1
|
Suboktagin S, Ullah MW, Sethupathy S, Keerio HA, Alabbosh KF, Khan KA, Zhu D. Microbial cell factories for bioconversion of lignin to vanillin - Challenges and opportunities: A review. Int J Biol Macromol 2025; 309:142805. [PMID: 40187450 DOI: 10.1016/j.ijbiomac.2025.142805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/17/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The bioconversion of lignin into vanillin via microbial cell factories offers a promising and sustainable route for producing high-value aromatic compounds from the abundant and underutilized byproducts of plant biomass. This review comprehensively explores the synthesis, structural characteristics, and diverse industrial applications of lignin, while addressing the inherent challenges posed by its complex structure in bioconversion processes. It examines the potential of microbial cell factories for lignin degradation, emphasizing the latest advancements in genetic engineering and metabolic optimization strategies that enhance microbial efficiency in lignin degradation and vanillin biosynthesis. It further assesses the economic feasibility of lignin-to-vanillin conversion by discussing key factors influencing cost-effectiveness and scalability, highlighting the transformative potential for producing high-value aromatic compounds in an environmentally sustainable manner. The review also highlights ongoing research efforts to develop robust microbial strains and optimize metabolic pathways for improved vanillin yield. By integrating multidisciplinary approaches, this review highlights the transformative potential of microbial cell factories to valorize lignin, offering a sustainable pathway for the production of vanillin and related aromatic compounds.
Collapse
Affiliation(s)
- Sultan Suboktagin
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Wajid Ullah
- Department of Pulp & Paper Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Sivasamy Sethupathy
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hareef Ahmed Keerio
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products (CBRP), King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
2
|
Lin K, Zhang W, Fan X, Li X, Wang N, Yu S, Lu L. Deep eutectic solvents assisted laccase pretreatment for improving enzymatic hydrolysis of corn stover. Bioprocess Biosyst Eng 2025; 48:209-219. [PMID: 39545962 DOI: 10.1007/s00449-024-03102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
The efficient and eco-friendly removal of lignin is a critical challenge for bioethanol production from lignocellulosic biomass. Herein, we report the integration of laccase with deep eutectic solvents (DESs) for the pretreatment of corn stover to enhance the production of reducing sugars. Three betaine-based DESs were prepared and tested for their effects on the activity and stability of a bacterial laccase from Bacillus amyloliquefaciens LC02. The aqueous solution of DESs showed no adverse influence on laccase activity, and the laccase thermostability was improved in the presence of DESs. More than 95% of the laccase activity was retained in the DESs solution during the first hour of incubation at 70 °C. A red shift in the fluorescence spectra was observed for the laccase in the presence of DESs, indicating conformational changes. The laccase was able to degrade a dimeric lignin model compound by cleaving its β-O-4 bond. The transformation products were identified using LC-MS. The maximal lignin removal from corn stover was achieved by pretreatment using laccase in combination with the betaine-glycerol DES, which also resulted in a yield of fermentable sugar that was 130% higher than the control. This combination strategy provides guidance on the application of laccase and DESs in the pretreatment of lignocellulosic biomass.
Collapse
Affiliation(s)
- Kexin Lin
- College of Life Sciences, Northeast Forestry University, No. 26, Hexing Road, Harbin, 150040, China
| | - Weiting Zhang
- College of Life Sciences, Northeast Forestry University, No. 26, Hexing Road, Harbin, 150040, China
| | - Xinyang Fan
- College of Life Sciences, Northeast Forestry University, No. 26, Hexing Road, Harbin, 150040, China
| | - Xiaoyan Li
- College of Life Sciences, Northeast Forestry University, No. 26, Hexing Road, Harbin, 150040, China
| | - Nuomeng Wang
- College of Life Sciences, Northeast Forestry University, No. 26, Hexing Road, Harbin, 150040, China
| | - Shuyu Yu
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Lei Lu
- College of Life Sciences, Northeast Forestry University, No. 26, Hexing Road, Harbin, 150040, China.
| |
Collapse
|
3
|
Benali J, Ben Atitallah I, Ghariani B, Mechichi T, Hadrich B, Zouari-Mechichi H. Optimized decolorization of two poly azo dyes Sirius Red and Sirius Blue using laccase-mediator system. 3 Biotech 2024; 14:93. [PMID: 38433848 PMCID: PMC10907334 DOI: 10.1007/s13205-024-03937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/21/2024] [Indexed: 03/05/2024] Open
Abstract
Factors, namely pH, laccase-like activity, dyes concentration as well as 1-Hydroxybenzotriazole (HBT) concentration was examined. The results indicated that the maximum decolorization yield and rate reached 98.30 ± 0.10% and 5.84 ± 0.01%/min, respectively for Sirius Blue, and 99.34 ± 0.47% and 5.85 ± 0.12%/min, respectively for Sirius Red after 4 h. The presence of the redox mediator 1-hydroxybenzotriazole (HBT) greatly improved the decolorization levels. The optimum concentrations of HBT, dyes, and laccase were 0.62 mM, 50 mg/L, and 0.89 U/mL respectively at pH 4.58 for both dyes. Phytotoxicity tests using treated and untreated dyes proved that the applied treatment slightly decreased the toxicity of the by-products. However, the germination index (GI) increased from 14.6 to 36.08% and from 31.6 to 36.96% for Sirius Red and Sirius Blue, respectively. The present study focused on the treatment of two recalcitrant azo dyes, namely: Sirius Blue (Direct Blue 71) and Sirius Red (Direct Red 80). The decolorization was performed using cell-free supernatant from Coriolopsis gallica culture with high laccase activity. Response surface methodology (RSM) and Box-Behnken design were applied to optimize the decolorization of the two tested dyes. The effect of four.
Collapse
Affiliation(s)
- Jihen Benali
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, PO box 1173, 3038 Sfax, Tunisia
| | - Imen Ben Atitallah
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, PO box 1173, 3038 Sfax, Tunisia
| | - Bouthaina Ghariani
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, PO box 1173, 3038 Sfax, Tunisia
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, PO box 1173, 3038 Sfax, Tunisia
| | - Bilel Hadrich
- Department of Chemical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University, IMSIU, 11432 Riyadh, Saudi Arabia
| | - Héla Zouari-Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, PO box 1173, 3038 Sfax, Tunisia
| |
Collapse
|
4
|
Ali M, Bhardwaj P, Ishqi HM, Shahid M, Islam A. Laccase Engineering: Redox Potential Is Not the Only Activity-Determining Feature in the Metalloproteins. Molecules 2023; 28:6209. [PMID: 37687038 PMCID: PMC10488915 DOI: 10.3390/molecules28176209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023] Open
Abstract
Laccase, one of the metalloproteins, belongs to the multicopper oxidase family. It oxidizes a wide range of substrates and generates water as a sole by-product. The engineering of laccase is important to broaden their industrial and environmental applications. The general assumption is that the low redox potential of laccases is the principal obstacle, as evidenced by their low activity towards certain substrates. Therefore, the primary goal of engineering laccases is to improve their oxidation capability, thereby increasing their redox potential. Even though some of the determinants of laccase are known, it is still not entirely clear how to enhance its redox potential. However, the laccase active site has additional characteristics that regulate the enzymes' activity and specificity. These include the electrostatic and hydrophobic environment of the substrate binding pocket, the steric effect at the substrate binding site, and the orientation of the binding substrate with respect to the T1 site of the laccase. In this review, these features of the substrate binding site will be discussed to highlight their importance as a target for future laccase engineering.
Collapse
Affiliation(s)
- Misha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (M.A.); (P.B.)
| | - Priyanka Bhardwaj
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (M.A.); (P.B.)
| | - Hassan Mubarak Ishqi
- Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL 33136, USA;
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (M.A.); (P.B.)
| |
Collapse
|
5
|
Zhang Y, Ren H, Li B, Udin SM, Maarof H, Zhou W, Cheng F, Yang J, Liu Y, Alias H, Duan E. Mechanistic insights into the lignin dissolution behavior in amino acid based deep eutectic solvents. Int J Biol Macromol 2023; 242:124829. [PMID: 37210053 DOI: 10.1016/j.ijbiomac.2023.124829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
Deep eutectic solvents (DESs) composed by amino acids (L-arginine, L-proline, L-alanine) as the hydrogen bond acceptors (HBAs) and carboxylic acids (formic acid, acetic acid, lactic acid, levulinic acid) as hydrogen bond donors (HBDs) were prepared and used for the dissolution of dealkaline lignin (DAL). The mechanism of lignin dissolution in DESs was explored at molecular level by combining the analysis of Kamlet-Taft (K-T) solvatochromic parameters, FTIR spectrum and density functional theory (DFT) calculations of DESs. Firstly, it was found that the formation of new hydrogen bonds between lignin and DESs mainly drove the dissolution of lignin, which were accompanied by the erosion of hydrogen bond networks in both lignin and DESs. The nature of hydrogen bond network within DESs was fundamentally determined by the type and number of functional groups in both HBA and HBD, which affected its ability to form hydrogen bond with lignin. One hydroxyl group and carboxyl group in HBDs provided active protons, which facilitated proton-catalyzed cleavage of β-O-4, thus enhancing the dissolution of DESs. The superfluous functional group resulted in more extensive and stronger hydrogen bond network in the DESs, thus decreasing the lignin dissolving ability. Moreover, it was found that lignin solubility had a closed positive correlation with the subtraction value of α and β (net hydrogen donating ability) of DESs. Among all the investigated DESs, L-alanine/formic acid (1:3) with the strong hydrogen-bond donating ability (acidity), weak hydrogen-bond accepting ability (basicity) and small steric-hindrance effect showed the best lignin dissolving ability (23.99 wt%, 60 °C). On top of that, the value of α and β of L-proline/carboxylic acids DESs showed some positive correlation with the global electrostatic potential (ESP) maxima and minima of the corresponding DESs respectively, indicating the analysis of ESP quantitative distributions of DESs could be an effective tool for DESs screening and design for lignin dissolution as well as other applications.
Collapse
Affiliation(s)
- Yuling Zhang
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia; Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Hongwei Ren
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| | - Baochai Li
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia; Department of Applied Chemistry, Hengshui University, Hengshui, Hebei 0530002, China
| | - Syarah Mat Udin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - Hasmerya Maarof
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - Wen Zhou
- The State Grid Hebei Electric Power Company Electric Power Research Institute, Shijiazhuang, Hebei 050021, China
| | - Fengfei Cheng
- Hebei Pollutant Emission Rights Trading Service Center, Shijiazhuang, Hebei 050026, China
| | - Jiaoruo Yang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Yize Liu
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Hajar Alias
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia.
| | - Erhong Duan
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| |
Collapse
|
6
|
Zofair SFF, Ahmad S, Hashmi MA, Khan SH, Khan MA, Younus H. Catalytic roles, immobilization and management of recalcitrant environmental pollutants by laccases: Significance in sustainable green chemistry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114676. [PMID: 35151142 DOI: 10.1016/j.jenvman.2022.114676] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/08/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
We are facing a high risk of exposure to emerging contaminants and increasing environmental pollution with the concomitant growth of industries. Persistence of these pollutants is a major concern to the ecosystem. Laccases, also known as "green catalysts" are multi-copper oxidases which offers an eco-friendly solution for the degradation of these hazardous pollutants to less or non-toxic compounds. Although various other biological methods exist for the treatment of pollutants, the fact that laccases catalyze the oxidation of broad range of substrates in the presence of molecular oxygen without any additional cofactor and releases water as the by-product makes them exceptional. They have a good possibility of utilization in various industries, especially for the purpose of bioremediation. Besides this, they have also been used in medical/health care, food industry, bio-bleaching, wine stabilization, organic synthesis and biosensors. This review covers the catalytic behaviour of laccases, their immobilization strategies, potential applications in bioremediation of recalcitrant environmental pollutants and their engineering. It provides a comprehensive summary of most factors to consider while working with laccases in an industrial setting. It compares the benefits and drawbacks of the current techniques. Immobilization and mediators, two of the most significant aspects in working with laccases, have been meticulously discussed.
Collapse
Affiliation(s)
- Syeda Fauzia Farheen Zofair
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Sumbul Ahmad
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Md Amiruddin Hashmi
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Shaheer Hasan Khan
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Hina Younus
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|