1
|
Tomac I, Adam V, Labuda J. Advanced chemically modified electrodes and platforms in food analysis and monitoring. Food Chem 2024; 460:140548. [PMID: 39096799 DOI: 10.1016/j.foodchem.2024.140548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 07/18/2024] [Indexed: 08/05/2024]
Abstract
Electrochemical sensors and electroanalytical techniques become emerging as effective and low-cost tools for rapid assessment of special parameters of the food quality. Chemically modified electrodes are developed to change properties and behaviour, particularly sensitivity and selectivity, of conventional electroanalytical sensors. Within this comprehensive review, novel trends in chemical modifiers material structure, electrodes construction and flow analysis platforms are described and evaluated. Numerous recent application examples for the detection of food specific analytes are presented in a form of table to stimulate further development in both, the basic research and commercial field.
Collapse
Affiliation(s)
- Ivana Tomac
- Department of Applied Chemistry and Ecology, Faculty of Food Technology Osijek, J. J. Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Generála Píky 1999/5, 613 00 Brno, Czech Republic.
| | - Jan Labuda
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| |
Collapse
|
2
|
Ariski RT, Lee KK, Kim Y, Lee CS. The impact of pH and temperature on the green gold nanoparticles preparation using Jeju Hallabong peel extract for biomedical applications. RSC Adv 2024; 14:14582-14592. [PMID: 38708107 PMCID: PMC11066618 DOI: 10.1039/d4ra00614c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
The utilization of gold nanoparticles (AuNPs) has garnered significant attention in recent times, particularly in the field of biomedical research. The utilization of AuNPs in chemical synthesis procedures raises apprehensions regarding their potential toxicity in living organisms, which is inconsistent with their purported eco-friendly and cost-effective aspects. In this investigation, AuNPs were synthesized via the green synthesis approach utilizing Jeju Hallabong peel extract (HPE), a typical fruit variety indigenous to South Korea. The visible-range absorption spectrum of gold nanoparticles from green synthesis (HAuNPs) that are red wine in color occurs at a wavelength of λ = 517 nm. The morphology and particle size distribution were analysed using transmission electron microscopy (TEM) and ImageJ software. The TEM images reveal that the HAuNPs exhibit a high degree of dispersion and uniformity in their spherical shape, with an average size of approximately 7 nm. Moreover, elevating the initial pH level of the mixed solution has an impact on the decrease in particle dimensions, as evidenced by the blue shift observed in the UV-visible spectroscopy absorbance peak. Elevating the reaction temperature may accelerate the synthesis duration. However, it does not exert a substantial impact on the particle dimensions. The outcomes of an avidin-biocytin colorimetric assay provide preliminary analyses of possible sensor tunability using HAuNPs. The cytotoxicity of HAuNPs was evaluated through in vitro studies using the MTT assay on RAW 264.7 cell lines. The results indicated that the HAuNPs exhibited lower cytotoxicity compared to both chemically reduced gold nanoparticles (CAuNPs).
Collapse
Affiliation(s)
- Ridhola Tri Ariski
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon 34141 Republic of Korea
- Department of Biotechnology, University of Science & Technology (UST) Daejeon 34113 Republic of Korea
| | - Kyung Kwan Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon 34141 Republic of Korea
| | - Yongkwan Kim
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention (NIWDC) Gwangju 62407 Republic of Korea
| | - Chang-Soo Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon 34141 Republic of Korea
- Department of Biotechnology, University of Science & Technology (UST) Daejeon 34113 Republic of Korea
| |
Collapse
|
3
|
Chen M, Yang Y, Chen Q, Tang L, Liu J, Sun Y, Liu Q, Zhang Y, Zhang GJ, Chen S. Pt,P-codoped carbon nitride nanoenzymes for fluorescence and colorimetric dual-mode detection of cholesterol. Anal Chim Acta 2024; 1297:342351. [PMID: 38438235 DOI: 10.1016/j.aca.2024.342351] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 03/06/2024]
Abstract
Cholesterol is an important lipid compound found in a variety of foods, and its level in human blood is closely related to human health. Therefore, development of rapid and accurate POCT (point-of-care testing) methods for cholesterol detection is crucial for assessing food quality and early diagnosis of diseases, in particular, in a resource-limited environment. In this study, a smartphone-assisted colorimetric biosensor is constructed based on platinum,phosphorus-codoped carbon nitride (PtCNP2) for the rapid detection of cholesterol. Phosphorus-doped carbon nitride is prepared by thermal annealing of urea and NH4PF6, into which platinum is atomically dispersed by thermal refluxing. The obtained PtCNP2 exhibits an excellent peroxidase-like activity under physiological pH, whereby colorless o-phenylenediamine (OPD) is oxidized to colored 2,3-diaminophenazine (DAP) in the presence of hydrogen peroxide (H2O2), which can be produced during the oxidation of cholesterol by cholesterol oxidase. A smartphone-assisted visual sensing system is then constructed based on the color recognition software, and rapid on-site detection of cholesterol is achieved by reading the RGB values. Meanwhile, the generated DAP shows an apparent fluorescence signal and can realize highly sensitive detection of cholesterol by the change of the fluorescence signal intensity. Such a cholesterol sensor exhibits a wide linear detection range of 0.5-600 μg mL-1 and a low detection limit of 59 ng mL-1. The practicality of the sensor is successfully demonstrated in the rapid detection of cholesterol in serum and food.
Collapse
Affiliation(s)
- Meiling Chen
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yang Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, China
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, China
| | - Lina Tang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Junlin Liu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yujie Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95060, USA
| | - Yulin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China.
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China.
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95060, USA.
| |
Collapse
|
4
|
Popescu M, Ungureanu C. Biosensors in Food and Healthcare Industries: Bio-Coatings Based on Biogenic Nanoparticles and Biopolymers. COATINGS 2023; 13:486. [DOI: 10.3390/coatings13030486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Biosensors use biological materials, such as enzymes, antibodies, or DNA, to detect specific analytes. These devices have numerous applications in the health and food industries, such as disease diagnosis, food safety monitoring, and environmental monitoring. However, the production of biosensors can result in the generation of chemical waste, which is an environmental concern for the developed world. To address this issue, researchers have been exploring eco-friendly alternatives for immobilising biomolecules on biosensors. One solution uses bio-coatings derived from nanoparticles synthesised via green chemistry and biopolymers. These materials offer several advantages over traditional chemical coatings, such as improved sensitivity, stability, and biocompatibility. In conclusion, the use of bio-coatings derived from green-chemistry synthesised nanoparticles and biopolymers is a promising solution to the problem of chemical waste generated from the production of biosensors. This review provides an overview of these materials and their applications in the health and food industries, highlighting their potential to improve the performance and sustainability of biosensors.
Collapse
Affiliation(s)
- Melania Popescu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania
| | - Camelia Ungureanu
- General Chemistry Department, University “Politehnica” of Bucharest, Gheorghe Polizu Street, 1-7, 011061 Bucharest, Romania
| |
Collapse
|