1
|
Yao M, Ding Y, Sun Y, Gao K, Li R, Zhang W, Li W, Wang Y, Qiao Y, Tang H, Wang J. PD15, a steroidal saponin, induces apoptosis of HCT116 colorectal cancer cells via suppressing the Akt/GSK3β pathway. J Pharm Pharmacol 2025:rgae151. [PMID: 39879640 DOI: 10.1093/jpp/rgae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/27/2024] [Indexed: 01/31/2025]
Abstract
OBJECTIVES PD15, a novel natural steroidal saponin extracted from the rhizomes of Paris delavayi Franchet, has demonstrated a strong cytotoxic effect against HepG2 and U87MG cells. However, its therapeutic effects on colorectal cancer (CRC) and the underlying molecular mechanisms remain unclear. METHODS MTT assay, clonogenic assay, Hoechst 33258 staining, flow cytometry, molecular docking, and western blot were used to investigate the mechanism of PD15 in HCT116 cell lines. Additionally, the anti-CRC effects of PD15 were evaluated in vivo using HCT116 xenograft models. KEY FINDINGS PD15 significantly inhibited cell proliferation and induced G0/G1 phase arrest in HCT116 cells. Furthermore, PD15 upregulated cleaved Caspase 3 and 9, cleaved PARP, and Bax expression levels while downregulating Bcl-2, leading to apoptosis. Further experiments revealed that PD15 downregulated the protein expression of p-Akt and p-GSK3β, with LY294002 (a PI3K/Akt inhibitor) enhancing PD15-induced apoptosis and its effects on Akt/GSK3β-associated proteins. In addition, molecular docking demonstrated that PD15 exhibited strong binding affinity with Akt and GSK3β. Critically, PD15 inhibited CRC growth in vivo without causing apparent toxicity in mice. CONCLUSIONS These findings indicate that PD15 could trigger apoptosis by suppressing the Akt/GSK3β signaling pathway in HCT116 cells.
Collapse
Affiliation(s)
- Minna Yao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yang Sun
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Kai Gao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ruili Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Weiwei Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yanhua Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yi Qiao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Haifeng Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
2
|
Wang YH. Naturally Occurring Polyhydroxylated Spirostanol Saponins, A Review of the Classification, Sources, Biosynthesis, Biological Activities, and Toxicity. Chem Biodivers 2025; 22:e202401720. [PMID: 39317680 DOI: 10.1002/cbdv.202401720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Polyhydroxylated spirostanol saponins, characterized by three or more hydroxy substitutions in the aglycone, have various interesting biological activities. In the present study, "steroids", "saponins", "polyhydroxylated", "spirostanol saponins", and "steroidal saponins" were used as search terms to screen the literature. Cited references were collected between 1950 and 2023 from the Web of Science, SciFinder, and China National Knowledge Internet (CNKI). A total of 407 polyhydroxylated spirostanol saponins were included in this review. These saponins were classified into three types, α, β, and γ. Polyhydroxylated spirostanol saponins have potential benefits, primarily anti-inflammatory, antimicrobial, cytotoxic, and cAMP phosphodiesterase inhibitory activities. These compounds were found in 11 plant families and 36 genera. The top three families containing the most saponins were Asparagaceae, Melanthiaceae, and Amaryllidaceae, and the top five genera were Trillium, Helleborus, Allium, Dracaena, and Paris. The top five plants were Trillium tschonoskii Maxim., Ypsilandra thibetica Franch., Paris polyphylla var. yunnanensis (Franch.)Hand.-Mazz., Helleborus thibetanus Franch., and Helleborus foetidus L. On the basis of their diverse biological activities, these saponins and related plant resources are worthy of further development and utilization.
Collapse
Affiliation(s)
- Yue-Hu Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| |
Collapse
|
3
|
Singh PP, Anmol, Suresh PS, Sharma U. NADES extraction, UHPLC-ELSD-based quantification, and network pharmacology-guided target identification of fourteen specialised metabolites from Trillium govanianum Wall. ex D.Don. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1265-1277. [PMID: 38659229 DOI: 10.1002/pca.3357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/06/2024] [Accepted: 03/23/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Trillium govanianum Wall. ex D.Don is a folk medicinal herb rich in structurally diverse steroidal saponins. The annual demand for this herb in India is about 200-500 metric tons, highlighting the need for a thorough quality assessment. OBJECTIVE The objective of this study is to develop an easy and reliable ultrahigh-performance liquid chromatography-evaporative light scattering detector (UHPLC-ELSD)-based quality assessment method with 14 specialised metabolites of T. govanianum and identify the potential targets of this herb using network pharmacology. MATERIAL AND METHODS A UHPLC-ELSD method was developed and validated with 14 markers of T. govanianum. The developed method and natural deep eutectic solvent (NADES)-assisted extraction were utilised for the recovery enhancement study of targeted specialised metabolites from rhizome samples (collected from five geographically distinct areas). In addition, the network pharmacology approach was performed for these 14 markers to predict the plausible biological targets of T. govanianum. RESULT The developed method showed good linearity (r2: 0.940-0.998), limit of detection (LOD) (2.4-9.0 μg), limit of quantification (LOQ) (7.92-29.7 μg), precision (intra-day relative standard deviations [RSDs] 0.77%-1.96% and inter-day RSDs 2.19-4.97%), and accuracy (83.24%-118.90%). NADES sample TG-1* showed the highest recovery (yield: 167.66 ± 4.39 mg/g of dry weight) of total saponin content (TSC) as compared to its hydroethanolic extract (yield: 103.95 ± 5.36 mg/g of dry weight). Sample TG-1* was the most favourable (yield: 167.66 ± 4.39 mg/g) in terms of TSC as compared to other analysed samples (32.68 ± 1.04-88.22 ± 6.79 mg/g). Govanoside D (yield: 3.43-28.06 mg/g), 22β-hydroxyprotodioscin (yield: 3.22-114.79 mg/g), and dioscin (yield: 1.07-20.82 mg/g) were quantified as the major metabolites. Furthermore, network pharmacology analysis of targeted 14 markers indicated that these molecules could be possible therapeutic agents for managing neuralgia, diabetes mellitus, and hyperalgesia. CONCLUSION The current study represents the first report for the simultaneous quantification and a network pharmacology-based analysis of 14 chemical marker compounds isolated from T. govanianum.
Collapse
Affiliation(s)
- Prithvi Pal Singh
- C-H Activation and Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anmol
- C-H Activation and Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Patil Shivprasad Suresh
- C-H Activation and Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Upendra Sharma
- C-H Activation and Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Singh Bisht S, Meena RK, Bhandari MS, Pal Singh P, Sharma U, Bisht A, Verma PK. Exploring Steroidal Saponin Composition and Morphometric Characteristics of Rhizomes from Trillium govanianum Wall. ex D. Don: Inference for Medicinal Properties and Genetic Stock Improvement. Chem Biodivers 2024; 21:e202400588. [PMID: 38651315 DOI: 10.1002/cbdv.202400588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 04/25/2024]
Abstract
Trillium govanianum, a medicinal herb, exhibiting diverse morphometric traits and phytochemicals across developmental stages of plants. The changes in the chemical profile and steroidal saponin levels in the rhizome of T. govanianum across different developmental stages were previously unknown. This study categorizes rhizomes into three types based on scar presence: juvenile (5-10 scars, Type I), young (11-19 scars, Type II), and mature (21-29 scars, Type III). Rhizomes show varying sizes (length 1.2-4.7 cm, girth 0.3-1.6 cm), weight (0.18-5.0 g), and extractive yields (9.7-16.1 % w w-1), with notable differences in saponin content (5.95-21.9 mg g-1). Ultra-high performance liquid chromatography-MS/MS (UHPLC-QTOF-MS/MS)-based chemical profiling identifies 31 phytochemicals, mainly including diverse saponins. Ultra-high performance liquid chromatography coupled with evaporative light scattering detection (UHPLC-ELSD)-based quantitative analysis of seven key saponins reveals stage-specific accumulation patterns, with protodioscin (P) and dioscin (DS) predominant in mature rhizomes. Statistical analysis confirms significant variation (p=0.001) in saponin levels across developmental stages with chemical constituent protodioscin (P=4.03±0.03-15.76±0.14 mg g-1, PAve=9.79±3.03 mg g-1) and dioscin (DS=1.23±0.06-3.93±0.07 mg g-1, DSAve=2.59±0.70 mg g-1), with acceptable power (p=0.738; |δ|>0.5) statistics for effective sample size (n=27 samples used in the study) of T. govanianum. Principal Component Analysis (PCA) and Euclidean clustering further highlighted chemotype distinctions.
Collapse
Affiliation(s)
- Surendra Singh Bisht
- Chemistry and Bioprospecting Division, ICFRE-Forest Research Institute, 248006, Dehradun, India
| | - Rajendra K Meena
- Genetics and Tree Improvement Division, ICFRE-Forest Research Institute, Dehradun, 248 195, India
| | - Maneesh S Bhandari
- Genetics and Tree Improvement Division, ICFRE-Forest Research Institute, Dehradun, 248 195, India
| | - Prithvi Pal Singh
- C-H Activation and Phytochemistry Lab, CSIR-Institute of Himalayan Bioresource Technology, 176061, Palampur, India
| | - Upendra Sharma
- C-H Activation and Phytochemistry Lab, CSIR-Institute of Himalayan Bioresource Technology, 176061, Palampur, India
| | - Aman Bisht
- Chemistry and Bioprospecting Division, ICFRE-Forest Research Institute, 248006, Dehradun, India
| | - Praveen K Verma
- Botany Division, ICFRE-Forest Research Institute, 248006, Dehradun, India
| |
Collapse
|