1
|
Senthil R, Archunan G, Vithya D, Saravanan KM. Hexadecanoic acid analogs as potential CviR-mediated quorum sensing inhibitors in Chromobacterium violaceum: an in silico study. J Biomol Struct Dyn 2025; 43:3635-3644. [PMID: 38165661 DOI: 10.1080/07391102.2023.2299945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/20/2023] [Indexed: 01/04/2024]
Abstract
Chromobacterium violaceum is a Gram-negative, rod-shaped and opportunistic human pathogen. C. violaceum is resistant to various antibiotics due to the production of quorum sensing (QS)-controlled virulence factor and biofilm formation. Hence, we need to find alternative strategies to overcome the antimicrobial resistance and biofilm formation in Gram-negative bacteria. QS is a mechanism in which bacteria's ability to regulate the virulence factors and biofilm formations leads to disease progression. Previously, hexadecanoic acid was identified as a CviR-mediated quorum-sensing inhibitor. In this study, we aimed to discover potential analogs of hexadecanoic acid as a CviR-mediated quorum-sensing inhibitor against C. violaceum by using ADME/T prediction, density functional theory, molecular docking, molecular dynamics and free energy binding calculations. ADME/T properties predicted for analogs were acceptable for human oral absorption and feasibility. The highest occupied molecular orbitals and lowest unoccupied molecular orbitals gap energies predicted and found oleic acid with -0.3748 energies. Docosatrienoic acid exhibited the highest binding affinity -8.15 Kcal/mol and strong and stable interactions with the amino acid residues on the active site of the CviR protein. These compounds on MD simulations for 100 ns show strong hydrogen-bonding interactions with the protein and remain stable inside the active site. Our results suggest hexadecanoic acid analogs could serve as anti-QS and anti-biofilm molecules for treating C. violaceum infections. However, further validation and investigation of these inhibitors against CviR are needed to claim their candidacy for clinical trials.
Collapse
Affiliation(s)
- Renganathan Senthil
- Department of Bioinformatics, School of Lifesciences, Vel's Institute of Science, Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India
- Lysine Biotech Private Limited, Taramani, Chennai, Tamil Nadu, India
| | - Govindaraju Archunan
- Dean-Research, Maruthupandiyar College (Affiliated to Bharathidasan University), Thanjavur, Tamil Nadu, India
| | - Dharmaraj Vithya
- Department of Biotechnology, Dhanalakshmi Srinivasan College of Arts and Science for Women (Affiliated to Bharathidasan University), Perambalur, Tamil Nadu, India
| | - Konda Mani Saravanan
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
T FX, R S, A K FR, S B, R K, M A, S V, S P, S A, K S, M T. Phytochemical composition, anti-microbial, anti-oxidant and anti-diabetic effects of Solanum elaeagnifolium Cav. leaves: in vitro and in silico assessments. J Biomol Struct Dyn 2025; 43:3688-3714. [PMID: 38180058 DOI: 10.1080/07391102.2023.2300124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
The aim of this study was to screen the chemical components of Solanum elaeagnifolium leaves and assess their therapeutic attributes with regard to their antioxidant, antibacterial, and antidiabetic activities. The antidiabetic effects were explored to determine the α-amylase and α-glucosidase inhibitory potential of the leaf extract. To identify the active antidiabetic drugs from the extracts, the GC-MS-screened molecules were docked with diabetes-related proteins using the glide module in the Schrodinger Tool. In addition, molecular dynamics (MD) simulations were performed for 100 ns to evaluate the binding stability of the docked complex using the Desmond module. The ethyl acetate had a significant total phenolic content (TPC), with a value of 79.04 ± 0.98 mg/g GAE. The ethanol extract was tested for its minimum inhibitory concentration (MIC) for its bacteriostatic properties. It suppressed the growth of B. subtilis, E. coli, P. vulgaris, R. equi and S. epidermis at a dosage of 118.75 µg/mL. Moreover, the IC50 values of the ethanol extract were determined to be 17.78 ± 2.38 in the α-amylase and and 27.90 ± 5.02 µg/mL in α-glucosidase. The in-silico investigation revealed that cyclolaudenol achieved docking scores of -7.94 kcal/mol for α-amylase. Likewise, the α-tocopherol achieved the docking scores of -7.41 kcal/mol for glycogen phosphorylase B and -7.21 kcal/mol for phosphorylase kinase. In the MD simulations, the cyclolaudenol and α-tocopherol complexes exhibited consistently stable affinities with diabetic proteins throughout the trajectory. Based on these findings, we conclude that this plant could be a good source for the development of novel antioxidant, antibacterial, and antidiabetic agents.
Collapse
Affiliation(s)
- Francis Xavier T
- Ethnopharmacological Research Unit, PG and Research Department of Botany, St. Joseph's College (Autonomous), Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Sabitha R
- Ethnopharmacological Research Unit, PG and Research Department of Botany, St. Joseph's College (Autonomous), Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Freeda Rose A K
- PG and Research Department of Botany, Holy Cross College (Autonomous), Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Balavivekananthan S
- Ethnopharmacological Research Unit, PG and Research Department of Botany, St. Joseph's College (Autonomous), Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Kariyat R
- Department of Biology, The University of Texas, Rio Grande Valley, W University Dr, Edinburg, TX, USA
| | - Ayyanar M
- PG and Research Department of Botany, A.V.V.M. Sri Pushpam College (Autonomous), Bharathidasan University, Poondi, Tamil Nadu, India
| | - Vijayakumar S
- PG and Research Department of Botany, A.V.V.M. Sri Pushpam College (Autonomous), Bharathidasan University, Poondi, Tamil Nadu, India
| | - Prabhu S
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, India
| | - Amalraj S
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, India
| | - Shine K
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Thiruvengadam M
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Korea
| |
Collapse
|
3
|
Çapan İ, Hawash M, Qaoud MT, Jaradat N. Next-Generation Carbazole-Linked 1,2,4-Triazole-Thione Derivatives: Strategic Design, Synthesis, Molecular Docking, and Evaluation of Antidiabetic Potential. ACS OMEGA 2025; 10:848-861. [PMID: 39829592 PMCID: PMC11739978 DOI: 10.1021/acsomega.4c07896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025]
Abstract
Currently, available therapies for diabetes cannot achieve normal sugar values in a high percentage of treated patients. This work synthesized a series of carbazole-triazole-thione derivatives, and their potential antidiabetic activity was investigated against the key diabetic enzymes α-amylase and glycosidase. Normal human hepatic stellate cells (LX-2) were employed to assess their cytotoxicity and safety, followed by in vivo testing to investigate the hypoglycemic effect of the most promising agent. As a result, a set of 18 carbazole-1,2,4-triazole-thione derivatives were synthesized. Seven structures demonstrated potential inhibitory activity against α-amylase enzyme, with IC50 lower than 6.4 μM. Among them, compounds C5f, C5o, and C5r exhibited the highest potency, with IC50 values of 0.56, 0.53, and 0.97 μM, respectively, compared to the well-known α-amylase inhibitor acarbose, which has an IC50 value of 5.31 μM. Exploring the inhibition potency of these series against α-glucosidase enzyme revealed that C5f and C5r compounds act as moderate inhibitors, with IC50 values of 11.03 and 13.76 μM, respectively. Moreover, at 100 μM concentration, most of the evaluated compounds showed negligible cytotoxic effect against LX-2 cell lines, particularly compounds C5o and C5s, that demonstrated lower cytotoxic activity by 3-fold compared to the positive control 5-Flururicle (cell viability 13.45%). Thus, the C5f compound was selected for in vivo evaluation, and after administering five doses of this compound (10 mg/kg) to group III of mice, a significant reduction in glucose concentration was observed, bringing it down from 290.54 to 216.15 mg/dL, in comparison with the control group which did not show a reduction in blood glucose level. These observed in vitro and in vivo results were upheld by performing a set of chemoinformatic studies that elucidated the binding interactions of the most active derivatives within the enzyme's active site and highlighted the critical roles of both the 1,2,4-triazole-3-thione and carbazole scaffolds in these interactions. Finally, the drug-likeness profiles of our carbazole-triazole-thione derivatives suggest their potential as candidates for further in vivo studies and clinical trials.
Collapse
Affiliation(s)
- İrfan Çapan
- Department
of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
- Sente
Kimya Research and Development Inc., 06200 Ankara, Turkey
| | - Mohammed Hawash
- Department
of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, 00433 Nablus, Palestine
| | - Mohammed T. Qaoud
- Department
of Pharmacy, Faculty of Pharmacy, Cyprus
International University, Northern Cyprus, Mersin 10, 99258 Nicosia, Turkey
| | - Nidal Jaradat
- Department
of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, 00433 Nablus, Palestine
| |
Collapse
|
4
|
Cao Y, Balduf T, Beachy MD, Bennett MC, Bochevarov AD, Chien A, Dub PA, Dyall KG, Furness JW, Halls MD, Hughes TF, Jacobson LD, Kwak HS, Levine DS, Mainz DT, Moore KB, Svensson M, Videla PE, Watson MA, Friesner RA. Quantum chemical package Jaguar: A survey of recent developments and unique features. J Chem Phys 2024; 161:052502. [PMID: 39092934 DOI: 10.1063/5.0213317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
This paper is dedicated to the quantum chemical package Jaguar, which is commercial software developed and distributed by Schrödinger, Inc. We discuss Jaguar's scientific features that are relevant to chemical research as well as describe those aspects of the program that are pertinent to the user interface, the organization of the computer code, and its maintenance and testing. Among the scientific topics that feature prominently in this paper are the quantum chemical methods grounded in the pseudospectral approach. A number of multistep workflows dependent on Jaguar are covered: prediction of protonation equilibria in aqueous solutions (particularly calculations of tautomeric stability and pKa), reactivity predictions based on automated transition state search, assembly of Boltzmann-averaged spectra such as vibrational and electronic circular dichroism, as well as nuclear magnetic resonance. Discussed also are quantum chemical calculations that are oriented toward materials science applications, in particular, prediction of properties of optoelectronic materials and organic semiconductors, and molecular catalyst design. The topic of treatment of conformations inevitably comes up in real world research projects and is considered as part of all the workflows mentioned above. In addition, we examine the role of machine learning methods in quantum chemical calculations performed by Jaguar, from auxiliary functions that return the approximate calculation runtime in a user interface, to prediction of actual molecular properties. The current work is second in a series of reviews of Jaguar, the first having been published more than ten years ago. Thus, this paper serves as a rare milestone on the path that is being traversed by Jaguar's development in more than thirty years of its existence.
Collapse
Affiliation(s)
- Yixiang Cao
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Ty Balduf
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Michael D Beachy
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - M Chandler Bennett
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Art D Bochevarov
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Alan Chien
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Pavel A Dub
- Schrödinger, Inc., 9868 Scranton Road, Suite 3200, San Diego, California 92121, USA
| | - Kenneth G Dyall
- Schrödinger, Inc., 101 SW Main St., Suite 1300, Portland, Oregon 97204, USA
| | - James W Furness
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Mathew D Halls
- Schrödinger, Inc., 9868 Scranton Road, Suite 3200, San Diego, California 92121, USA
| | - Thomas F Hughes
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Leif D Jacobson
- Schrödinger, Inc., 101 SW Main St., Suite 1300, Portland, Oregon 97204, USA
| | - H Shaun Kwak
- Schrödinger, Inc., 101 SW Main St., Suite 1300, Portland, Oregon 97204, USA
| | - Daniel S Levine
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Daniel T Mainz
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Kevin B Moore
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Mats Svensson
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Pablo E Videla
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Mark A Watson
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Richard A Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| |
Collapse
|
5
|
Sarma P, Kashyap B, Gurumayum S, Sarma S, Baruah P, Swargiary D, Saikia A, Deka RC, Borah JC. Antihyperglycemic Potential of Quercetin-3-glucoside Isolated from Leucaena leucocephala Seedpods via the SIRT1/AMPK/GLUT4 Signaling Cascade. ACS OMEGA 2024; 9:32429-32443. [PMID: 39100317 PMCID: PMC11292826 DOI: 10.1021/acsomega.3c09672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 08/06/2024]
Abstract
Leucaena leucocephala. (Lam.) de Wit, a traditional medicinal plant, has been reported among the ethnic communities of Mexico, Indonesia, China, and India for the treatment of diabetes, obesity, and related complications. This study investigates the antihyperglycemic activity of the plant and its isolated active compound quercetin-3-glucoside. Further, bioactivity guided marker assisted development of an enriched bioactive fraction toward enhancing insulin sensitization was carried out. The enriched fraction was also found to contain 397.96 mg/g of quercetin-3-glucoside along with three other marker compounds, which were also isolated and identified. Quercetin-3-glucoside, out of the four isolated marker compounds from the plant, showed the most significant bioactivity when tested in palmitate-induced insulin-resistant C2C12 myotubes. The compound also showed significant upregulation of sirtuin1 (SIRT1) followed by enhancement of insulin-dependent signaling molecules SIRT1/AMPK/PGC1-α and GLUT4 translocation. Molecular dynamics studies showed the compound having stable interactions with the SIRT1 protein. SIRT1 upregulation has been associated with enhanced insulin sensitivity in skeletal muscle, increasing the glucose uptake by muscle cells. The prepared enriched fraction also modulated the SIRT1/AMPK/GLUT4 pathway. The findings of the present study may find future application toward the development of botanical or phytopharmaceutical drugs from the traditionally important plant L. leucocephala against type II diabetes.
Collapse
Affiliation(s)
- Pranamika Sarma
- Chemical
Biology Laboratory 1, Institute of Advanced
Study in Science and Technology (IASST), Paschim Boragaon, Guwahati, Assam 781035, India
- Department
of Chemistry, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, Assam 781014, India
| | - Bhaswati Kashyap
- Chemical
Biology Laboratory 1, Institute of Advanced
Study in Science and Technology (IASST), Paschim Boragaon, Guwahati, Assam 781035, India
| | - Shalini Gurumayum
- Chemical
Biology Laboratory 1, Institute of Advanced
Study in Science and Technology (IASST), Paschim Boragaon, Guwahati, Assam 781035, India
| | - Srutishree Sarma
- Catalysis
and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Assam 784028, India
| | - Paran Baruah
- Chemical
Biology Laboratory 1, Institute of Advanced
Study in Science and Technology (IASST), Paschim Boragaon, Guwahati, Assam 781035, India
| | - Deepsikha Swargiary
- Chemical
Biology Laboratory 1, Institute of Advanced
Study in Science and Technology (IASST), Paschim Boragaon, Guwahati, Assam 781035, India
| | - Abhipsa Saikia
- Chemical
Biology Laboratory 1, Institute of Advanced
Study in Science and Technology (IASST), Paschim Boragaon, Guwahati, Assam 781035, India
| | - Ramesh Ch. Deka
- Catalysis
and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Assam 784028, India
| | - Jagat C Borah
- Chemical
Biology Laboratory 1, Institute of Advanced
Study in Science and Technology (IASST), Paschim Boragaon, Guwahati, Assam 781035, India
| |
Collapse
|
6
|
Manojkumar S, Thandeeswaran M, Thangavel SK, Arjunan A, Muthuselvam M, Kalaiarasi G, Gnanajothi K. Phytochemical Screening, In Silico Molecular Docking, ADME Properties, and In Vitro Antioxidant, Anticancer, and Antidiabetic Activity of Marine Halophyte Suaeda maritima (L.) Dumort. ACS OMEGA 2024; 9:11200-11216. [PMID: 38496978 PMCID: PMC10938337 DOI: 10.1021/acsomega.3c05591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 03/19/2024]
Abstract
Medicinally valuable components derived from natural resources are highly desirable as prospective alternatives to synthetic drugs to treat fatal diseases, such as cancer and diabetes mellitus. Suaeda maritima (L.) Dumort (Amaranthaceae) (S. maritima) is a halophyte plant that can thrive in saline environments and possesses excellent medicinal properties. Hence, for the present investigation, S. maritima has been chosen, and its phytochemical constituents have been extracted utilizing various solvents, including hexane, acetone, and methanol, and identified by GC-MS, LC-MS, and HPLC analyses. The antioxidant activity of the compounds using DPPH, ABTS, and reducing power assays demonstrated that all three extracts of S. maritima possessed significant radical scavenging activity comparable to standard ascorbic acid with lower IC50 values (69.20-95.58 μg/mL). In addition, the evaluation of antidiabetic activity by α-amylase inhibition and α-glucosidase inhibition methods revealed that the acetone extract of S. maritima (SMAE) displayed equipotent activity of standard acarbose with an IC50 of 32.6 μg/mL. Advantageously, SMAE also exhibited better inhibition activity against the growth of lung cancer cells with an IC50 of 78.19. μg/mL and less toxicity on the noncancerous HUVEC cells with a high IC50 of 300 μg/mL. In addition, the cancer cell death mechanism via the apoptotic pathway induced by SMAE was confirmed by DAPI staining and ROS analysis. The analysis of ADME properties, including absorption, distribution, metabolism, and excretion, witnessed that the physicochemical and druglikeness factors were best catered by stigmasterol, γ-sitosterol, and vitamin E. Further, the key phytochemicals identified from SMAE were docked with CtBP1 and SOX2 bound to importin-α target proteins associated with carcinogenic pathways using Schrodinger software. The results showed that the phytochemicals, scilicet, stigmasterol, γ-sitosterol, octadecadienoic acid, and vitamin E, showed a good binding affinity with Glide scores in the range -2.845-4.018 kcal/mol. Overall, the findings support that the least investigated traditional edible medicinal mangrove-related S. maritima is high in pharmacologically active constituents and might be one of the finest sources of naturally derived molecules for drug development and delivery systems.
Collapse
Affiliation(s)
- Sampath Manojkumar
- Translational
Plant Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Murugesan Thandeeswaran
- Metabolomics/Proteomics
Facility, Bharathiar Cancer Theranostics Research Centre, RUSA 2.0, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | | | - Annavi Arjunan
- Department
of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Manickam Muthuselvam
- Department
of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Giriraj Kalaiarasi
- Centre
for Material Chemistry, Department of Chemistry, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, Tamil Nadu, India
| | - Kapildev Gnanajothi
- Translational
Plant Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| |
Collapse
|
7
|
Srinivasan K, Altemimi AB, Narayanaswamy R, Vasantha Srinivasan P, Najm MAA, Mahna N. GC-MS, alpha-amylase, and alpha-glucosidase inhibition and molecular docking analysis of selected phytoconstituents of small wild date palm fruit ( Phoenix pusilla). Food Sci Nutr 2023; 11:5304-5317. [PMID: 37701203 PMCID: PMC10494657 DOI: 10.1002/fsn3.3489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 09/14/2023] Open
Abstract
Phoenix pusilla (Arecaceae), commonly known as "small wild date palm", is regarded as one of the underutilized fruit crops in South India. Methanol extract of P. pusilla ripened fruits (PPRF) was analyzed for in vitro porcine pancreatic alpha-amylase (PPAA) and rat small intestine alpha-glucosidase (RIAG) inhibition activities, and through gas chromatography-mass spectrometry (GC-MS) analysis. The GC-MS analysis showed the presence of 25 phytoconstituents from PPRF which was further assessed on the docking behavior of five targeted enzymes diabetes mellitus (DM) namely (i) human aldose reductase, (ii) protein tyrosine phosphatase 1B, (iii) pancreatic alpha-amylase, (iv) peroxisome proliferator-activated receptor gamma, and (v) dipeptidyl peptidase IV by using the AutoDock Vina method. In addition to this physicochemical, bioactivity score, absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis was performed using the Molinspiration and pkCSM free online servers. Methanolic extract of PPRF showed 50% inhibition concentration (IC50) at 69.86 and 72.60 μg/mL levels against PPAA and RIAG enzymes activities, respectively. Interestingly in the present study, GC-MS analysis showed the presence of 25 phytoconstituents from PPRF. Physicochemical analysis of PPRF has exhibited that 13 ligands have complied well with Lipinski's Rule of Five (RoF). With regard to ADMET analysis, one ligand (9,12-octadecadienoic acid [Z,Z]) has predicated to possess both the hepatotoxicity (HT) and skin sensitization (SS) effect. The docking studies showed that 1-formyl-2,5-dimethoxy-6,9,10-trimethyl-anthracene exhibited the maximum atomic contact energy (ACE) for all the five target enzymes of DM. Thus, the current study suggested that the methanolic extract of PPRF and its phytoconstituents could be considered as potent antidiabetic agents.
Collapse
Affiliation(s)
- Kumaraswamy Srinivasan
- Department of BiochemistrySt. Peter's Institute of Higher Education and Research (SPIHER)ChennaiIndia
| | - Ammar B. Altemimi
- Department of Food Science, College of AgricultureUniversity of BasrahBasrahIraq
- College of MedicineUniversity of Warith Al‐AnbiyaaKarbalaIraq
| | - Radhakrishnan Narayanaswamy
- Department of BiochemistrySaveetha Medical College and Hospital, SIMATS (Deemed to be University)ChennaiIndia
| | | | - Mazin A. A. Najm
- Pharmaceutical Chemistry Department, College of PharmacyAl‐Ayen UniversityThi‐QarIraq
| | - Nasser Mahna
- Department of Horticultural Sciences, Faculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
8
|
Kashtoh H, Baek KH. New Insights into the Latest Advancement in α-Amylase Inhibitors of Plant Origin with Anti-Diabetic Effects. PLANTS (BASEL, SWITZERLAND) 2023; 12:2944. [PMID: 37631156 PMCID: PMC10458243 DOI: 10.3390/plants12162944] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
The rising predominance of type 2 diabetes, combined with the poor medical effects seen with commercially available anti-diabetic medications, has motivated the development of innovative treatment approaches for regulating postprandial glucose levels. Natural carbohydrate digestion enzyme inhibitors might be a viable option for blocking dietary carbohydrate absorption with fewer side effects than manufactured medicines. Alpha-amylase is a metalloenzyme that facilitates digestion by breaking down polysaccharides into smaller molecules such as maltose and maltotriose. It also contributes to elevated blood glucose levels and postprandial hyperglycemia. As a result, scientists are being urged to target α-amylase and create inhibitors that can slow down the release of glucose from carbohydrate chains and prolong its absorption, thereby resulting in lower postprandial plasma glucose levels. Natural α-amylase inhibitors derived from plants have gained popularity as safe and cost-effective alternatives. The bioactive components responsible for the inhibitory actions of various plant extracts have been identified through phytochemical research, paving the way for further development and application. The majority of the findings, however, are based on in vitro investigations. Only a few animal experiments and very few human investigations have confirmed these findings. Despite some promising results, additional investigation is needed to develop feasible anti-diabetic drugs based on plant-derived pancreatic α-amylase inhibitors. This review summarizes the most recent findings from research on plant-derived pancreatic α-amylase inhibitors, including plant extracts and plant-derived bioactive compounds. Furthermore, it offers insights into the structural aspects of the crucial therapeutic target, α-amylases, in addition to their interactions with inhibitors.
Collapse
Affiliation(s)
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
9
|
Kumari S, Saini R, Bhatnagar A, Mishra A. HR-LCMS and evaluation of anti-diabetic activity of Hemidesmus indicus (anantmool): Kinetic study, and molecular modelling approach. Comput Biol Chem 2023; 105:107896. [PMID: 37263051 DOI: 10.1016/j.compbiolchem.2023.107896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/08/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023]
Abstract
This study delved into the exploration of novel antidiabetic medications acquired from natural resources, utilizing the Ayurvedic Rasayana herb Hemidesmus indicus through cutting-edge chemoprofiling and molecular modelling techniques. The methanolic extract of Hemidesmus indicus root exhibited the highest extractive yield (24.70 ± 0.08 %) and contained substantial levels of total phenolic and flavonoid content as 154.15 ± 1.24 mg Gallic Acid Equivalent/g extract and 70.61 ± 0.35 Quercetin Equivalent/g extract respectively. Invitro study revealed the potent inhibitory potential of methanolic extract of the herb against essential carbohydrate hydrolytic enzymes α-amylase (IC50 = 4.19 ± 0.04 mg/ml) and α-glucosidase (IC50 = 5.78 ± 0.10 mg/ml). Further, the enzyme kinetic study demonstrated the competitive mode of inhibition of both enzymes. HR-LCMS analysis identified the major phytoconstituents present in the extracts, including Solanocapsine, Cyclovirobuxine C, Lucidine B, Zygadenine, Aspidospermidine, silychristin, 3beta-3-Hydroxy-18-lupen-21-one, Manglupenone, and 19-Noretiocholanolone. Molecular docking, molecular dynamic simulation, and MM/GBSA analysis have proved stable, rigid, compact, and folded form of complexes during the entire 100 ns simulation, illustrating Zygadenine, Solanocapsine, and Cyclovirobuxine C as the superior inhibitors of α-A protein, while Zygadenine, Plumieride, and Phlegmarine exhibited greater inhibitory behaviour towards α-G protein than the FDA-approved drug acarbose. Collectively, our findings indicate that the Hemidesmus indicus could be a promising source of α-A and α-G inhibitors, potentially serving as a lead in order to develop medications for type-2 diabetes.
Collapse
Affiliation(s)
- Sonali Kumari
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Ravi Saini
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Aditi Bhatnagar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
10
|
Investigation of new schiff base transition metal (II) complexes theoretical, antidiabetic and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Balakrishnan D, Pragathiswaran C, Thanikasalam K, Mohanta YK, Saravanan M, Abdellattif MH. Molecular Docking and In Vitro Inhibitory Effect of Polyaniline (PANI)/ZnO Nanocomposite on the Growth of Struvite Crystal: a Step Towards Control of UTI. Appl Biochem Biotechnol 2022; 194:4462-4476. [PMID: 35435585 DOI: 10.1007/s12010-022-03911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
Abstract
Nowadays, nanotechnology is gaining interest on diagnostics for several chronic diseases. In the present study, the chemical oxidative method of aniline in acid medium with ammonium peroxydisulfate (APS) as an oxidant was employed to develop polyaniline (PANI)-based nanocomposite overflowing/doping on ZnO. The chemical properties, morphology, and structure of the polymer and nanocomposite were investigated using FTIR, XRD, and SEM. The characteristic FTIR peaks of PANI were reported to shift to a higher or lower wave number in PANI-doped ZnO composites due to the formation of H-bonding. Different amounts of ZnO nanoparticles were used to test this influence on the strength of the generated materials. The ability of the PANI-doped ZnO nanocomposite to inhibit struvite crystal growth was determined. The size of struvite crystals was condensed from 2.9 to 1.4 cm at a concentration of 5% PANI-doped ZnO nanoparticles, and the inhibition efficiency of synthesized PANI-doped ZnO against kidney stone (struvite) was confirmed by molecular docking analyzes. The in vitro as well as in silico study revealed the potential applications of polyaniline/ZnO nanocomposite in kidney diseases.
Collapse
Affiliation(s)
- D Balakrishnan
- Department of Science and Humanities, Ariyalur Engineering College, Ariyalur-621707, India
| | - C Pragathiswaran
- Post-Graduate and Research Department of Chemistry, Periyar EVR College Affiliated to Bharathidasan University, Trichirappalli, India.
| | - K Thanikasalam
- Post-Graduate and Research Department of Chemistry, Periyar EVR College Affiliated to Bharathidasan University, Trichirappalli, India
| | - Yugal Kishore Mohanta
- Department of Applied Biology, University of Science and Technology Meghalaya, Ri-Bhoi-793101, India
| | - Muthupandian Saravanan
- Center for Transdisciplinary Research (CFTR), AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai-600077, India.
| | - Magda H Abdellattif
- Department of Chemistry, College of Science, Taif University, P. O. Box 11099, Al-Haweiah, Taif 21944, Saudi Arabia
| |
Collapse
|
12
|
Antibacterial, Antifungal, and Antioxidant Activities of Silver Nanoparticles Biosynthesized from Bauhinia tomentosa Linn. Antioxidants (Basel) 2021; 10:antiox10121959. [PMID: 34943062 PMCID: PMC8749995 DOI: 10.3390/antiox10121959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 01/03/2023] Open
Abstract
The biogenic synthesis of silver nanoparticles (AgNPs) has a wide range of applications in the pharmaceutical industry. Here, we synthesized AgNPs using the aqueous flower extract of Bauhinia tomentosa Linn. Formation of AgNPs was observed using ultraviolet-visible light spectrophotometry at different time intervals. Maximum absorption was observed after 4 h at 420 nm due to the reduction of Ag+ to Ag0. The stabilizing activity of functional groups was identified by Fourier-transform infrared spectroscopy. Size and surface morphology were also analyzed using scanning electron microscopy. The present study revealed the AgNPs were spherical in form with a diameter of 32 nm. The face-centered cubic structure of AgNPs was indexed using X-ray powder diffraction with peaks at 2θ = 37°, 49°, 63°, and 76° (corresponding to the planes of silver 111, 200, 220, 311), respectively. Energy-dispersive X-ray spectroscopy revealed that pure reduced silver (Ag0) was the major constituent (59.08%). Antimicrobial analyses showed that the biosynthesized AgNPs possess increased antibacterial activity (against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative), with larger zone formation against S. aureus (9.25 mm) compared with that of E. coli (6.75 mm)) and antifungal activity (against Aspergillus flavus and Candida albican (with superior inhibition against A. flavus (zone of inhibition: 7 mm) compared with C. albicans (zone of inhibition: 5.75 mm)). Inhibition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was found to be dose-dependent with half-maximal inhibitory concentration (IC50) values of 56.77 μg/mL and 43.03 μg/mL for AgNPs and ascorbic acid (control), respectively, thus confirming that silver nanoparticles have greater antioxidant activity than ascorbic acid. Molecular docking was used to determine the mode of antimicrobial interaction of our biosynthesized B. tomentosa Linn flower-powder extract-derived AgNPs. The biogenic AgNPs preferred hydrophobic contacts to inhibit bacterial and fungal sustainability with reducing antioxidant properties, suggesting that biogenic AgNPs can serve as effective medicinal agents.
Collapse
|
13
|
Renganathan S, Pramanik S, Ekambaram R, Kutzner A, Kim PS, Heese K. Identification of a Chemotherapeutic Lead Molecule for the Potential Disruption of the FAM72A-UNG2 Interaction to Interfere with Genome Stability, Centromere Formation, and Genome Editing. Cancers (Basel) 2021; 13:5870. [PMID: 34831023 PMCID: PMC8616359 DOI: 10.3390/cancers13225870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 01/05/2023] Open
Abstract
Family with sequence similarity 72 A (FAM72A) is a pivotal mitosis-promoting factor that is highly expressed in various types of cancer. FAM72A interacts with the uracil-DNA glycosylase UNG2 to prevent mutagenesis by eliminating uracil from DNA molecules through cleaving the N-glycosylic bond and initiating the base excision repair pathway, thus maintaining genome integrity. In the present study, we determined a specific FAM72A-UNG2 heterodimer protein interaction using molecular docking and dynamics. In addition, through in silico screening, we identified withaferin B as a molecule that can specifically prevent the FAM72A-UNG2 interaction by blocking its cell signaling pathways. Our results provide an excellent basis for possible therapeutic approaches in the clinical treatment of cancer.
Collapse
Affiliation(s)
- Senthil Renganathan
- Department of Bioinformatics, Marudupandiyar College, Thanjavur 613403, India;
| | - Subrata Pramanik
- Department of Biology, Life Science Centre, School of Science and Technology, Örebro University, 701-82 Örebro, Sweden;
| | | | - Arne Kutzner
- Department of Information Systems, College of Engineering, Hanyang University, Seoul 133-791, Korea;
| | - Pok-Son Kim
- Department of Information Security, Cryptology, and Mathematics, Kookmin University, Seoul 136-702, Korea;
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Korea
| |
Collapse
|