contained guaiacyl (G) and syringyl (S) units with a minor fraction of p-hydroxyphenyl units (H) with high molecular weight, glass transition temperature, phenolic hydroxy group and low aliphatic hydroxy group. Grass-type lignins (BG, ST, CC) and palm lignins (PKC, PF, and PKS) contained three monolignols of H, G, and S units with lower molecular weights and C5-substituted hydroxy of S unit. Among the grass-type lignins, PKC lignin contained the highest nitrogen and lipophilic components with the lowest molecular weight, thermal stability, and glass transition temperature. This provides insights into properties of organosolv lignin as basis for their further applications in chemical, polymer and material industries.
Collapse
Affiliation(s)
- Suchat Pongchaiphol
- The Joint Graduate School for Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Prachauthit Road, Bangmod, Bangkok 10140, Thailand; BIOTEC-JGSEE Integrative Biorefinery Laboratory, Innovation Cluster 2 Building, Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Nopparat Suriyachai
- BIOTEC-JGSEE Integrative Biorefinery Laboratory, Innovation Cluster 2 Building, Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand; School of Energy and Environment, University of Phayao, Tambon Maeka, Amphur Muang, Phayao 56000, Thailand
| | - Bongkot Hararak
- National Metal and Materials Technology Center (MTEC), 114 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Marisa Raita
- The Joint Graduate School for Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Prachauthit Road, Bangmod, Bangkok 10140, Thailand; BIOTEC-JGSEE Integrative Biorefinery Laboratory, Innovation Cluster 2 Building, Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand.
| | - Navadol Laosiripojana
- The Joint Graduate School for Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Prachauthit Road, Bangmod, Bangkok 10140, Thailand; BIOTEC-JGSEE Integrative Biorefinery Laboratory, Innovation Cluster 2 Building, Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Verawat Champreda
- Biorefinery Technology and Bioproducts Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand; BIOTEC-JGSEE Integrative Biorefinery Laboratory, Innovation Cluster 2 Building, Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
9
|
Choi JH, Kim JH, Lee SY, Jang SK, Kwak HW, Kim H, Choi IG. Thermoplasticity reinforcement of ethanol organosolv lignin to improve compatibility in PLA-based ligno-bioplastics: Focusing on the structural characteristics of lignin. Int J Biol Macromol 2022; 209:1638-1647. [PMID: 35469955 DOI: 10.1016/j.ijbiomac.2022.04.090] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 11/05/2022]
Abstract
Commonly, lignin macromolecules have limitations in application to the thermoplastics industries due to poor dispersibility and interfacial compatibility within ligno-bioplastics. In this study, the dispersibility and interfacial compatibility of ethanol organosolv lignin (EOL) in PLA-based ligno-bioplastic were improved by enhancing the thermoplasticity via oxypropylation. Further, three types of EOLs extracted from different severity conditions were applied to investigate the effect of the structural characteristics of EOLs on the changes in the thermal properties. The thermal properties of oxypropylated EOL were dependent on the structural characteristics of the initial EOL as well as the degree of polymerization of propylene oxide. The thermoplasticity of EOLs extracted under mild condition was effectively increased as a new Tg and melting were observed. Based on increased thermoplasticity, the dispersibility and interfacial compatibility of EOL within PLA-based ligno-bioplastic were successfully improved, which compensates for the deterioration in mechanical strength of ligno-bioplastic due to the addition of unmodified EOL. Therefore, oxypropylation of EOL with suitable structural characteristics promises improved availability as a thermoplastic material.
Collapse
Affiliation(s)
- June-Ho Choi
- Advanced Convergent Chemical Division, Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology, Ulsan 44429, Republic of Korea
| | - Jong-Hwa Kim
- Department of Forest Sciences, Seoul National University, 1, Gwanak-ro, Seoul 08826, Republic of Korea
| | - Sang Youn Lee
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, 1, Gwanak-ro, Seoul 08826, Republic of Korea
| | - Soo-Kyeong Jang
- Department of Wood Science, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Hyo Won Kwak
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, 1, Gwanak-ro, Seoul 08826, Republic of Korea
| | - Hoyong Kim
- Advanced Convergent Chemical Division, Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology, Ulsan 44429, Republic of Korea
| | - In-Gyu Choi
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, 1, Gwanak-ro, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1, Gwanak-ro, Seoul 08826, Republic of Korea.
| |
Collapse
|
10
|
Sidiras D, Politi D, Giakoumakis G, Salapa I. Simulation and optimization of organosolv based lignocellulosic biomass refinery: A review. BIORESOURCE TECHNOLOGY 2022; 343:126158. [PMID: 34673192 DOI: 10.1016/j.biortech.2021.126158] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Organosolv pretreatment can be considered as the core of the lignocellulosic biomass fractionation within the biorefinery concept. Organosolv facilitates the separation of the major fractions (cellulose, hemicelluloses, lignin), and their use as renewable feedstocks to produce bioenergy, biofuels, and added-value biomass derived chemicals. The efficient separation of these fractions affects the economic feasibility of the biorefinery complex. This review focuses on the simulation of the organosolv pretreatment and the optimization of (i) feedstock delignification, (ii) sugars production (mainly from hemicelluloses), (iii) enzymatic digestibility of the cellulose fraction and (iv) quality of lignin. Simulation is used for the technoeconomic optimization of the biorefinery complex. Simulation and optimization implement a holistic approach considering the efficient technological, economic, and environmental performance of the biorefinery operational units. Consequently, an optimized organosolv stage is the first step for a sustainable, economically viable biorefinery complex in the concept of industrial ecology and zero waste circular economy.
Collapse
Affiliation(s)
- Dimitrios Sidiras
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, University of Piraeus, 80 Karaoli & Dimitriou, GR 18534, Piraeus, Greece.
| | - Dorothea Politi
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, University of Piraeus, 80 Karaoli & Dimitriou, GR 18534, Piraeus, Greece
| | - Georgios Giakoumakis
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, University of Piraeus, 80 Karaoli & Dimitriou, GR 18534, Piraeus, Greece
| | - Ioanna Salapa
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, University of Piraeus, 80 Karaoli & Dimitriou, GR 18534, Piraeus, Greece
| |
Collapse
|
11
|
Biodegradable and renewable UV-shielding polylactide composites containing hierarchical structured POSS functionalized lignin. Int J Biol Macromol 2021; 188:323-332. [PMID: 34375661 DOI: 10.1016/j.ijbiomac.2021.08.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
The demand for biodegradable and renewable UV-shielding materials is ever increasing due to the rising concern for the environment. In this paper, biobased lignin was functionalized by polyhedral oligomeric silsesquioxane (POSS) with an epoxy substituent. Then the POSS decorated lignin (lignin-POSS) was mixed with polylactide (PLA) to act as UV-shielding filler by melt compounding. The SEM observation revealed that the presence of POSS contributed to improving the homogeneous dispersion of lignin-POSS in the PLA matrix with good compatibility when the content of lignin-POSS was lower than 5 wt%. The synergistic effects of lignin and POSS endowed PLA composite films with a good balance of UV-shielding ability and transparency in the visible light region. With the addition of 5 wt% lignin-POSS, the PLA composite film absorbed almost all UV irradiation across the entire UV spectrum. In addition, the presence of lignin-POSS could serve as a nucleating agent to increase the degree of crystallinity of PLA. The dynamical rheological tests revealed that the lignin-POSSS reduced the complex viscosity and storage modulus of PLA composites, improving the flowability of PLA composites. This work presents a viable pathway to prepare biodegradable and renewable UV-shielding materials for potential packaging applications.
Collapse
|