1
|
Kang Z, Xue M, Miao H, Wang W, Ding X, Yin MM, Hu YJ. Structure-activity relationship between gold nanoclusters and human serum albumin: Effects of ligand isomerization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124598. [PMID: 38850819 DOI: 10.1016/j.saa.2024.124598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The interactions between gold nanoclusters (AuNCs) and proteins have been extensively investigated. Nevertheless, the structure-activity relationship between gold nanoclusters and proteins in terms of ligand isomerization remained unclear. Here, interactions between Au25NCs modified with para-, inter- and ortho-mercaptobenzoic acid (p/m/o-MBA-Au25NCs) and human serum albumin (HSA) were analyzed. The results of the multispectral approach showed that all three gold nanoclusters bound to the site I in dynamic modes to increase the stability of HSA. There were significant differences in the binding intensity, thermodynamic parameters, main driving forces, and binding ratios between these three gold nanoclusters and HSA, which might be related to the existence forms of the three ligands on the surface of AuNCs. Due to the different polarities of AuNCs themselves, the impact of three AuNCs on the microenvironment of amino acid residues in HSA was also different. It could be seen that ligand isomerization significantly affected the interactions between gold nanoclusters and proteins. This work will provide theoretical guidance for ligand selection and biological applications of metal nanoclusters.
Collapse
Affiliation(s)
- Zhuo Kang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Meng Xue
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Hu Miao
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Wen Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Xin Ding
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Miao-Miao Yin
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Yan-Jun Hu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| |
Collapse
|
2
|
Eker F, Duman H, Akdaşçi E, Witkowska AM, Bechelany M, Karav S. Silver Nanoparticles in Therapeutics and Beyond: A Review of Mechanism Insights and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1618. [PMID: 39452955 PMCID: PMC11510578 DOI: 10.3390/nano14201618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Silver nanoparticles (NPs) have become highly promising agents in the field of biomedical science, offering wide therapeutic potential due to their unique physicochemical properties. The unique characteristics of silver NPs, such as their higher surface-area-to-volume ratio, make them ideal for a variety of biological applications. They are easily processed thanks to their large surface area, strong surface plasmon resonance (SPR), stable nature, and multifunctionality. With an emphasis on the mechanisms of action, efficacy, and prospective advantages of silver NPs, this review attempts to give a thorough overview of the numerous biological applications of these particles. The utilization of silver NPs in diagnostics, such as bioimaging and biosensing, as well as their functions in therapeutic interventions such as antimicrobial therapies, cancer therapy, diabetes treatment, bone repair, and wound healing, are investigated. The underlying processes by which silver NPs exercise their effects, such as oxidative stress induction, apoptosis, and microbial cell membrane rupture, are explored. Furthermore, toxicological concerns and regulatory issues are discussed, as well as the present difficulties and restrictions related to the application of silver NPs in medicine.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (F.E.); (H.D.); (E.A.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (F.E.); (H.D.); (E.A.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (F.E.); (H.D.); (E.A.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (F.E.); (H.D.); (E.A.)
| |
Collapse
|
3
|
Hancharova M, Halicka-Stępień K, Dupla A, Lesiak A, Sołoducho J, Cabaj J. Antimicrobial activity of metal-based nanoparticles: a mini-review. Biometals 2024; 37:773-801. [PMID: 38286956 DOI: 10.1007/s10534-023-00573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/15/2023] [Indexed: 01/31/2024]
Abstract
The resistance of pathogenic microorganisms to antibiotics is one of the main problems of world health. Of particular concern are multidrug-resistant (MDR) bacteria. Infections caused by these microorganisms affect the appearance of acute or chronic diseases. In this regard, modern technologies, such as nanomaterials (NMs), especially promising nanoparticles (NPs), can possess antimicrobial properties or improve the effectiveness and delivery of known antibiotics. Their diversity and characteristics, combined with surface functionalization, enable multivalent interactions with microbial biomolecules. This article presents an overview of the most current research on replacing antibiotics with NPs, including the prospects and risks involved.
Collapse
Affiliation(s)
- Marharyta Hancharova
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Kinga Halicka-Stępień
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Aleksandra Dupla
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Anna Lesiak
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
- Laboratoire de Chimie, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, 46 Allée d'Italie, 69364, Lyon, France
| | - Jadwiga Sołoducho
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Joanna Cabaj
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|
4
|
Hanigan-Diebel J, Costin RJ, Myers LC, Vandermeer CI, Willis MS, Takhar K, Odinakachukwu OV, Carroll MG, Schiffbauer JE, Lohse SE. Affinity Constants of Bovine Serum Albumin for 5 nm Gold Nanoparticles (AuNPs) with ω-Functionalized Thiol Monolayers Determined by Fluorescence Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40. [PMID: 39013805 PMCID: PMC11295198 DOI: 10.1021/acs.langmuir.4c01234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
A detailed understanding of the binding of serum proteins to small (dcore <10 nm) nanoparticles (NPs) is essential for the mediation of protein corona formation in next generation nanotherapeutics. While a number of studies have investigated the details of protein adsorption on large functionalized NPs, small NPs (with a particle surface area comparable in size to the protein) have not received extensive study. This study determined the affinity constant (Ka) of BSA when binding to three different functionalized 5 nm gold nanoparticles (AuNPs). AuNPs were synthesized using three ω-functionalized thiols (mercaptoethoxy-ethoxy-ethanol (MEEE), mercaptohexanoic acid (MHA), and mercaptopentyltrimethylammonium chloride (MPTMA)), giving rise to particles with three different surface charges. The binding affinity of bovine serum albumin (BSA) to the different AuNP surfaces was investigated using UV-visible absorbance spectroscopy, dynamic light scattering (DLS), and fluorescence quenching titrations. Fluorescence titrations indicated that the affinity of BSA was actually highest for small AuNPs with a negative surface charge (MHA-AuNPs). Interestingly, the positively charged MPTMA-AuNPs showed the lowest Ka for BSA, indicating that electrostatic interactions are likely not the primary driving force in binding of BSA to these small AuNPs. Ka values at 25 °C for MHA, MEEE, and MPTMA-AuNPs were 5.2 ± 0.2 × 107, 3.7 ± 0.2 × 107, and 3.3 ± 0.16 × 107 M-1 in water, respectively. Fluorescence quenching titrations performed in 100 mM NaCl resulted in lower Ka values for the charged AuNPs, while the Ka value for the MEEE-AuNPs remained unchanged. Measurement of the hydrodynamic diameter (Dh) by dynamic light scattering (DLS) suggests that adsorption of 1-2 BSA molecules is sufficient to saturate the AuNP surface. DLS and negative-stain TEM images indicate that, despite the lower observed Ka values, the binding of MPTMA-AuNPs to BSA likely induces significant protein misfolding and may lead to extensive BSA aggregation at specific BSA:AuNP molar ratios.
Collapse
Affiliation(s)
- Jennifer
L. Hanigan-Diebel
- Chemistry
Department, Central Washington University, 400 East University Way, Ellensburg, Washington 98926, United States
| | - Robert J. Costin
- Department
of Physical and Environmental Sciences, Colorado Mesa University, 1100 North Ave, Grand Junction, Colorado 81501, United States
| | - Logan C. Myers
- Department
of Physical and Environmental Sciences, Colorado Mesa University, 1100 North Ave, Grand Junction, Colorado 81501, United States
| | - Christopher I. Vandermeer
- Department
of Physical and Environmental Sciences, Colorado Mesa University, 1100 North Ave, Grand Junction, Colorado 81501, United States
| | - Miles S. Willis
- Department
of Physical and Environmental Sciences, Colorado Mesa University, 1100 North Ave, Grand Junction, Colorado 81501, United States
| | - Kiran Takhar
- Chemistry
Department, Central Washington University, 400 East University Way, Ellensburg, Washington 98926, United States
| | - Ogechukwu V. Odinakachukwu
- Chemistry
Department, Central Washington University, 400 East University Way, Ellensburg, Washington 98926, United States
| | - Matthias G. Carroll
- Chemistry
Department, Central Washington University, 400 East University Way, Ellensburg, Washington 98926, United States
| | - Jarrod E. Schiffbauer
- Department
of Physical and Environmental Sciences, Colorado Mesa University, 1100 North Ave, Grand Junction, Colorado 81501, United States
| | - Samuel E. Lohse
- Chemistry
Department, Central Washington University, 400 East University Way, Ellensburg, Washington 98926, United States
| |
Collapse
|
5
|
Noori A, Hasanuzzaman M, Roychowdhury R, Sarraf M, Afzal S, Das S, Rastogi A. Silver nanoparticles in plant health: Physiological response to phytotoxicity and oxidative stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108538. [PMID: 38520964 DOI: 10.1016/j.plaphy.2024.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Silver nanoparticles (AgNPs) have gained significant attention in various fields due to their unique properties, but their release into the environment has raised concerns about their environmental and biological impacts. Silver nanoparticles can enter plants following their exposure to roots or via stomata following foliar exposure. Upon penetrating the plant cells, AgNPs interact with cellular components and alter physiological and biochemical processes. One of the key concerns associated with plant exposure to AgNPs is the potential of these materials to induce oxidative stress. Silver nanoparticles can also suppress plant growth and development by disrupting essential plant physiological processes, such as photosynthesis, nutrient uptake, water transport, and hormonal regulation. In crop plants, these disruptions may, in turn, affect the productivity and quality of the harvested components and therefore represent a potential threat to agricultural productivity and ecosystem stability. Understanding the phytotoxic effects of AgNPs is crucial for assessing their environmental implications and guiding the development of safe nanomaterials. By delving into the phytotoxic effects of AgNPs, this review contributes to the existing knowledge regarding their environmental risks and promotes the advancement of sustainable nanotechnological practices.
Collapse
Affiliation(s)
- Azam Noori
- Department of Biology, Merrimack College, North Andover, MA, 01845, USA
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Rajib Roychowdhury
- Department of Biotechnology, Visva-Bharati Central University, Santiniketan, 731235, West Bengal, India
| | - Mohammad Sarraf
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Shadma Afzal
- Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Susmita Das
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, India
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznań, Poland
| |
Collapse
|
6
|
Yadav NP, Yadav T, Pattanaik S, Shakerzadeh E, Chakroborty S, Xiaofeng C, Vishwkarma AK, Pathak A, Malviya J, Pandey FP. Understanding the Interaction Mechanism between the Epinephrine Neurotransmitter and Small Gold Nanoclusters (Au n; n = 6, 8, and 10): A Computational Insight. ACS OMEGA 2024; 9:3373-3383. [PMID: 38284044 PMCID: PMC10809666 DOI: 10.1021/acsomega.3c06382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
In this study, the interaction between the neurotransmitter epinephrine and small gold nanoclusters (AunNCs) with n = 6, 8, and 10 is described by density functional theory calculations. The interaction of Au6, Au8, and Au10 nanoclusters with epinephrine is governed by Au-X (X = N and O) anchoring bonding and Au···H-X conventional hydrogen bonding. The interaction mechanism of epinephrine with gold nanoclusters is investigated in terms of electronic energy and geometrical properties. The adsorption energy values for the most favorable configurations of Au6NC@epinephrine, Au8NC@epinephrine, and Au10NC@epinephrine were calculated to be -17.45, -17.86, and -16.07 kcal/mol, respectively, in the gas phase. The results indicate a significant interaction of epinephrine with AunNCs and point to the application of the biomolecular complex AunNC@epinephrine in the fields of biosensing, drug delivery, bioimaging, and other applications. In addition, some important electronic properties, namely, the energy gap between HOMO and LUMO, the Fermi level, and the work function, were computed. The effect of aqueous media on adsorption energy and electronic parameters for the most favorable configurations was also studied to explore the influence of physical biological conditions.
Collapse
Affiliation(s)
- Nagendra Prasad Yadav
- School
of Electrical and Electronics Information Engineering, Hubei Polytechnic University, NO.16 North Guilin Road, Huangshi, Hubei 435003, China
| | - Tarun Yadav
- Department
of Basic Sciences, IITM, IES University, Bhopal, MP 462044, India
| | - Sangram Pattanaik
- Sri
Satya Sai University of Technology & Medical Sciences, Sehore, MP 466002, India
| | - Ehsan Shakerzadeh
- Chemistry
Department, Faculty of Science, Shahid Chamran
University of Ahvaz, Ahwaz 6135783151, Iran
| | | | - Cai Xiaofeng
- School
of Electrical and Electronics Information Engineering, Hubei Polytechnic University, NO.16 North Guilin Road, Huangshi, Hubei 435003, China
| | - Anil Kumar Vishwkarma
- Department
of Physics, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Amit Pathak
- Department
of Physics, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Jitendra Malviya
- Department
of Life Sciences and Biological Sciences, IES University, Bhopal, MP 462044, India
| | - Fanindra Pati Pandey
- Scitechesy
Research and Technology Private Limited, Central Discovery Center, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
7
|
Chakroborty S, Shakerzadeh E, Yadav T, Mishra NP, Barik A, Upadhyay V, Abhilasha, Soren S, Malviya J, Panda AR, Uniyal K, Kumar N, Wagadre S, Pandey FP. In silico investigation on interaction of small Ag 6 nano-particle cluster with tyramine neurotransmitter. Sci Rep 2023; 13:20200. [PMID: 37980377 PMCID: PMC10657472 DOI: 10.1038/s41598-023-45847-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/24/2023] [Indexed: 11/20/2023] Open
Abstract
The interaction of tyramine neurotransmitter with silver nano-particle (Ag6) cluster is explored in terms of the molecular structure, electronic properties and NBO analysis of tyramine-AgNPs bio-molecular conjugate. The adsorption mechanism of tyramine onto the Ag6 cluster has been investigated through computing of the electronic and geometrical properties in addition to the adsorption energies in various possible configurations. The magnitude of adsorption energy corresponding to the most favorable tyramine-Ag6 bio-molecular conjugate has been computed to be - 14.36 kcal/mol in the gas phase, which infers a good adsorption of tyramine with AgNPs cluster suggesting the practical applications of tyramine-AgNPs bio-molecular conjugates in bio-sensing, drug delivery, bio-imaging and other applications. Different electronic properties such as the energy gap of HOMO-LUMO, Fermi level and work function have been investigated in detail. Moreover, the effect of aqueous media on adsorption energy and electronic properties of the most favorable tyramine-AgNPs bio-molecular conjugate is investigated in order to understand the impact of the real biological situation.
Collapse
Affiliation(s)
- Subhendu Chakroborty
- Department of Basic Sciences, IITM, IES University, Bhopal, Madhya Pradesh, 462044, India.
| | - E Shakerzadeh
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - T Yadav
- Department of Basic Sciences, IITM, IES University, Bhopal, Madhya Pradesh, 462044, India.
| | - Nilima Priyadarsini Mishra
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, 140001, Punjab, India
| | - Arundhati Barik
- CIPET: Institute of Petrochemicals Technology [IPT], Bhubaneswar, Odisha, India
| | - Versha Upadhyay
- Botany Department, Maya Group of Colleges Dehradun, Dehradun, India
| | - Abhilasha
- Dolphin PG Institute of Biomedical and Natural Sciences, Manduwala, Dehradun, Uttrakhand, India
| | - Siba Soren
- Department of Chemistry, Govt. Women's College, Baripada, 757001, India
| | - Jitendra Malviya
- Department of Life Sciences & Biological Sciences, IES University, Bhopal, India.
| | - Amiya Ranjan Panda
- Kabi Samrat Upendra Bhanja (KSUB) College, Bhanjanagar, Ganjam, Odisha, India
| | - Kartik Uniyal
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University Balawala, Dehradun, 248161, Uttrakhand, India
| | - Narendra Kumar
- Alpine Institute of Management and Technology Dehradun (Uttarakhand), Dehradun, India
| | - Shradha Wagadre
- Department of Basic Sciences, IITM, IES University, Bhopal, Madhya Pradesh, 462044, India
| | - F P Pandey
- Scitechesy Research and Technology Private Limited, Central Discovery Center, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
8
|
Summer M, Ali S, Tahir HM, Abaidullah R, Tahir H, Mumtaz S, Mumtaz S, Butt SA, Tariq M. Silk Sericin Protein: Turning Discarded Biopolymer into Ecofriendly and Valuable Reducing, Capping, and Stabilizing Agent for Nanoparticles Synthesis Using Sonication. MACROMOL CHEM PHYS 2023; 224. [DOI: 10.1002/macp.202300124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 08/04/2024]
Abstract
AbstractThis current study is designed to incorporate sericin protein as a reducing, capping, and stabilizing agent to synthesize sonication‐mediated silver nanoparticles. Fabrication of sericin‐reduced silver nanoparticles (Sr‐AgNPs) is confirmed using UV–visible spectrophotometry, zeta sizer, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X‐Ray diffraction (XRD), and thermogravimetric analysis (TGA). UV–Vis spectral peak of Sr‐AgNPs is observed at 420–440nm while the average size is found between 3 to 30 nm. SEM also confirms the reduction of large‐sized (1–40 µm) sericin macromolecules into nanometric hexagonal and triangular silver nanoparticles with a normal distribution (polydispersity index > 0.5). FTIR peaks from 500 to 4000cm−1 are analyzed for sericin while Sr‐AgNPs peaks with minor shifts (700–1000 cm−1 (COOCO stretching) in Sr‐AgNPs) are also observed. XRD peaks of 2θ at 27° with multiple low peaks at 38.2°, 47°, 49°, and 63.8° authenticate the amorphous nature of sericin and sharp peaks at 36°, 48°, 54.3°, and 61.9° with miller indices (hkl) of 98, 111, 200, and 211, assess the crystalline structure of Sr‐AgNPs. TGA reveals that sericin enhances the stability of silver NPs at high temperature (200–600 °C) by lowering the percentage weight loss from 70–80% to 60–65%.
Collapse
Affiliation(s)
- Muhammad Summer
- Apllied Entomology and Toxicology Laboratory Department of Zoology Government College University Lahore Lahore 54000 Pakistan
| | - Shaukat Ali
- Apllied Entomology and Toxicology Laboratory Department of Zoology Government College University Lahore Lahore 54000 Pakistan
| | - Hafiz Muhammad Tahir
- Apllied Entomology and Toxicology Laboratory Department of Zoology Government College University Lahore Lahore 54000 Pakistan
| | - Rimsha Abaidullah
- Apllied Entomology and Toxicology Laboratory Department of Zoology Government College University Lahore Lahore 54000 Pakistan
| | - Hunaiza Tahir
- Apllied Entomology and Toxicology Laboratory Department of Zoology Government College University Lahore Lahore 54000 Pakistan
| | - Shumaila Mumtaz
- Apllied Entomology and Toxicology Laboratory Department of Zoology Government College University Lahore Lahore 54000 Pakistan
| | - Samaira Mumtaz
- Apllied Entomology and Toxicology Laboratory Department of Zoology Government College University Lahore Lahore 54000 Pakistan
| | - Samima Asad Butt
- Apllied Entomology and Toxicology Laboratory Department of Zoology Government College University Lahore Lahore 54000 Pakistan
| | - Muniba Tariq
- Apllied Entomology and Toxicology Laboratory Department of Zoology Government College University Lahore Lahore 54000 Pakistan
| |
Collapse
|
9
|
Rahman A, Rehman G, Shah N, Hamayun M, Ali S, Ali A, Shah SK, Khan W, Shah MIA, Alrefaei AF. Biosynthesis and Characterization of Silver Nanoparticles Using Tribulus terrestris Seeds: Revealed Promising Antidiabetic Potentials. Molecules 2023; 28:molecules28104203. [PMID: 37241943 DOI: 10.3390/molecules28104203] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Green synthesis is the most effective and environmentally friendly way to produce nanoparticles. The present research aimed at the biosynthesizing of silver nanoparticles (AgNPs) using Tribulus terrestris seed extract as the reducing and stabilizing agent and investigating their anti-diabetic properties. Fourier transformation infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectroscopy were used to analyze the synthesized silver nanoparticles from Tribulus terrestris (TT-AgNPs). The spectroscopic characterization revealed a surface Plasmon resonance band at 380 nm, which verified the development of TT-AgNPs. The transmittance peaks were observed at 596, 1450, 1631, 2856, 2921, and 3422 cm-1 through the FTIR spectrophotometer. The XRD spectrum showed four distinct diffraction peaks in the 2θ range at 20° to 60°. Intense peaks were at 26.32°, 30.70°, 44.70°, 56.07°, 53.75°, 66.28°, and 75.32°. The SEM analysis revealed that the prepared TT-AgNPs were clustered loosely with a smooth and spherical structure and were of relatively uniform size. The in vitro antidiabetic potential of TT-AgNPs was assessed by using glucose yeast uptake, glucose adsorption, and alpha-amylase assays. TT-AgNPs showed the highest activity (78.45 ± 0.84%) of glucose uptake by yeast at 80 µg/mL. In the glucose adsorption assay, the highest activity of TT-AgNPs was 10.40 ± 0.52% at 30 mM, while in the alpha-amylase assay, TT-AgNPs exhibited the maximum activity of 75.68 ± 0.11% at 100 µg/mL. The results indicate a substantial anti-diabetic effect of the TT-AgNPs. Furthermore, the in vivo antidiabetic study was performed on TT-AgNPs in streptozotocin-induced diabetic mice. After receiving TT-AgNPs treatment for 30 days, the mice were sacrificed for biochemical and histological analyses of pancreatic and liver samples, which demonstrated a good improvement when compared to the control group. Mice treated with TT-AgNPs showed a significant drop in blood sugar levels, showing that the biosynthesized TT-AgNPs have effective anti-diabetic properties.
Collapse
Affiliation(s)
- Abdur Rahman
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Gauhar Rehman
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Said Karim Shah
- Department of Physics, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Waliullah Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | | |
Collapse
|