1
|
Ratnaparkhi MP, Salvankar SS, Tekade AR, Kulkarni GM. Core-Shell Nanoparticles for Pulmonary Drug Delivery. Pharm Nanotechnol 2025; 13:90-116. [PMID: 38265371 DOI: 10.2174/0122117385277725231120043600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 01/25/2024]
Abstract
Nanoscale drug delivery systems have provoked interest for application in various therapies on account of their ability to elevate the intracellular concentration of drugs inside target cells, which leads to an increase in efficacy, a decrease in dose, and dose-associated adverse effects. There are several types of nanoparticles available; however, core-shell nanoparticles outperform bare nanoparticles in terms of their reduced cytotoxicity, high dispersibility and biocompatibility, and improved conjugation with drugs and biomolecules because of better surface characteristics. These nanoparticulate drug delivery systems are used for targeting a number of organs, such as the colon, brain, lung, etc. Pulmonary administration of medicines is a more appealing method as it is a noninvasive route for systemic and locally acting drugs as the pulmonary region has a wide surface area, delicate blood-alveolar barrier, and significant vascularization. A core-shell nano-particulate drug delivery system is more effective in the treatment of various pulmonary disorders. Thus, this review has discussed the potential of several types of core-shell nanoparticles in treating various diseases and synthesis methods of core-shell nanoparticles. The methods for synthesis of core-shell nanoparticles include solid phase reaction, liquid phase reaction, gas phase reaction, mechanical mixing, microwave- assisted synthesis, sono-synthesis, and non-thermal plasma technology. The basic types of core-shell nanoparticles are metallic, magnetic, polymeric, silica, upconversion, and carbon nanomaterial- based core-shell nanoparticles. With this special platform, it is possible to integrate the benefits of both core and shell materials, such as strong serum stability, effective drug loading, adjustable particle size, and immunocompatibility.
Collapse
Affiliation(s)
- Mukesh P Ratnaparkhi
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| | - Shailendra S Salvankar
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| | - Avinash R Tekade
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| | - Gajanan M Kulkarni
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| |
Collapse
|
2
|
Chehimi SN. Dissection of Gene Expression at the Single-Cell Level: scRNA-seq. Methods Mol Biol 2025; 2866:159-173. [PMID: 39546202 DOI: 10.1007/978-1-0716-4192-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Sequencing approaches that allowed for a better resolution of the transcriptome have been a major goal in the transcriptomics field since the development of RNA-seq techniques. While RNA-seq provides gene expression data from one entire sample in bulk, single-cell analysis allows for a better characterization of gene expression associated to specific cell types. Single-cell RNA-seq (scRNA-seq) is a reliable technique to unravel transcriptomic features of the tissues of interest dissociated at a single-cell level. The main feature of the single-cell technique is its ability to generate barcoded individual cells that allow for tracking the origin of thousands to millions of transcripts and reveal new cell types associated to diseases and different cell types and states. In this chapter, we discuss how scRNA-seq has become the gold standard to deepen the understanding of the gene expression with single-cell resolution.
Collapse
|
3
|
Hong NE, Chaplin A, Di L, Ravodina A, Bevan GH, Gao H, Asase C, Gangwar RS, Cameron MJ, Mignery M, Cherepanova O, Finn AV, Nayak L, Pieper AA, Maiseyeu A. Nanoparticle-based itaconate treatment recapitulates low-cholesterol/low-fat diet-induced atherosclerotic plaque resolution. Cell Rep 2024; 43:114911. [PMID: 39466775 PMCID: PMC11648168 DOI: 10.1016/j.celrep.2024.114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Current pharmacologic treatments for atherosclerosis do not completely protect patients; additional protection can be achieved by dietary modifications, such as a low-cholesterol/low-fat diet (LCLFD), that mediate plaque stabilization and inflammation reduction. However, this lifestyle modification can be challenging for patients. Unfortunately, incomplete understanding of the underlying mechanisms has thwarted efforts to mimic the protective effects of a LCLFD. Here, we report that the tricarboxylic acid cycle intermediate itaconate (ITA), produced by plaque macrophages, is key to diet-induced plaque resolution. ITA is produced by immunoresponsive gene 1 (IRG1), which we observe is highly elevated in myeloid cells of vulnerable plaques and absent from early or stable plaques in mice and humans. We additionally report development of an ITA-conjugated lipid nanoparticle that accumulates in plaque and bone marrow myeloid cells, epigenetically reduces inflammation via H3K27ac deacetylation, and reproduces the therapeutic effects of LCLFD-induced plaque resolution in multiple atherosclerosis models.
Collapse
Affiliation(s)
- Natalie E Hong
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alice Chaplin
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lin Di
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Anastasia Ravodina
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Graham H Bevan
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Huiyun Gao
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Courteney Asase
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Roopesh Singh Gangwar
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Matthew Mignery
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Olga Cherepanova
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aloke V Finn
- Department of Internal Medicine, Cardiovascular Division, University of Maryland School of Medicine, Baltimore, MD, USA; CVPath Institute, Inc., Gaithersburg, MD, USA
| | - Lalitha Nayak
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Hematology & Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Andrew A Pieper
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Andrei Maiseyeu
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
4
|
Haueis L, Stech M, Schneider E, Lanz T, Hebel N, Zemella A, Kubick S. Rapid One-Step Capturing of Native, Cell-Free Synthesized and Membrane-Embedded GLP-1R. Int J Mol Sci 2023; 24:ijms24032808. [PMID: 36769142 PMCID: PMC9917595 DOI: 10.3390/ijms24032808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are of outstanding pharmacological interest as they are abundant in cell membranes where they perform diverse functions that are closely related to the vitality of cells. The analysis of GPCRs in natural membranes is laborious, as established methods are almost exclusively cell culture-based and only a few methods for immobilization in a natural membrane outside the cell are known. Within this study, we present a one-step, fast and robust immobilization strategy of the GPCR glucagon-like peptide 1 receptor (GLP-1R). GLP-1R was synthesized in eukaryotic lysates harboring endogenous endoplasmic reticulum-derived microsomes enabling the embedment of GLP-1R in a natural membrane. Interestingly, we found that these microsomes spontaneously adsorbed to magnetic Neutravidin beads thus providing immobilized membrane protein preparations which required no additional manipulation of the target receptor or its supporting membrane. The accessibility of the extracellular domain of membrane-embedded and bead-immobilized GLP-1R was demonstrated by bead-based enzyme-linked immunosorbent assay (ELISA) using GLP-1R-specific monoclonal antibodies. In addition, ligand binding of immobilized GLP-1R was verified in a radioligand binding assay. In summary, we present an easy and straightforward synthesis and immobilization methodology of an active GPCR which can be beneficial for studying membrane proteins in general.
Collapse
Affiliation(s)
- Lisa Haueis
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
- Correspondence:
| | | | - Thorsten Lanz
- 3B Pharmaceuticals GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Nicole Hebel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus–Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
5
|
Tripathy S, Agarkar T, Talukdar A, Sengupta M, Kumar A, Ghosh S. Evaluation of indirect sequence-specific magneto-extraction-aided LAMP for fluorescence and electrochemical SARS-CoV-2 nucleic acid detection. Talanta 2023; 252:123809. [PMID: 35985192 PMCID: PMC9373715 DOI: 10.1016/j.talanta.2022.123809] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 12/17/2022]
Abstract
Nucleic acid amplification tests (NAATs) such as quantitative real-time reverse transcriptase PCR (qRT-PCR) or isothermal NAATs (iNAATs) such as loop-mediated isothermal amplification (LAMP) require pure nucleic acid free of any polymerase inhibitors as its substrate. This in turn, warrants the use of spin-column mediated extraction with centralized high-speed centrifuges. Additionally, the utilization of centralized real-time fluorescence readout and TaqMan-like molecular probes in qRT-PCR and real-time LAMP add cost and restrict their deployment. To circumvent these disadvantages, we report a novel sample-to-answer workflow comprising an indirect sequence-specific magneto-extraction (also referred to as magnetocapture, magneto-preconcentration, or magneto-enrichment) for detecting SARS-CoV-2 nucleic acid. It was followed by in situ fluorescence or electrochemical LAMP. After in silico validation of the approach's sequence selectivity against SARS-CoV-2 variants of concern, the comparative performance of indirect and direct magnetocapture in detecting SARS-CoV-2 nucleic acid in the presence of excess host nucleic acid or serum was probed. After proven superior, the sensitivity of the indirect sequence-specific magnetocapture in conjunction with electrochemical LAMP was investigated. In each case, its sensitivity was assessed through the detection of clinically relevant 102 and 103 copies of target nucleic acid. Overall, a highly specific nucleic acid detection method was established that can be accommodated for either centralized real-time SYBR-based fluorescence LAMP or portable electrochemical LAMP.
Collapse
|
6
|
Strike W, Amirsoleimani A, Olaleye A, Noble A, Lewis K, Faulkner L, Backus S, Lindeman S, Eterovich K, Fraley M, Banadaki MD, Torabi S, Rockward A, Zeitlow E, Liversedge M, Keck J, Berry S. Development and Validation of a Simplified Method for Analysis of SARS-CoV-2 RNA in University Dormitories. ACS ES&T WATER 2022; 2:1984-1991. [PMID: 37552725 PMCID: PMC9115885 DOI: 10.1021/acsestwater.2c00044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 05/26/2023]
Abstract
Over the course of the COVID-19 pandemic, wastewater surveillance has become a useful tool for describing SARS-CoV-2 prevalence in populations of varying size, from individual facilities (e.g., university residence halls, nursing homes, prisons) to entire municipalities. Wastewater analysis for SARS-CoV-2 RNA requires specialized equipment, expensive consumables, and expert staff, limiting its feasibility and scalability. Further, the extremely labile nature of viral RNA complicates sample transportation, especially in regions with limited access to reliable cold chains. Here, we present a new method for wastewater analysis, termed exclusion-based sample preparation (ESP), that substantially simplifies workflow (at least 70% decrease in time; 40% decrease in consumable usage compared with traditional techniques) by targeting the labor-intensive processing steps of RNA purification and concentration. To optimize and validate this method, we analyzed wastewater samples from residence halls at the University of Kentucky, of which 34% (44/129) contained detectible SARS-CoV-2 RNA. Although concurrent clinical testing was not comprehensive, student infections were identified in the 7 days following a positive wastewater detection in 68% of samples. This pilot study among university residence halls validated the performance and utility of the ESP method, laying the foundation for future studies in regions of the world where wastewater testing is not currently feasible.
Collapse
Affiliation(s)
- William Strike
- Departments of Biomedical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| | - Atena Amirsoleimani
- Mechanical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| | - Abisola Olaleye
- Mechanical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| | - Ann Noble
- Mechanical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| | - Kevin Lewis
- Environmental Quality Management, University of Kentucky, 355 Cooper Drive, Lexington, KY 40508
| | - Lee Faulkner
- Environmental Quality Management, University of Kentucky, 355 Cooper Drive, Lexington, KY 40508
| | - Spencer Backus
- Mechanical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| | - Sierra Lindeman
- Mechanical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| | - Katrina Eterovich
- Mechanical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| | - Melicity Fraley
- Mechanical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| | - Mohammad Dehghan Banadaki
- Mechanical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| | - Soroosh Torabi
- Mechanical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| | - Alexus Rockward
- Departments of Biomedical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| | - Eli Zeitlow
- Department of Mechanical Engineering, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818
| | - Matthew Liversedge
- Family and Community Medicine, University of Kentucky 2195 Harrodsburg Rd, Ste 125, Lexington, KY 40504
| | - James Keck
- Family and Community Medicine, University of Kentucky 2195 Harrodsburg Rd, Ste 125, Lexington, KY 40504
| | - Scott Berry
- Departments of Biomedical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
- Mechanical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| |
Collapse
|
7
|
Fryer T, Rogers JD, Mellor C, Kohler TN, Minter R, Hollfelder F. Gigavalent Display of Proteins on Monodisperse Polyacrylamide Hydrogels as a Versatile Modular Platform for Functional Assays and Protein Engineering. ACS CENTRAL SCIENCE 2022; 8:1182-1195. [PMID: 36032770 PMCID: PMC9413441 DOI: 10.1021/acscentsci.2c00576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The assembly of robust, modular biological components into complex functional systems is central to synthetic biology. Here, we apply modular "plug and play" design principles to a solid-phase protein display system that facilitates protein purification and functional assays. Specifically, we capture proteins on polyacrylamide hydrogel display beads (PHD beads) made in microfluidic droplet generators. These monodisperse PHD beads are decorated with predefined amounts of anchors, methacrylate-PEG-benzylguanine (BG) and methacrylate-PEG-chloroalkane (CA), that react covalently with SNAP-/Halo-tag fusion proteins, respectively, in a specific, orthogonal, and stable fashion. Anchors, and thus proteins, are distributed throughout the entire bead volume, allowing attachment of ∼109 protein molecules per bead (⌀ 20 μm) -a higher density than achievable with commercial surface-modified beads. We showcase a diverse array of protein modules that enable the secondary capture of proteins, either noncovalently (IgG and SUMO-tag) or covalently (SpyCatcher, SpyTag, SnpCatcher, and SnpTag), in mono- and multivalent display formats. Solid-phase protein binding and enzymatic assays are carried out, and incorporating the photocleavable protein PhoCl enables the controlled release of modules via visible-light irradiation for functional assays in solution. We utilize photocleavage for valency engineering of an anti-TRAIL-R1 scFv, enhancing its apoptosis-inducing potency ∼50-fold through pentamerization.
Collapse
Affiliation(s)
- Thomas Fryer
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
- Antibody
Discovery and Protein Engineering, R&D, AstraZeneca, Milstein
Building, Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Joel David Rogers
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
- Antibody
Discovery and Protein Engineering, R&D, AstraZeneca, Milstein
Building, Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Christopher Mellor
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Timo N. Kohler
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Ralph Minter
- Antibody
Discovery and Protein Engineering, R&D, AstraZeneca, Milstein
Building, Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Florian Hollfelder
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
8
|
Abstract
Magnetic cell separation has become a key methodology for the isolation of target cell populations from biological suspensions, covering a wide spectrum of applications from diagnosis and therapy in biomedicine to environmental applications or fundamental research in biology. There now exists a great variety of commercially available separation instruments and reagents, which has permitted rapid dissemination of the technology. However, there is still an increasing demand for new tools and protocols which provide improved selectivity, yield and sensitivity of the separation process while reducing cost and providing a faster response. This review aims to introduce basic principles of magnetic cell separation for the neophyte, while giving an overview of recent research in the field, from the development of new cell labeling strategies to the design of integrated microfluidic cell sorters and of point-of-care platforms combining cell selection, capture, and downstream detection. Finally, we focus on clinical, industrial and environmental applications where magnetic cell separation strategies are amongst the most promising techniques to address the challenges of isolating rare cells.
Collapse
|
9
|
Martinez-Dominguez MV, Zottel A, Šamec N, Jovčevska I, Dincer C, Kahlert UD, Nickel AC. Current Technologies for RNA-Directed Liquid Diagnostics. Cancers (Basel) 2021; 13:5060. [PMID: 34680210 PMCID: PMC8534233 DOI: 10.3390/cancers13205060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
There is unequivocal acceptance of the variety of enormous potential liquid nucleic acid-based diagnostics seems to offer. However, the existing controversies and the increased awareness of RNA-based techniques in society during the current global COVID-19 pandemic have made the readiness of liquid nucleic acid-based diagnostics for routine use a matter of concern. In this regard-and in the context of oncology-our review presented and discussed the status quo of RNA-based liquid diagnostics. We summarized the technical background of the available assays and benchmarked their applicability against each other. Herein, we compared the technology readiness level in the clinical context, economic aspects, implementation as part of routine point-of-care testing as well as performance power. Since the preventive care market is the most promising application sector, we also investigated whether the developments predominantly occur in the context of early disease detection or surveillance of therapy success. In addition, we provided a careful view on the current biotechnology investment activities in this sector to indicate the most attractive strategies for future economic success. Taken together, our review shall serve as a current reference, at the interplay of technology, clinical use and economic potential, to guide the interested readers in this rapid developing sector of precision medicine.
Collapse
Affiliation(s)
| | - Alja Zottel
- Medical Center for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (N.Š.); (I.J.)
| | - Neja Šamec
- Medical Center for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (N.Š.); (I.J.)
| | - Ivana Jovčevska
- Medical Center for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (N.Š.); (I.J.)
| | - Can Dincer
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg, Germany;
- Laboratory for Sensors, Department of Microsystems Engineering—IMTEK, University of Freiburg, 79110 Freiburg, Germany
| | - Ulf Dietrich Kahlert
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.V.M.-D.); (U.D.K.)
- Molecular and Experimental Surgery, Clinic of General-, Visceral-, Vascular-, and Transplant Surgery, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Ann-Christin Nickel
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.V.M.-D.); (U.D.K.)
| |
Collapse
|
10
|
Cursi L, Vercellino S, McCafferty MM, Sheridan E, Petseva V, Adumeau L, Dawson KA. Multifunctional superparamagnetic nanoparticles with a fluorescent silica shell for the in vitro study of bio-nano interactions at the subcellular scale. NANOSCALE 2021; 13:16324-16338. [PMID: 34570135 DOI: 10.1039/d1nr04582b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite the high level of interest in bio-nano interactions, detailed intracellular mechanisms that govern nanoscale recognition and signalling still need to be unravelled. Magnetic nanoparticles (NPs) are valuable tools for elucidating complex intracellular bio-nano interactions. Using magnetic NPs, it is possible to isolate cell compartments that the particles interact with during intracellular trafficking. Studies at the subcellular scale rely heavily on optical microscopy; therefore, combining the advantages of magnetic recovery with excellent imaging properties to allow intracellular NP tracking is of utmost interest for the nanoscience field. However, it is a challenge to prepare highly magnetic NPs with a suitable fluorescence for the fluorescence imaging techniques typically used for biological studies. Here we present the synthesis of biocompatible multifunctional superparamagnetic multicore NPs with a bright fluorescent silica shell. The incorporation of an organic fluorophore in the silica surrounding the magnetic multicore was optimised to enable the particles to be tracked with the most common imaging techniques. To prevent dye loss resulting from silica dissolution in biological environments, which would reduce the time that the particles could be tracked, we added a thin dense encapsulating silica layer to the NPs which is highly stable in biological media. The synthesised multifunctional nanoparticles were evaluated in cell uptake experiments in which their intracellular location could be clearly identified using fluorescence imaging microscopy, even after 3 days. The magnetic properties of the iron oxide core enabled both efficient recovery of the NPs from the intracellular environment and the extraction of cell compartments involved in their intracellular trafficking. Thus, the NPs reported here provide a promising tool for the study of the processes regulating bio-nano interactions.
Collapse
Affiliation(s)
- Lorenzo Cursi
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Silvia Vercellino
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mura M McCafferty
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Emily Sheridan
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Vanya Petseva
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Laurent Adumeau
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
11
|
Bade RM, Schehr JL, Emamekhoo H, Gibbs BK, Rodems TS, Mannino MC, Desotelle JA, Heninger E, Stahlfeld CN, Sperger JM, Singh A, Wolfe SK, Niles DJ, Arafat W, Steinharter JA, Jason Abel E, Beebe DJ, Wei XX, McKay RR, Choueri TK, Lang JM. Development and initial clinical testing of a multiplexed circulating tumor cell assay in patients with clear cell renal cell carcinoma. Mol Oncol 2021; 15:2330-2344. [PMID: 33604999 PMCID: PMC8410529 DOI: 10.1002/1878-0261.12931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/31/2020] [Accepted: 02/07/2021] [Indexed: 12/21/2022] Open
Abstract
Although therapeutic options for patients with advanced renal cell carcinoma (RCC) have increased in the past decade, no biomarkers are yet available for patient stratification or evaluation of therapy resistance. Given the dynamic and heterogeneous nature of clear cell RCC (ccRCC), tumor biopsies provide limited clinical utility, but liquid biopsies could overcome these limitations. Prior liquid biopsy approaches have lacked clinically relevant detection rates for patients with ccRCC. This study employed ccRCC-specific markers, CAIX and CAXII, to identify circulating tumor cells (CTC) from patients with metastatic ccRCC. Distinct subtypes of ccRCC CTCs were evaluated for PD-L1 and HLA-I expression and correlated with patient response to therapy. CTC enumeration and expression of PD-L1 and HLA-I correlated with disease progression and treatment response, respectively. Longitudinal evaluation of a subset of patients demonstrated potential for CTC enumeration to serve as a pharmacodynamic biomarker. Further evaluation of phenotypic heterogeneity among CTCs is needed to better understand the clinical utility of this new biomarker.
Collapse
Affiliation(s)
- Rory M. Bade
- Carbone Cancer CenterUniversity of Wisconsin‐MadisonWIUSA
| | | | | | | | | | | | | | - Erika Heninger
- Carbone Cancer CenterUniversity of Wisconsin‐MadisonWIUSA
| | | | - Jamie M. Sperger
- Carbone Cancer CenterUniversity of Wisconsin‐MadisonWIUSA
- Department of MedicineUniversity of Wisconsin‐MadisonWIUSA
| | - Anupama Singh
- Carbone Cancer CenterUniversity of Wisconsin‐MadisonWIUSA
| | | | - David J. Niles
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonWIUSA
| | - Waddah Arafat
- Carbone Cancer CenterUniversity of Wisconsin‐MadisonWIUSA
- Department of MedicineUniversity of Wisconsin‐MadisonWIUSA
| | - John A. Steinharter
- Lank Center for Genitourinary OncologyDana‐Farber Cancer InstituteHarvard UniversityBostonMAUSA
| | - E. Jason Abel
- Carbone Cancer CenterUniversity of Wisconsin‐MadisonWIUSA
- Department of MedicineUniversity of Wisconsin‐MadisonWIUSA
| | - David J. Beebe
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonWIUSA
| | - Xiao X. Wei
- Lank Center for Genitourinary OncologyDana‐Farber Cancer InstituteHarvard UniversityBostonMAUSA
| | - Rana R. McKay
- Lank Center for Genitourinary OncologyDana‐Farber Cancer InstituteHarvard UniversityBostonMAUSA
- Moores Cancer CenterUniversity of California San DiegoLa JollaCAUSA
| | - Toni K. Choueri
- Lank Center for Genitourinary OncologyDana‐Farber Cancer InstituteHarvard UniversityBostonMAUSA
| | - Joshua M. Lang
- Carbone Cancer CenterUniversity of Wisconsin‐MadisonWIUSA
- Department of MedicineUniversity of Wisconsin‐MadisonWIUSA
| |
Collapse
|
12
|
Okolo CA, Kounatidis I, Groen J, Nahas KL, Balint S, Fish TM, Koronfel MA, Cortajarena AL, Dobbie IM, Pereiro E, Harkiolaki M. Sample preparation strategies for efficient correlation of 3D SIM and soft X-ray tomography data at cryogenic temperatures. Nat Protoc 2021; 16:2851-2885. [PMID: 33990802 DOI: 10.1038/s41596-021-00522-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
3D correlative microscopy methods have revolutionized biomedical research, allowing the acquisition of multidimensional information to gain an in-depth understanding of biological systems. With the advent of relevant cryo-preservation methods, correlative imaging of cryogenically preserved samples has led to nanometer resolution imaging (2-50 nm) under harsh imaging regimes such as electron and soft X-ray tomography. These methods have now been combined with conventional and super-resolution fluorescence imaging at cryogenic temperatures to augment information content from a given sample, resulting in the immediate requirement for protocols that facilitate hassle-free, unambiguous cross-correlation between microscopes. We present here sample preparation strategies and a direct comparison of different working fiducialization regimes that facilitate 3D correlation of cryo-structured illumination microscopy and cryo-soft X-ray tomography. Our protocol has been tested at two synchrotron beamlines (B24 at Diamond Light Source in the UK and BL09 Mistral at ALBA in Spain) and has led to the development of a decision aid that facilitates experimental design with the strategic use of markers based on project requirements. This protocol takes between 1.5 h and 3.5 d to complete, depending on the cell populations used (adherent cells may require several days to grow on sample carriers).
Collapse
Affiliation(s)
- Chidinma A Okolo
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Ilias Kounatidis
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | | | - Kamal L Nahas
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.,Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Stefan Balint
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Thomas M Fish
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Mohamed A Koronfel
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ian M Dobbie
- Micron Advanced Imaging Consortium, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Eva Pereiro
- Beamline 09-MISTRAL, ALBA Synchrotron, Barcelona, Spain
| | - Maria Harkiolaki
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
| |
Collapse
|
13
|
Kumar R, Mondal K, Panda PK, Kaushik A, Abolhassani R, Ahuja R, Rubahn HG, Mishra YK. Core-shell nanostructures: perspectives towards drug delivery applications. J Mater Chem B 2020; 8:8992-9027. [PMID: 32902559 DOI: 10.1039/d0tb01559h] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanosystems have shown encouraging outcomes and substantial progress in the areas of drug delivery and biomedical applications. However, the controlled and targeted delivery of drugs or genes can be limited due to their physicochemical and functional properties. In this regard, core-shell type nanoparticles are promising nanocarrier systems for controlled and targeted drug delivery applications. These functional nanoparticles are emerging as a particular class of nanosystems because of their unique advantages, including high surface area, and easy surface modification and functionalization. Such unique advantages can facilitate the use of core-shell nanoparticles for the selective mingling of two or more different functional properties in a single nanosystem to achieve the desired physicochemical properties that are essential for effective targeted drug delivery. Several types of core-shell nanoparticles, such as metallic, magnetic, silica-based, upconversion, and carbon-based core-shell nanoparticles, have been designed and developed for drug delivery applications. Keeping the scope, demand, and challenges in view, the present review explores state-of-the-art developments and advances in core-shell nanoparticle systems, the desired structure-property relationships, newly generated properties, the effects of parameter control, surface modification, and functionalization, and, last but not least, their promising applications in the fields of drug delivery, biomedical applications, and tissue engineering. This review also supports significant future research for developing multi-core and shell-based functional nanosystems to investigate nano-therapies that are needed for advanced, precise, and personalized healthcare systems.
Collapse
Affiliation(s)
- Raj Kumar
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan-52900, Israel.
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, ID 83415, USA.
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University, Lakeland, FL-33805, USA
| | - Reza Abolhassani
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden and Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
| | - Horst-Günter Rubahn
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| |
Collapse
|
14
|
Papadaki MA, Sotiriou AI, Vasilopoulou C, Filika M, Aggouraki D, Tsoulfas PG, Apostolopoulou CA, Rounis K, Mavroudis D, Agelaki S. Optimization of the Enrichment of Circulating Tumor Cells for Downstream Phenotypic Analysis in Patients with Non-Small Cell Lung Cancer Treated with Anti-PD-1 Immunotherapy. Cancers (Basel) 2020; 12:cancers12061556. [PMID: 32545559 PMCID: PMC7352396 DOI: 10.3390/cancers12061556] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022] Open
Abstract
The current study aimed at the optimization of circulating tumor cell (CTC) enrichment for downstream protein expression analyses in non-small cell lung cancer (NSCLC) to serve as a tool for the investigation of immune checkpoints in real time. Different enrichment approaches—ficoll density, erythrolysis, their combination with magnetic separation, ISET, and Parsortix—were compared in spiking experiments using the A549, H1975, and SKMES-1 NSCLC cell lines. The most efficient methods were tested in patients (n = 15) receiving immunotherapy targeting programmed cell death-1 (PD-1). Samples were immunofluorescently stained for a) cytokeratins (CK)/epithelial cell adhesion molecule (EpCAM)/leukocyte common antigen (CD45), and b) CK/programmed cell death ligand-1 (PD-L1)/ indoleamine-2,3-dioxygenase (IDO). Ficoll, ISET, and Parsortix presented the highest yields and compatibility with phenotypic analysis; however, at the patient level, they provided discordant CTC positivity (13%, 33%, and 60% of patients, respectively) and enriched for distinct CTC populations. IDO and PD-L1 were expressed in 44% and 33% and co-expressed in 19% of CTCs. CTC detection was associated with progressive disease (PD) (p = 0.006), reduced progression-free survival PFS (p = 0.007), and increased risk of relapse (hazard ratio; HR: 10.733; p = 0.026). IDO-positive CTCs were associated with shorter PFS (p = 0.039) and overall survival OS (p = 0.021) and increased risk of death (HR: 5.462; p = 0.039). The current study indicates that CTC analysis according to distinct immune checkpoints is feasible and may provide valuable biomarkers to monitor NSCLC patients treated with anti-PD-1 agents.
Collapse
Affiliation(s)
- Maria A Papadaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71110 Heraklion, Vassilika Vouton, Crete, Greece; (M.A.P.); (A.I.S.); (C.V.); (M.F.); (D.A.); (P.G.T.); (C.A.A.); (D.M.)
| | - Afroditi I Sotiriou
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71110 Heraklion, Vassilika Vouton, Crete, Greece; (M.A.P.); (A.I.S.); (C.V.); (M.F.); (D.A.); (P.G.T.); (C.A.A.); (D.M.)
| | - Christina Vasilopoulou
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71110 Heraklion, Vassilika Vouton, Crete, Greece; (M.A.P.); (A.I.S.); (C.V.); (M.F.); (D.A.); (P.G.T.); (C.A.A.); (D.M.)
| | - Maria Filika
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71110 Heraklion, Vassilika Vouton, Crete, Greece; (M.A.P.); (A.I.S.); (C.V.); (M.F.); (D.A.); (P.G.T.); (C.A.A.); (D.M.)
| | - Despoina Aggouraki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71110 Heraklion, Vassilika Vouton, Crete, Greece; (M.A.P.); (A.I.S.); (C.V.); (M.F.); (D.A.); (P.G.T.); (C.A.A.); (D.M.)
| | - Panormitis G Tsoulfas
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71110 Heraklion, Vassilika Vouton, Crete, Greece; (M.A.P.); (A.I.S.); (C.V.); (M.F.); (D.A.); (P.G.T.); (C.A.A.); (D.M.)
| | - Christina A Apostolopoulou
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71110 Heraklion, Vassilika Vouton, Crete, Greece; (M.A.P.); (A.I.S.); (C.V.); (M.F.); (D.A.); (P.G.T.); (C.A.A.); (D.M.)
| | - Konstantinos Rounis
- Department of Medical Oncology, University General Hospital of Heraklion, 71110 Heraklion, Vassilika Vouton, Crete, Greece;
| | - Dimitrios Mavroudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71110 Heraklion, Vassilika Vouton, Crete, Greece; (M.A.P.); (A.I.S.); (C.V.); (M.F.); (D.A.); (P.G.T.); (C.A.A.); (D.M.)
- Department of Medical Oncology, University General Hospital of Heraklion, 71110 Heraklion, Vassilika Vouton, Crete, Greece;
| | - Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71110 Heraklion, Vassilika Vouton, Crete, Greece; (M.A.P.); (A.I.S.); (C.V.); (M.F.); (D.A.); (P.G.T.); (C.A.A.); (D.M.)
- Department of Medical Oncology, University General Hospital of Heraklion, 71110 Heraklion, Vassilika Vouton, Crete, Greece;
- Correspondence: ; Tel.: +30-2810394712
| |
Collapse
|
15
|
Wu J, Raba K, Guglielmi R, Behrens B, Van Dalum G, Flügen G, Koch A, Patel S, Knoefel WT, Stoecklein NH, Neves RPL. Magnetic-Based Enrichment of Rare Cells from High Concentrated Blood Samples. Cancers (Basel) 2020; 12:E933. [PMID: 32290064 PMCID: PMC7225976 DOI: 10.3390/cancers12040933] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Here, we tested two magnetic-bead based systems for the enrichment and detection of rare tumor cells in concentrated blood products. For that, the defined numbers of cells from three pancreatic cancer cell lines were spiked in 108 peripheral blood mononuclear cells (PBMNCs) concentrated in 1 mL, mimicking diagnostic leukapheresis (DLA) samples, and samples were processed for circulating tumor cells (CTC) enrichment with the IsoFlux or the KingFisher systems, using different types of magnetic beads from the respective technology providers. Beads were conjugated with different anti-EpCAM and MUC-1 antibodies. Recovered cells were enumerated and documented by fluorescent microscopy. For the IsoFlux system, best performance was obtained with IsoFlux CTC enrichment kit, but these beads compromised the subsequent immunofluorescence staining. For the KingFisher system, best recoveries were obtained using Dynabeads Biotin Binder beads. These beads also allowed one to capture CTCs with different antibodies and the subsequent immunofluorescence staining. KingFisher instrument allowed a single and streamlined protocol for the enrichment and staining of CTCs that further prevented cell loss at the enrichment/staining interface. Both IsoFlux and KingFisher systems allowed the enrichment of cell line cells from the mimicked-DLA samples. However, in this particular experimental setting, the recovery rates obtained with the KingFisher system were globally higher, the system was more cost-effective, and it allowed higher throughput.
Collapse
Affiliation(s)
- Junhao Wu
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Rosa Guglielmi
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| | - Bianca Behrens
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| | - Guus Van Dalum
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| | - Georg Flügen
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| | - Andreas Koch
- Thermo Fisher Scientific, Postfach 200152, Frankfurter Str. 129B, 64293 Darmstadt, Germany;
| | - Suraj Patel
- Thermo Fisher Scientific, 3 Fountain Drive, Inchinnan, Renfrew PA4 9RF, UK;
| | - Wolfram T. Knoefel
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| | - Nikolas H. Stoecklein
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| | - Rui P. L. Neves
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| |
Collapse
|
16
|
Optimization of rVAR2-Based Isolation of Cancer Cells in Blood for Building a Robust Assay for Clinical Detection of Circulating Tumor Cells. Int J Mol Sci 2020; 21:ijms21072401. [PMID: 32244341 PMCID: PMC7178266 DOI: 10.3390/ijms21072401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023] Open
Abstract
Early detection and monitoring of cancer progression is key to successful treatment. Therefore, much research is invested in developing technologies, enabling effective and valuable use of non-invasive liquid biopsies. This includes the detection and analysis of circulating tumor cells (CTCs) from blood samples. Recombinant malaria protein VAR2CSA (rVAR2) binds a unique chondroitin sulfate modification present on the vast majority of cancers and thereby holds promise as a near-universal tumor cell-targeting reagent to isolate CTCs from complex blood samples. This study describes a technical approach for optimizing the coupling of rVAR2 to magnetic beads and the development of a CTC isolation platform targeting a range of different cancer cell lines. We investigate both direct and indirect approaches for rVAR2-mediated bead retrieval of cancer cells and conclude that an indirect capture approach is most effective for rVAR2-based cancer cell retrieval.
Collapse
|
17
|
Voronin DV, Kozlova AA, Verkhovskii RA, Ermakov AV, Makarkin MA, Inozemtseva OA, Bratashov DN. Detection of Rare Objects by Flow Cytometry: Imaging, Cell Sorting, and Deep Learning Approaches. Int J Mol Sci 2020; 21:E2323. [PMID: 32230871 PMCID: PMC7177904 DOI: 10.3390/ijms21072323] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/25/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Flow cytometry nowadays is among the main working instruments in modern biology paving the way for clinics to provide early, quick, and reliable diagnostics of many blood-related diseases. The major problem for clinical applications is the detection of rare pathogenic objects in patient blood. These objects can be circulating tumor cells, very rare during the early stages of cancer development, various microorganisms and parasites in the blood during acute blood infections. All of these rare diagnostic objects can be detected and identified very rapidly to save a patient's life. This review outlines the main techniques of visualization of rare objects in the blood flow, methods for extraction of such objects from the blood flow for further investigations and new approaches to identify the objects automatically with the modern deep learning methods.
Collapse
Affiliation(s)
- Denis V. Voronin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Physical and Colloid Chemistry, National University of Oil and Gas (Gubkin University), 119991 Moscow, Russia
| | - Anastasiia A. Kozlova
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Roman A. Verkhovskii
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- School of Urbanistics, Civil Engineering and Architecture, Yuri Gagarin State Technical University of Saratov, 410054 Saratov, Russia
| | - Alexey V. Ermakov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Biomedical Engineering, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Mikhail A. Makarkin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Olga A. Inozemtseva
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Daniil N. Bratashov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| |
Collapse
|
18
|
Shen L, Jia K, Bing T, Zhang Z, Zhen X, Liu X, Zhang N, Shangguan D. Detection of Circulating Tumor-Related Materials by Aptamer Capturing and Endogenous Enzyme-Signal Amplification. Anal Chem 2020; 92:5370-5378. [PMID: 32134248 DOI: 10.1021/acs.analchem.0c00051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Circulating tumor-related materials (CTRMs) shed from original or metastatic tumors, carry a lot of tumor information and are considered as important markers for cancer diagnosis and metastasis prognosis. Herein, we report a colorimetric detection strategy for CTRMs based on aptamer-based magnetic isolation and endogenous alkaline phosphatase (AP)-signal amplification. This strategy exhibited high sensitivity and selectivity toward the CTRMs that express AP heterodimers (the target of aptamer, a potential tumor marker). For clinical samples, this CTRM assay significantly discriminated colorectal cancer patients (n = 50) from healthy individuals (n = 39, p < 0.0001). The receiver operating characteristic (ROC) analysis indicated the sensitivity and specificity reached 92% and 82%, respectively, at the optimal cutoff point, the area under the curve of ROC reached 0.93, suggesting great potential for colorectal cancer diagnosis and therapeutic monitoring. Compared with CTC assays, this strategy is simple and has the potential for point-of-care testing.
Collapse
Affiliation(s)
- Luyao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keke Jia
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibao Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoxiao Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
An Automated and High-Throughput Immunoaffinity Magnetic Bead-Based Sample Clean-Up Platform for the Determination of Aflatoxins in Grains and Oils Using UPLC-FLD. Toxins (Basel) 2019; 11:toxins11100583. [PMID: 31658705 PMCID: PMC6832433 DOI: 10.3390/toxins11100583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 01/19/2023] Open
Abstract
Sample clean-up remains the most time-consuming and error-prone step in the whole analytical procedure for aflatoxins (AFTs) analysis. Herein, an automated and high-throughput sample clean-up platform was developed with a disposable, cost-effective immunoaffinity magnetic bead-based kit. Under optimized conditions, the automated method takes less than 30 min to simultaneously purify 20 samples without requiring any centrifugation or filtering steps. When coupled to ultra-high performance liquid chromatography with fluorescence detection, this new analysis method displays excellent accuracy and precision as well as outstanding efficiency. Furthermore, an interlaboratory study was performed in six laboratories to validate the novel protocol. Mean recovery, repeatability, reproducibility, and Horwitz ratio values were within 91.9%–107.4%, 2.5%–7.4%, 2.7%–10.6%, and 0.26%–0.90, respectively. Results demonstrate that the developed sample clean-up platform is a reliable alternative to most widely adopted clean-up procedures for AFTs in cereals and oils.
Collapse
|
20
|
Liao CJ, Hsieh CH, Chiu TK, Zhu YX, Wang HM, Hung FC, Chou WP, Wu MH. An Optically Induced Dielectrophoresis (ODEP)-Based Microfluidic System for the Isolation of High-Purity CD45 neg/EpCAM neg Cells from the Blood Samples of Cancer Patients-Demonstration and Initial Exploration of the Clinical Significance of These Cells. MICROMACHINES 2018; 9:mi9110563. [PMID: 30715062 PMCID: PMC6266761 DOI: 10.3390/mi9110563] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 12/17/2022]
Abstract
Circulating tumour cells (CTCs) in blood circulation play an important role in cancer metastasis. CTCs are generally defined as the cells in circulating blood expressing the surface antigen EpCAM (epithelial cell adhesion molecule). Nevertheless, CTCs with a highly metastatic nature might undergo an epithelial-to-mesenchymal transition (EMT), after which their EpCAM expression is downregulated. In current CTC-related studies, however, these clinically important CTCs with high relevance to cancer metastasis could be missed due to the use of the conventional CTC isolation methodologies. To precisely explore the clinical significance of these cells (i.e., CD45neg/EpCAMneg cells), the high-purity isolation of these cells from blood samples is required. To achieve this isolation, the integration of fluorescence microscopic imaging and optically induced dielectrophoresis (ODEP)-based cell manipulation in a microfluidic system was proposed. In this study, an ODEP microfluidic system was developed. The optimal ODEP operating conditions and the performance of live CD45neg/EpCAMneg cell isolation were evaluated. The results demonstrated that the proposed system was capable of isolating live CD45neg/EpCAMneg cells with a purity as high as 100%, which is greater than the purity attainable using the existing techniques for similar tasks. As a demonstration case, the cancer-related gene expression of CD45neg/EpCAMneg cells isolated from the blood samples of healthy donors and cancer patients was successfully compared. The initial results indicate that the CD45neg/EpCAMneg nucleated cell population in the blood samples of cancer patients might contain cancer-related cells, particularly EMT-transformed CTCs, as suggested by the high detection rate of vimentin gene expression. Overall, this study presents an ODEP microfluidic system capable of simply and effectively isolating a specific, rare cell species from a cell mixture.
Collapse
Affiliation(s)
- Chia-Jung Liao
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan.
| | - Chia-Hsun Hsieh
- Division of Haematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital (Linko), Taoyuan City 33302, Taiwan.
| | - Tzu-Keng Chiu
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 33302, Taiwan.
| | - Yu-Xian Zhu
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan.
| | - Hung-Ming Wang
- Division of Haematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital (Linko), Taoyuan City 33302, Taiwan.
| | - Feng-Chun Hung
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan.
| | - Wen-Pin Chou
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan.
| | - Min-Hsien Wu
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan.
- Division of Haematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital (Linko), Taoyuan City 33302, Taiwan.
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
| |
Collapse
|